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Abstract—Due to the fact that the wireless links in an ad
hoc network are susceptible to attacks and the nodal mobility
renders the network to have a highly dynamic topology, it
becomes critical to detect major attacks against the routing
protocols of such networks and also provide some extent of QoS
to the network traffic. In this paper, we present a new secure
routing protocol (SRP) with quality of service (QoS) support,
called Trustworthiness-based Quality Of Service (TQOS) routing,
which includes secure route discovery, secure route setup, and
trustworthiness-based QoS routing metrics. The routing control
messages are secured by using both public and shared keys, which
can be generated on-demand and maintained dynamically. The
message exchanging mechanism also provides a way to detect
attacks against routing protocols, particularly the most difficult
internal attacks. The routing metrics are obtained by combing the
requirements on the trustworthiness of the nodes in the network
and the QoS of the links along a route. The simulation results
have demonstrated the effectiveness of the proposed secure QoS
routing protocol in both security and performance.

Index Terms—Security, QoS, routing protocol, mobile ad hoc
network.

I. INTRODUCTION

W IRELESS ad hoc networks start to be widely deployed
in various environments. A particular challenging prob-

lem in designing such networks is how to detect the major
attacks against the routing protocols while also provide some
QoS support to the network traffic.

First, the routing protocols must be secured to defend
attacks that may come from external or internal nodes. In an
external attack, a malicious node masquerades as a trusted
node although it does not participate in the routing process.
It can generate floods of spurious service requests, such as
denial of service (DOS) attack. While in an internal attack, a
malicious node may be a compromised or misconfigured node
participating routing, or even colludes with other malicious
nodes, which is called a Byzantine attack [4]. It may adver-
tise false routing information, not forward packet correctly,
misroute, fabricate, modify, or simply drop packets [22].
Therefore, it is more difficult to detect the internal attacks.
Second, the protocols must be integrated with QoS routing
schemes to support the QoS requirements of the carried traffic,
for example, to minimize a cost under delay constraint [2], or
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minmax a cost caused by a single link failure [3] or by co-
channel interferences [24].

The existing SRPs for ad hoc networks often avoid either the
most challenging internal attacks, such as Byzantine behaviors,
or the QoS requirements of the traffic.

A. Related Work

The existing SRPs for ad hoc networks can be divided into
two categories: in terms of how an SRP is secured and what
types of attacks it can defend.

In the first category, the commonly used method is to
establish a security association between the source and desti-
nation nodes so that the on-demand routing protocols, such
as AODV, DSR, and DSDV, can be secured [5]. In [7],
the authors proposed an SRP called Ariadne based on DSR
by using efficient symmetric cryptography. Routing messages
are authenticated by shared secrets between each pair of
nodes. The broadcast authentication scheme used in Ariadne is
TESLA [8], which requires loose time synchronization. In [9],
the authors proposed a proactive SRP, called SEAD, based on
DSDV by using one-way hash chains to provide authentication
to defend attacks that modify routing information broadcast
and replay attacks but not wormhole attack. In [10], in
order to secure on-demand protocols such as AODV and
DSR, the authors developed an authenticated routing protocol,
called ARAN, by using digital signature to provide end-to-end
authentication, message integrity, and nonrepudiation. During
route discovery, a routing message is signed by a source node
and then broadcasted to others. An intermediate node that
receives the message will replace the certificate and signature
of the previous hop with those of its own and then forwards
the message to the next hop. During route setup, the message
is similarly signed twice and unicasted back to the source.
Due to its use of double signatures, ARAN can defend most
common attacks.

In the second category, the major purpose is to protect rout-
ing traffic against the internal attacks, particularly Byzantine
attacks [4]. In [23], the authors proposed to use both route
and message redundancy to detect Byzantine behaviors by
comparing different copies of a message received over differ-
ent routes. In [11], the authors proposed to detect Byzantine
behaviors by using a probing technique, which uses binary
search on a path to find out faulty links. The accumulated path
is protected by an aggregate signature scheme [12], which is
even more expensive than RSA signatures. In [13], the authors
proposed an SRP against Byzantine failures by using source
routing and destination acknowledgements. Each packet is
authenticated at each node by using MACs based on pair-wise
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TABLE I
NOTATIONS FOR SECURITY PRIMITIVES

Notation Meaning

KA+ Public key of node A
KA− Private key of node A
KAB Symmetric key shared by nodes A and B

{d}KA+ Encryption of data d with key KA+

[d]KA− Data d digitally signed by node A
certA Certificate belonging to node A
NA Nonce issued by node A
IPA IP address of node A
PA Routing Packet sent out by node A
FIj

Flag to indicate node Ij’s misbehavior
RDP Route Discovery Packet identifier
REP REply Packet identifier
RER Route ERror packet identifier

secret keys. Digital signatures are used for initial key setup.
Misbehaviors are detected on a per packet basis to defend
Byzantine adversaries.

Based on the above review, we conclude that few protocols
are capable of detecting internal attacks such as Byzantine
attacks and use expensive aggregate signatures or per packet
filtering. Also, the routing metrics are still performance indi-
cators, not security metrics, such as the trustworthiness of a
node. Therefore, few routing protocols consider the security
and QoS problems together.

B. Contribution of This Work

For these reasons, we propose a new secure QoS routing
protocol, i.e., TQOS. First, it is able to detect the difficult
internal attacks, including Byzantine attacks. Second, the
results on the message verification conducted by a node are
used to build a trustworthiness repository by the node on
its neighboring nodes that deliver the message. Third, the
trustworthiness is incorporated into the routing metrics, which
contains the QoS requirement on the links along a route, such
as packet delay and link quality.

The paper is organized as follows. The secure route dis-
covery and key setup are presented in in Section II. The
trustworthiness-based QoS routing metrics and algorithm are
discussed in Section III. The security, cost, and impact of
TQOS are analyzed in Section IV. The simulation results are
presented in Section V. We conclude this paper in Section VI.

II. SECURE MESSAGE EXCHANGE AND KEY

DISTRIBUTIONS

We assumed that each node initially has a pair of pub-
lic/private keys issued by a public key infrastructure (PKI) or
other certificate authority (CA) during its deployment. Each
node maintains a local certificate repository (CR), which can
be managed by using the trustworthiness information and used
to build up a self-organized PKI, as in [14], which in turn can
be used to create and distribute the shared keys among the
nodes [1], [15]. Unlike many other SRPs, our framework of
attack detection does not rely on the PKI or CA after the
deployment of the nodes.

For convenience, the notations for security primitives are
summarized in Table I, which are the same as those used in
ARAN so that comparisons can be easily made.

I x

I j+1 DI j-1 I jS

I y
R oute Redundancy

Message Redundancy

Fig. 1. Multiple copies of a message forwarded over different routes

Initially, each node in the network receives a certificate from
a CA, denoted by T . For example, for node A, the certificate
has the following format:

T → A : certA = [IPA, KA+]KT−, KT+. (1)

The certificate contains the IP address of A (e.g., IPA) and
the public keys of A (e.g., KA+) and T (e.g., KT+). In the
above notation, the messages inside [. . . ], e.g., IPA and KA+,
are concatenated and signed by T . The signed message is
then concatenated with KT+, e.g., the public key of T , as
the certificate to A. To simplify the notation, we ignore the
timestamp related information.

A. Secure Route Discovery

Before a source node S can send data packets to a desti-
nation node D, it needs to discover the network topology by
sending out a route discovery packet (RDP) in order to setup a
route between S and D. The discovery process is demonstrated
in Fig. 1.

To simplify notations, we define a format for an RDP
message sent out by S,

md = RDP, IPD, NS , (2)

where the packet type identifier (e.g., RDP), destination’s
IP address (e.g., IPD), and a nonce (e.g., NS) are all
concatenated. Note that NS works like a sequence number.
For example, we choose a size of 5 bytes for NS in our
simulations, same as in ARAN.

Similarly, we define a format for a route reply (REP) packet
replied by D:

mr = REP, IPS , NS , (3)

where the packet type identifier (e.g., REP), source’s IP ad-
dress (e.g., IPS), and a nonce (e.g., NS) are also concatenated.

At first S checks whether or not exists a shared key between
S and D, i.e., KSD. If it does not exist, S can create one and
encrypt it with D’s public key:

mD = md, {md}KSD, {KSD}KD+. (4)

Only D that has its private key can decrypt the message to
find the shared key and validate the message. Others can
only view the message. Both md and its encrypted version
{md}KSD are sent out, so that intermediate nodes can view
but cannot modify the message. Only the destination can verify
the correctness of the message.
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In the next section, we will see that the shared key can
also be established by using the security associations between
intermediate nodes in the route setup phase. If S already has
a shared key with D, the third part in mD defined in Eqn. (4)
can be simply removed.

In order to discover its neighboring nodes, S broadcasts the
RDP packet as follows:

S → broadcast : PS = [mD]KS−, certS . (5)

Since S’s certificate (e.g., certS) is also appended to the
packet, any node that receives the packet also receives S’s
public key, which has been certified by T .

When an intermediate node, say Ij , as shown in Fig. 1,
receives the RDP from its predecessor, i.e., Ij−1, it validates
the signature of the message. If it is valid, then Ij−1 is a valid
neighbor of Ij . If not, Ij−1’s trustworthiness by Ij will be
updated. It can use Eqn. (15) to update T̂Ij−1 (Ij ; x), which is
Ij−1’s trustworthiness value observed by Ij during x-th route
discovery cycle. If T̂Ij−1(Ij ; x) is below a threshold, it thinks
that Ij−1 is untrustworthy, and its repository of trustworthiness
will be updated.

As a neighbor of S, Ij−1 receives a copy of the broadcasted
message. It validates that the message comes from S and then
rebroadcasts it in the following format:

Ij−1 → broadcast : PIj−1 = [mD]KIj−1−, certIj−1 . (6)

In the above format, Ij−1 signs the RDP packet and attaches
its own certificate to the message.

Similarly, as one of Ij−1’s neighbors that are discovered
in the previous step, Ij also rebroadcasts the RDP in the
following format:

Ij → broadcast : PIj = [mD]KIj−, certIj . (7)

In the rebroadcast, each Ij remembers that Ij−1 is its pre-
decessor. The rebroadcast continues for those have not been
labeled as predecessors until all the nodes in the network are
discovered.

If Ij has shared keys with its known neighbors, for example,
KIjIj+1 with Ij+1, or KIjI′

j+1
with I ′j+1, where Ij+1 and I ′j+1

are the two neighbors of Ij , it sends out the RDP to the two
nodes as follows:

Ij → Ij+1/I ′j+1 : PIj = mD, {mD}KIjIj+1/{mD}KIjI′
j+1

.
(8)

It can be seen that a message md is broadcasted by the source
(see Eqn. (5)), and rebroadcasted by each intermediate nodes
(see Eqns. (6) and (7)), or multicasted by an intermediate
nodes (see Eqn. (8)). Thus, any node may receive multiple
copies of the same message, which is called message redun-
dancy. More over, the same message may arrive a node via
multiple routes, which is called route redundancy. In this way,
a destination will be able to not only find the discrepancies
among different copies of a message, but also discover that
which node does not follow the protocols, i.e., behaves ab-
normally. For example, a selective forwarding attack can be
detected by a receiving node, after it compares the multiple
copies of a message received from multiple nodes and finds
out which one is more trustworthy [23].

B. Secure Route Setup

The route setup procedures can be summarized as follows.
When D receives an RDP packet from a neighbor node, it
first checks whether exists a shared key between D and the
node. If the answer is no, D creates such a key and delivers
it to the neighbor node. Then, it sends out an REP packet to
the node, which forwards the packet until the packet reaches
the source node. During the establishment of the route, the
trustworthiness is continuously updated.

To build such a shared key with its neighbors, D sends out
an REP packet in the following format:

D → Ij+1 : PD = [mR, {KIj+1D}KIj+1+]KD−, certD.
(9)

where
mR = mr, {mr}KSD, {KSD}KS+.

In the above format, a shared key, e.g., KIj+1D, is created
by D using a pseudorandom key generator, and then encrypted
by using Ij+1’s public key. Similarly, the source’s public key
is used to encrypt KSD, so that only the source can decrypt
it by using its private key. The whole message is then signed
by using the destination’s private key. Any node that receives
the message can be assured that the message is from D and
can only read the message but cannot modify it because it is
protected by the shared key, which is encrypted.

The purpose for sending out the above packet is that the
destination can build the shared keys between itself and the
intermediate nodes, through which the shared key KSD is
delivered to S hop by hop. Note that KSD will be used
as a session key during data transmissions once the route is
established.

When an intermediate node Ij+1 receives the REP, it
finds the shared key, i.e., KIj+1D, and stores it for data
transmissions between Ij+1 and D. It then forwards the REP
to the next hop as follows:

Ij+1 → Ij : PIj+1 = [mR, FIj+1 , {KIjIj+1}KIj+]KIj−, certIj .
(10)

where the REP from the node Ij+1 is forwarded to the next
node Ij . Also included is a flag, e.g., FIj+1 , to indicate
whether or not an intermediate node is detected with a
misbehavior. In our simulations, FIj+1 is simply implemented
as an error code. Once the security association between the two
nodes has been established, Ij can update its trustworthiness
and choose a route of minimum cost.

In this way, hop by hop, the REP reaches the source S
that sent out the original RDP and thus a security association
between S and D is established by sharing a symmetric key
KSD. At the same time, an intermediate node also establishes
a security association with its neighbors.

Once KSD is established, D sends out the REP in the
following format during another round of route setup:

D → Ij+1 : PD = mR, {mR}KIj+1D, (11)

where
mR = mr, {mr}KSD, {KIjD}KIj+,

where the message is protected by the shared key KSD. At
the same time, another shared key is created for Ij and D
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and encrypted by Ij’s public key. Similarly, Ij+1 sends out
the REP in the following format:

Ij+1 → Ij : PIj+1 = mR, FIj+1 , {mR, FIj+1}KIjIj+1 , (12)

where the misbehavior flag FIj+1 is appended to the message,
if FIj+1 exists. When Ij receives the REP, it finds the shared
key with D. In the same way, Ij−1 can also establish a shared
key with D, and so on. Here, the redundant use of shared keys
is for attack detection purpose.

For example, Ij+1 can establish three shared keys with Ij ,
Ij−1, and S, respectively, as shown in Fig. 1. For a same
message sent out by S, Ij+1 can receive three copies that are
encrypted with the three keys. By comparing the discrepancies
among the three copies, Ij+1 can find out which one is more
trustworthy and the rest are compromised.

Once the security associations have been built between
the source and destination, and a trustworthy route has been
established, a source can simply use an efficient shared key
to send data, for example, mdata:

Pdata = mdata, {mdata}KSD. (13)

In this work, both shared keys and public/private keys are
used in protecting messages. The shared key is used as a
session key to verify message integrity, particularly the data,
while the public/private keys are used to authenticate nodes
and establish the session key. The reason is that the session
keys can be updated more frequently than the public/private
keys. It is known that the symmetric algorithm for the shared
key, e.g., keyed-hashed MAC, such as MD5, is much more
efficient than the asymmetric algorithm for the public/private
keys, such as RSA. For example, MD5 can process data at a
typical speed of 600 Mbps, which is about 1000 times faster
than RSA [26].

It is worth pointing out that the identity-based encryption
(IBE) can be an efficient alternative to PKI, because a public
key can be generated on-demand by cryptographically com-
bining a node’s identity [27]. For ad hoc networks, the relying
of IBE on a centralized and trusted private key generator needs
to be removed, which is similar to build up a self-organized
PKI used in this work.

III. TRUSTWORTHINESS-BASED QOS ROUTING PROTOCOL

We assume that each node has built up a trust repository
locally for the nodes it knows based on its certificate repository
and current behavior that has been observed during topology
discovery. The repository can be updated every time the
topology is rediscovered, as discussed in Section II.

A. Routing Metrics and Optimal Routing

Let us assume that node j is one of node i’s neighbors.
Denote by T̂j(i; n) the trust on node j, assigned by node i,
after the n-th topology updating cycle. Note that a simple way
to measure T̂j(i; n) is to compute the ratio of the number
of messages decoded and verified correctly to the number
of messages that have been received. For example, one such
method is to use a statistics model as in [17]:

Tj(i; n) = NV ER(i; n)/NREC(i; n), j ∈ {i’s neighbors},
(14)

where NV ER and NREC are the numbers of messages that
have been verified by i and received from j at time n,
respectively. Note that NV ER is counted based on the secure
message verification, indicated by FIj , as discussed in Section
II.

Every time a new observation comes in, the node updates
its repository and calculate a trust value by using a moving
average model. After the (n + 1)-th topology updating cycle,
we can get

T̂j(i; n + 1) = γT̂j(i; n) + (1 − γ)T̃j(i; n + 1), (15)

where T̃j(i; n + 1) is node j’s trust value measured by node
i during the (n + 1)-th topology updating cycle; 0 < γ < 1
is a weighting factor used to trade off between current mea-
surement and previous estimation.

Consider a path p that starts from a source node s to a
destination node d, i.e., p ∈ Ωsd={all the paths from s to d}.
Let’s denote by Tp(n) the trust value of the path p at time n.
In path p, each node chooses one node from its routing table
as its next hop to forward an REP packet. The source s uses
this path to send data packets. Tp(n) can be expressed as

Tp(n) =
∏

i,j∈p

T̂j(i; n), (16)

which serves as a security requirement on path p.
To consider link quality, we use the expected transmission

count (ETX) as a metric, which was proposed in [18]. It esti-
mates the number of retransmissions required to send packets
by measuring the loss rate of broadcast packets between pairs
of neighboring nodes. In order to calculate the ETX metric,
each node broadcasts a probe packet in a fixed time interval.
Each node also sends out a packet containing the count of
probe packets received from each of its neighboring node in
the previous time interval. Based on these probes packets, a
node calculates the loss rate of probe packets on the links to
and from its neighbors. Since our routing protocol uses hello
packets for initial neighbor discovery, we can modify the hello
packets to include some extra fields, such as the number of
hello packets received in last interval. In this way, each node
obtains a value for the ETX based on its observations.

Let’s denote by Xj(n) the ETX measured by node j at time
n, which can be expressed as

Xj(n) =
1

FDRj(n) × RDRj(n)
, (17)

where FDRj(n) is the forward delivery ratio at time n, i.e.,
the ratio of the number of packets received by node j to the
total packets it sends out; RDRj(n) is the reverse delivery
ratio at time n, i.e., the probability that an ACK packet is
successfully received by j. Thus, FDRj(n) × RDRj(n) is
the chance that a probe packet is successfully sent to and
acknowledged back by a receiving node. Therefore, Xj(n)
represents the expected number of transmissions for node j to
successfully deliver a packet.

To consider QoS requirements, for example, packet delay
for delay-sensitive traffic, we use τj to represent the delay a
packet experienced when being delivered over a link starting
from node j. Thus, we can design a combined link cost as
follows:

Ψj(n) = αjXj(n)τj , for j ∈ p, (18)
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where 0 < αn < 1 is a scaling factor used to scale the impact
of the amount of delay on the total metric. For simplicity, we
can choose αj = α for all j. Clearly, Ψj(n) represents an
expected total delay of a packet being delivered over the link
a few times until an ACK being successfully received by node
j.

Similarly, we can design a combined metric for path p as
follows:

Ψp(n) =
∑

j∈p

αjXj(n)τj , for p ∈ Ωsd. (19)

It can be seen that Ψp(n) represents a weighting average of
the total delay of a packet being delivered from a source to
its destination node along a specific path p. Therefore, it can
be used as a cost that penalizes the paths with relatively long
delays among those between the source and destination.

Considering both the trustworthiness and QoS requirements,
a path that is less trusted and does not meet the desired QoS
must be penalized in our objective, thus a combined cost
function can be designed as

Cp(n) =
∑

j∈p

βΨj(n)(1 − Tj(n)), for p ∈ Ωsd, (20)

where 0 < β < 1 is a coefficient used to scale the cost during
optimization although it has no impact on the optimization
results. It can be seen that a bigger value of Cp(n) means a
higher cost for path p to be selected, which is due to either
the lower quality of the path, or the less trustworthiness of the
path, or both.

Now the routing problem can be written as:

min
p

Cp(n), for p ∈ Ωsd, (21)

and subject to the constraints:

T̂j(i; n) ≥ Tmin; for i, j ∈ p, (22)

where Tmin is the minimum trust required for a node to be
allowed to join a route. In Eqn. (20), we explicitly integrate
the security and QoS requirements. For each node j on path p,
the values of Xj , τj and T̂j(i; n) can be obtained. Therefore,
node j can calculate an increase to the cost function Cp(n)
if its next hops is selected to join the path in order to have a
minimum C(p).

To find a global optimal solution to the above optimal
routing problem by solving the Eqns. (21) and (22), there
exist many classical algorithms, including Dijkstra algorithm
and distributed Bellman-Ford algorithm [19]. But using these
algorithms, a source node needs to conduct extensive com-
munications with other nodes, which can be significantly
expansive due to the use of secure message exchanges.

B. Routing Algorithm

The heuristic algorithm can be summarized as follows.
1. During route discovery, a source node broadcasts the

RDP packets. In these packets, along with the regular routing
information, their keys are also attached in order to establish
a security association with their neighbors. Also included is
their observation on the trustworthiness of their neighboring
nodes, and the related misbehavior information.

2. Once an intermediate node receives the RDP packet,
it verifies the source, validates the packet, acknowledges its
previous hop, and establishes a pair-wise shared key with the
previous hops and the source. It then replaces some fields in
the RDP packets by its encryption of keys and adds to the RDP
packet and forwards it to its next hops. This process is repeated
until it either reaches the destination or an intermediate node
that has established a route to the destination.

3. At the destination, it verifies the packets and retrieves
key information to establish a pair-wise shared key with the
intermediate nodes and the source. The total cost for the route
will be calculated by the destination by using Eqn. (20). Note
that the destination will not make a routing decision until it
receives a few valid copies of a same message over multiple
routes. Once a enough number of RDP packets reach the
destination, the destination compares the multiple routes and
selects the one with the least cost. The destination node then
sends an REP back to the source node over the selected route.

4. When the source node receives the REP, it verifies
the packet and retrieves the key information, particularly the
shared key with the destination. Once the security association
is established, it starts data transmissions on the route. The
intermediate nodes on the route monitor the link status and
observes the behavior of their neighbors. It reports the misbe-
havior by appending a misbehavior indicator to the packet.

5. When a link status error or security violation is detected,
a route error (RER) message is generated to notify other nodes
so that they can update their trustworthiness on the erroneous
node or link. The RER message indicates that the erroneous
node or link must be avoided if the trustworthiness is below
a certain threshold, as stated in Eqn. (22). Meanwhile, a new
route which bypasses the erroneous node is selected from the
already existing set of candidate routes. If no such route exists
then a new route discovery is conducted.

Comparing to existing secure routing algorithms, the pro-
posed algorithm uses both digital signature and encryption,
in stead of using double signatures, to protect packets from
internal attacks. It also explicitly incorporates trustworthiness,
link quality, and QoS requirements into the routing metrics.

IV. SECURITY AND COST ANALYSIS

In this section, we analyze the security of TQOS in the
presence of different attacks. We compare it to ARAN in
defending the difficult internal attacks in a network. We also
evaluate the computational and energy cost incurred by the
secure routing mechanism.

A. Security Analysis

It is known that the majority of external attacks against
routing protocols can be prevented by simple link layer
encryption and authentication. In this paper, a source node
shares multiple symmetric keys with a destination node and
the intermediate nodes on a route between them. During the
route discovery phase, every node authenticates its neighbors
by using the RSA encryption algorithm. Hence, any malicious
node that is not authenticated during the initial authentication
phase is excluded from the subsequent route discovery and
data transmissions.
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Sybil Attacks: By using the shared keys to protect the
routing information, Sybil attacks can be prevented because
the nodes in the network will not accept any ID of the
adversary nodes [16].

Selective Forwarding and Sinkhole Attacks: The majority of
these attacks can be prevented because an adversary node is
not allowed to join the network during topology discovery.

HELLO Flood Attacks: By using the shared keys between
a node and its neighbors, HELLO flood attacks are prevented
because the node can authenticate each of its neighbors.

The major classes of attacks not countered by the link
layer mechanism are wormhole attacks and internal attacks,
including Byzantine attacks. For this reason, TQOS uses
multiple keys and digital signatures to protect the routing
information and shared keys.

During the operations of TQOS, each node monitors its
neighbors by comparing a message it receives over various
paths. Each node maintains a repository of trustworthiness
on its neighbors. If some authorized nodes do not forward
the message correctly, i.e., become compromised, a receiving
node can determine which of the nodes is compromised by
comparing the multiple copies of the messages it has received
over multiple paths, provided that there are enough number
of uncompromised nodes. Otherwise, the network will not
be functional. Thereafter, the compromised nodes can be
excluded from the operations. In this way, the majority of
internal attacks against routing protocols can be detected and
prevented.

As an example, we discuss the detection of Byzantine
attacks, which is particularly challenging among the internal
attacks.

Byzantine Attacks: It is assumed that a receiving node
receives multiple copies of a message, which are forwarded
by different nodes over different routes that are protected by
different keys. By comparing the copies of the message, the
node finds discrepancies among the copies. It then chooses
a correct one or more trusted one by using methods such as
voting algorithms or Bayesian estimation [25], or simply the
trustworthiness of the nodes who forward the copies of the
message. For example, if some of the nodes that forward the
message are more trustworthy than others, it can be claimed
that those that have lower trustworthiness and forward the
message differently are colluded nodes [23]. Here, the error
in a copy of the message may be caused by a link error or
a protocol violation, but the result is the same: the forwarded
messages are not consistent.

In ARAN, a path is chosen by the RDP that reaches the
destination first. The destination then sends back an REP along
the reverse path to the source. The routing decision is based
on the receiving of a single copy of the RDP or the sending
of a single copy of the REP. If there are two or more nodes
on a path that are compromised and colluding, the protocol
may not be able to detect the problem. For example, as shown
in Fig. 1, node Ij is the next hop of Ij−1 to the destination
D. If Ij−1 does not follow the protocol, for example, it does
not sign the RDP packet and just forwards it to Ij+1, Ij will
detect the problem. But if Ij is colluding with Ij−1, then the
problem will not be found. The result is that the route that
goes through the two nodes will be preferred. Once the route

has been chosen by the destination, one of the two nodes
can start to drop the REP packet. The problem will not be
detected by the protocol. In TQOS, Ij+1 may receive three
copies of the same RDP and thus can choose the one that is
more trustworthy. The collusion will be detected once Ij+1

finds out the discrepancies among the copies of the message.
Compared to ARAN, TQOS has approximately the same

computational cost at each node. But TQOS can defend some
difficult internal attacks by using message and route redun-
dancy. Compared to other existing secure routing protocols (e.
g., [7], [9]), TQOS has a higher computational cost at each
node in providing a higher level of security.

B. Cost Analysis

In this section, we analysis the additional cost in processing
the routing packets due to the use of the security mechanisms.

As we see in the previous sections, there are three basic
security operations: signing and verifying a routing (control)
packet with a private key, e.g., Eqn. (5); encrypting and
decrypting a message with a shared key, e.g., Eqn. (8); and
encrypting and decrypting a shared key with a public key,
e.g., Eqn.(4). The routing (or control) packets, including RDP,
REP, and RER are protected by a combination of the three
operations, while data packets are only protected with the
shared key.

We assume that the shared key algorithm uses a keyed-
hashed MAC such as MD5 while the public/private algorithm
uses RSA. Let’s first estimate the extra time needed by using
a single operation. Let’s denote by th the time for one hash
operation, tg the time for one signature generation, tv the time
for one signature verification, te the time for one public key
encryption, and td the time for one public key decryption.

For the shared key operations, such as MD5, packets can
be processed at a typical speed of 600 Mbps. For a typical
message of 1 Kb, it takes th = 1.6276 μs to perform a hash
operation. Thus, the time can be ignored.

For the public/private key operations, such as RSA, it is
estimated that for a key with a length of Lk (bits), the CPU
cycles to perform one RSA operation is about (Lk+2)×(Lk+
2 + 32) for a typical implementation [21], which equals 0.28
and 1.09 millions for Lk = 512 and 1024, respectively. It is
also estimated that the generation of a signature takes about
20 RSA operations while the verification takes only one RSA
operation. For a CPU of 2.8 GHz (e.g., an Intel Pentium 4
processor), we can find tg = 2.00 and 7.80 ms, tv = 0.10
and 0.39 ms, for Lk = 512 and 1024, respectively. Similarly,
for a CPU of 206 MHz (e.g., an Intel Strong Arm 32-bit basic
processor), we can find tg = 27.00 and 105.44 ms, tv = 1.35
and 5.27 ms, for Lk = 512 and 1024, respectively.

We also assume that the times spent in public key en-
cryption/decryption are the same as those for the signature
generation and verification. Thus, we have te = tg and
td = tv.

To process a routing packet (e.g., RDP), a node usually
conducts a hash operation on the message, signs the message,
and verifies that the certificate attached by a neighbor is valid,
in order to replace the certificate with its own certificate in the
attachment, as can be seen in Eqn. (5). Let’s denote by T1 the
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TABLE II
SIMULATION PARAMETERS AND VALUES

Parameters Values

network dimensions 670mx670m or 1000mx1000m
number of nodes 20 or 50

radio range 250m
node pause times 30s

node speed 0 ∼ 10 m/s
source-destination pairs 5 or 20

traffic pattern CBR/UDP
source traffic (each) 4 packets/second

data payload size 512 bytes/packet

total time spent by a node for the security operations in this
case. Therefore, T1 = tg + tv + th. For a CPU of 2.8 GHz,
we have T1 = 2.10 and 8.19 ms, for Lk = 512 and 1024,
respectively. For a CPU of 206 MHz, we have T1 = 28.35
and 110.71 ms, for Lk = 512 and 1024, respectively.

To processing a routing packet (e.g., REP), if a shared key
needs to be protected, a node needs to conduct one public
key operation, e.g., Eqns. (11) and (12), or one public key
and one signature operation, e.g., Eqn. (5), or even two public
key encryptions plus one signature generation and verification,
e.g., Eqn. (9). Therefore, the time to process an REP packet
can be roughly 1 ∼ 3 times of that for an RDP packet. Let’s
denote by T2 the total time spent by a node for the security
operations in this case. For a CPU of 2.8 GHz, we have T2 =
2.10 ∼ 6.30 and 8.19 ∼ 24.57 ms, for Lk = 512 and 1024,
respectively. For a CPU of 206 MHz, we have T2 = 28.35 ∼
85.05 and 110.71 ∼ 332.13 ms, for Lk = 512 and 1024,
respectively.

To processing a routing packet (e.g., RER), once all the pair-
wise shared keys are available, a node needs only to conduct
a hash operation. Thus, the time is ignored.

C. Impact on Network Performance

Now we can estimate the major impact of added security
on network performance.

The first one is the part of the routing acquisition delay
caused by the extra security operations, which is denoted
by Tso. We assume that a discovered route has h hops
between a source and destination node. The destination needs
to receive c copies of the RDP packets until it makes a
routing decision by sending an REP packet. Therefore, Tso =
c(h + 1)T1 + (h + 1)T2 = (h + 1)(cT1 + T2). For the
network configuration shown in Table II, by simulation we
find that c = 2 ∼ 4 and h = 1 ∼ 4 hops. For a CPU
of 2.8 GHz, Lk = 512, we have Tso = 12.60 ∼ 73.50
ms, which is acceptable for a typical setting of initial route
request timeout = 2 s and maximum route request timeout =
40 s. However, for a CPU of 206 MHz, Lk = 1024, we have
Tso = 0.6643 ∼ 3.8749 s, which will significantly degrade the
network performance and thus may restrict the applications of
the secure routing protocol. Otherwise, we need to trade off
the security requirement and network performance by reducing
the length of the RSA key. For example, for a CPU of 206
MHz, if we choose Lk = 256, we can find that T1 = 15.25

ms and Tso = 91.50 ∼ 533.75 ms, which will significantly
improve the network performance.

The second one is on the network lifetime that is related
to the energy consumption during route discovery and setup
phases. This is critical because the nodes in a wireless ad hoc
network are usually operated on battery power. Our concern
is the extra power consumption due to the introduction of the
security operations. It can be divided into two parts: the power
consumed by the CPU and the wireless connection (e.g., NIC,
network interface card). Let’s denote by Enew the energy in a
new battery in mWh or mWs, PCPU the power dissipation by
a CPU in mW, PNIC the power dissipation by a NIC in mW,
Ptot the total power dissipation in mW, fCPU the fraction
of the power dissipation by a CPU in percentage, and fNIC

the fraction of the power dissipation by a NIC in percentage.
Usually PNIC is much larger than PCPU . For example, for
an iPAQ with a CPU of 206 MHz, powered by a 2000 mAh
battery with a nominal voltage of 3.7 V, we have Enew = 7400
mAh. It is found that fCPU = 12% and Ptot = 1250 mW
without wireless connection while fNIC = 40% and Ptot =
2200 mW with the connection [28]. For the two Ptot values,
the run times are 5.92 and 3.36 hours, respectively.

Due to the security mechanisms, the extra time for the CPU
to process the routing packets is Tso. Every time the network
topology is changed, the routes need to be updated once.
Let’s denote by Tru the interval of the route updating in s.
Within an hour, the original power consumption is Ptot×3600,
while the increased consumption is Tso × fCPU × Ptot ×
3600/Tru. Therefore, the increased consumption in an hour
is Tso × fCPU/Tru in percentage. For example, for the iPAQ,
if we choose Lk = 256 and Tru = 300 s, we can find the
increased consumption is 0.00366 ∼ 0.02135%, which is quite
acceptable.

It is noticed that the NIC card must be in awake mode
at all times. To be able to receive and transmit packets, the
NIC must be in receive or transmit state, in stead of idle or
sleep. To find the increased power consumption by the NIC
due to the use of security mechanisms, we need to find the
increased operation time in receive or transmit state, which
is also Tso. Similarly, the increased power consumption in
an hour is Tso × fNIC/Tru in percentage. For the above
setting, it is 0.0122 ∼ 0.07117%, which is also acceptable.
Note that the message redundancy introduced in route setup
does not cost extra communications. The RDP packets are
broadcasted to the whole network in both cases of without and
with the security mechanisms. With the security mechanisms,
a destination needs to delay the sending of an REP packet
until receives a few copies of the RDP packets, in order to
use the message redundancy. As we can see, the impact of the
message redundancy is mainly on the additional routing delay,
for which we need to trade off the key length and the routing
delay. In our simulations, the number of copies is found to be
in the range of 2 ∼ 4, for the cases in which 10 ∼ 40% of
nodes are malicious.

It is worth pointing out that the redundant use of the
shared keys between a source and each intermediate nodes
and the destination node may result in a scalability problem.
Generally, in order to not only detect the collusion of n
compromised nodes that are consecutively on a route, but also
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identify these nodes, a receiver must have at least n+1 copies
of the same message, and one of the copies is more trusted
than the others. The copies can either go through different
routes or be protected by the shared keys in different segments
of a route. For example, if there are n nodes along a route,
then the shared key management scheme needs to create and
distribute (n−1)2/2 keys to the nodes on the route. Therefore,
it is not appropriate for networks with a large number of low-
resource nodes.

V. SIMULATION RESULTS

In this section, we simulate the proposed TQOS protocol
by using the NS-2 simulator [20]. We also compare TQOS
to AODV and ARAN by various performance metrics. The
simulation parameters and values are shown in Table II,
including a small and a large size network.

A. Network Configurations

In our first scenario, we compare TQOS to the popular
AODV by using the large size network with 20 source-
destination pairs. The performance metric is simply the total
number of packets the protocol delivered at different time.
The simulation is run for 700 seconds. It is assumed that
the network has a number of malicious nodes, such as 5, 10,
or 20. A malicious node randomly drops data packets it is
forwarding with a probability of 0.2 ∼ 0.5. We also assume
that only intermediate nodes can become malicious during the
simulation. For example, along a selected route, if Ij drops
packets, then Ij+1 can detect the dropping and thus update
its trustworthiness about Ij . In order to simulate the scenario
of collusion, as a demonstration purpose, we assume that a
normal node updates its trustworthiness with a probability of
70 ∼ 90% when it detects a dropping, i.e., some dropping
events are detected but not counted in the updating. Therefore,
Ij+1 knows that Ij is a malicious node but does not always
report, i.e., they are colluding.

In our second scenario, we compare TQOS to ARAN in the
routing performance by using both sizes of networks. Each
source-destination pair generates 1000 data packets that need
to be delivered. As we discussed in Section IV-A, the security
features in TQOS are similar to those in ARAN [10], which
have been well simulated and compared to other protocols.
Thus, here our focus is the routing performance.

We assume that both TQOS and ARAN use the 512 bit RSA
key and 16 byte signature for the public key based security
primitives, including digital signature and encryption. In order
to compare the performance of TQOS to that of ARAN, we
add a delay of 2.2 ms to the processing time of each routing
packet in TQOS, same as in ARAN. For data packets, we
assume that TQOS uses a 128 bit AES key for the shared
key based security primitives. Note that in our simulation,
the maximum size data needs to be encrypted is less than
1Kb, which takes about 1.6276 μs to conduct one message
verification, for a typical implementation of the shared key
operations, e.g., 600 Mbps. Therefore, the time is ignored in
our simulation.

In order to compare to ARAN, we also compute the fol-
lowing metrics: packet delivery fraction, average path length,
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Fig. 2. The total number of packet delivered in the presence of 5 malicious
nodes in a network with 50 nodes
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Fig. 3. The total number of packet delivered in the presence of 10 malicious
nodes in a network with 50 nodes

routing load, routing acquisition delay, and end-to-end delay
of data packets, as defined in [6].

B. Simulation Results

For the first scenario, the results on the total number of
delivered packets are shown in Figs. 2, 3, and 4, for the
cases of 5, 10, and 20 malicious nodes, respectively. It can
be seen that AODV delivers about 15% less of packets than
TQOS in the end of the simulation, if only 10% of the
nodes are malicious. The reason is that there exists a large
number of good nodes between the source and destination.
As the percentage of malicious nodes increases to 20% or
40%, TQOS delivers about 10% less of packets in the end of
simulation, but AODV stops delivering at time 600 and 500s,
respectively. The reason is that AODV has to choose some
malicious nodes in forwarding packets if a relatively large
number of them are malicious. If AODV does not receive
an acknowledgement, it times out and reinitiates a route
discovery. But with a high probability, the newly discovered
route still contains malicious nodes and thus fails again.
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Fig. 4. The total number of packet delivered in the presence of 20 malicious
nodes in a network with 50 nodes
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On the other hand, TQOS is able to discover routes that go
around the malicious nodes and thus keeps delivering packets
in both cases. Clearly, TQOS can detect the attacks and
maintains a secure route between the source and destination
and therefore delivers packets successfully.

For the second scenario, the five performance metrics for
TQOS are shown in Figs. 5 ∼ 9 and compared to the results
of ARAN reported in [10].

Figure 5 compares the packet delivery fraction (PDF) of
TQOS to ARAN. Both TQOS and ARAN have a PDF of
94% or higher for both network sizes. In the worst case, in
which there are 50 nodes with a speed of 10 m/s, TQOS has
a PDF only 0.4% less than ARAN. Therefore, TQOS works
as effective as ARAN in discovering and maintaining routes
for delivery of data packets.

As shown in Fig. 6, the average path length (APL) for
TQOS is always less than that for ARAN in different network
sizes and nodal mobility. One reason is that ARAN chooses
a route as its best route on which an RDP packet reaches
the destination first. By doing this, ARAN may choose a
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route which has the longest propagation delay but relatively
less packet processing time, since the processing time takes a
major part in the time the RDP packet being delivered to the
destination. While in TQOS, the link quality and traffic delay
are parts of the routing metrics. TQOS can always choose a
path with the minimum delay to send back a reply if the nodes
are of the same trustworthiness, as simulated in this scenario,
in which nodal misbehaviors are not assumed. It can be seen
that for the network of 20 nodes with a nodal speed is 1 m/s,
TQOS has an APL that is less than half of that of ARAN.

Figure 7 shows the average routing load (ARL) measured in
bytes. The number of control packets sent in TQOS is almost
identical to the one in ARAN. Note that ARAN prohibits an
intermediate node from sending reply back to a source, even if
it has a route to destination. But TQOS allows the intermediate
node to reply, if it is trusted and has the route, because TQOS
can assure the security by using trustworthiness. In this way,
TQOS avoids sending a lot of control packets. Otherwise,
TQOS may have a higher routing load than ARAN due to
its use of multiple paths.
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Fig. 9. End-to-end delay of data packets of the protocols in two network
sizes

In Fig. 8, it can be seen that TQOS has an average routing
acquisition delay (ARAD) about half of the one for ARAN.
The major savings on ARAD are due to the fact that TQOS
uses more efficient security primitives than ARAN. In ARAN,
when a source needs to send out a control packet, it uses
RSA to encrypt the packet. Any node that receives the packet
needs to verify the digital signature and replace it with its own
digital signature. The cryptographic delay is added at each
hop, thus the ARAD is increased. In TQOS, if the source
has a shared key with its destination, it uses the shared key
to encrypt the packet, which almost causes no delay. Same
for the intermediate node with its neighbors. Note that the
RSA is used to encrypt topology discovery and replay packets
only when the source needs to establish a shared key with its
destination.

As shown in Fig. 9, the end-to-end delay of data packets
in TQOS is always less than the one in ARAN. The reason
is that TQOS always tries to choose a route that meets the
traffic delay requirement, in addition to its smaller routing
acquisition delay than ARAN, as shown in Fig. 8.

In summary, TQOS outperforms the existing protocols
including AODV and ARAN.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we address the most challenging problem
of designing a secure routing protocol with QoS support.
For a routing protocol to detect the major internal attacks
such as Byzantine attacks, we propose to use both route
and message redundancies during topology discovery. The
attacks can be detected by verifying various copies of a
received message, which reaches a node via different paths
at different times. By combining the security mechanism with
QoS requirements, we present a secure QoS routing protocol
that achieves better performance than the existing ones, as
demonstrated by simulation results.

It is worth pointing out that the message redundancy is
enforced by sending a same message a few times if the route
redundancy does not exist. Also, it is assumed that the source
and its intended destination are trusted, which are established
by an external trust agent or CA.

It is noted that there are many issues are not addressed
in this paper. For example, the procedures for each node
to implement and maintain a local certificate repository, the
buildup of trust among a node and its neighbors, and the
establishment of a self-organized PKI, all need to be further
investigated in our future work.
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