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Introduction

Problems in Networking Sensor Systems:

A large numbers of small, relatively inexpensive and
low-power sensors are connected via a wireless
network.

Through the network, the data extracted from these
sensors is sent to a nearby base station (BS), which
forwards the data to a remote data center for further
processing.

Challenging Problem: how to dynamically organize
these sensors into a wireless communication
network and route detected event information
between field sensors and BS, i.e., the design of a
networking protocol. . – p.3/42
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Networking Requirements

Primary Requirements: energy efficiency,
scalability, adaptivity, and security.

Secondary Requirements: channel efficiency and
network performance, which includes packet delay,
packet loss ratio, throughput, and fairness.

The focuses of this paper: energy efficiency,
scalability, and adaptivity.

• Energy-efficient: the energy consumption in
delivering packets from source to destination is
minimized.

• Power-Aware: a route with nodes having
higher residual (battery) power should be selected,
although it may not be the shortest route.

. – p.4/42
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Current Work

Clustering is an energy-efficient architecture,
wherein the individual nodes forward the
information to their respective cluster heads.

• The information is aggregated at the cluster
head and then sent to the BS by the cluster head.

• The cluster heads and BS usually form a
multi-hop network, which must have a multi-hop
routing protocol.

. – p.5/42
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Current Work: Clustering

The near term digital radio (NTDR): based on a
two-tier clustering without using low-energy routing
or MAC.

d-hop clusters: directly aimed at minimizing the
energy spent in the system.

LEACH: the nodes were organized into cluster
hierarchies and TDMA was applied within each
cluster. Assumed the number of nodes and the
optimal number of clusters to be formed are given.

HEED: an improvement based on LEACH.
Clustering uses node degree cost, which needs to
know the number of active nodes. Not guarantee
optimal selection of cluster heads in terms of energy.

. – p.6/42
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Sensor and Data Networks

The significant differences between the two
networks:

• Most traffic in sensor network is triggered by
sensed events;

• In reporting phase, the traffic goes from a
hot-spot area, which consists of a few of the sensors,
to a BS;

• In polling phase, traffic goes from a BS to
many sensors;

• Many sensors coordinate for a common task
and not all of them must be active.

Therefore, a sensor network is more like the fault
management system (FMS) of a data network rather
than the data network itself.

. – p.7/42
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Sensor and Data Networks

Many of the existing sensor networking protocols
have often applied data network concepts and
produced inefficient algorithms.

In a typical application of a sensor network, the
routed event can be either an anomaly event
autonomously sent out by sensors, or a polling
command issued by the remote collection stations.

We propose the ACT and port many FMS concepts
and protocols to sensor networks, such as event
routing, reporting, processing, correlation, by using
SNMP traps and alarms.

. – p.8/42
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System Architecture

Two-tier hierarchical architecture, includes an adaptive
clustering technique and multi-hop routing protocol.

ACT: adaptive clustering technique.

In tier-1, cluster members communicate to each
other over a hybrid MAC protocol consisting of both
contention and schduling.

In tier-2, cluster heads communicate over a
multi-hop routing protocol.

Focus: an adaptive clustering technique for
large-scale sensor networks.

. – p.9/42
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System Architecture 
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Figure 1: Architecture of A Sensor Network
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Assumptions

Network area: a square area of side2a, the area
A = 4a2.

The sensors inside the area are distributed according
to a homogeneous spatial Poisson process, with
intensity ofλ sensors/m2, hence, the mean value of
n is λA.

The base station (BS) is at the center of the square
area.

. – p.11/42
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Notations

n: the number of sensors in the network, a random
variable. For a particular realization, there areN
sensors.

p: the probability of a node becoming cluster head.
Thus, on average, there areNp nodes that will
become cluster heads, the restN(1 − p) nodes will
be cluster members in total.

k: the average number of cluster heads. Therefore,
there arek = Np clusters, each on average has
m = N/k − 1 member nodes;m is the average
number of CMs within a cluster;

. – p.12/42
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Adaptive Clustering

The critical problem is how to estimate the
parameters in real-time,N , the number of active
nodes, and the optimal number of clusters,kopt, or
equivalentlypopt.

Assume that each node
• is capable of measuring its received signal

power.
• keeps a record of the minimum power of the

signals it has received within its radio range during
previous cluster updating cycle.

. – p.13/42
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Radio Propagation Model

Notations:
• st andsr are random variables that describe the

powers of a signal a sensor node has transmitted and
received at distancer, respectively;

• κ is a dimensionless constant which depends
on the antenna characteristics and average
attenuation from blockage, whiler0 is a reference
distance fro the antenna far-field;

• γ = 2 ∼ 4 is the path-loss exponent; for
simplicity and without lossing generality, we choose
γ = 2.

• ψdB is a Gaussian-distributed random variable
with mean zero and varianceσψ, which can be also
measured.

. – p.14/42
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Radio Propagation Model

The widely used measurement-based radio
propagation model is the path-loss model with
log-normal shadowing:

sr
st

(dB) = 10 log10 κ− 10γ log10

r

r0
+ ψdB, (1)

By taking mean values on the random variables in
above Eqn.,

Sr
St

(dB) = 10 log10 κ− 10γ log10

r

r0
, (2)

whereSr andSt are the mean values ofsr andst,
respectively.

. – p.15/42
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Radio Propagation Model

Notations:
• S: the signal power a node has received.
• r: the distance of a node to its cluster head.

Within a cluster, each node communicates to its
cluster head by one hop distance; we have the
further simplified model:

S(r) = ǫ0/r
γ, r ≤ rmax, (3)

where
• ǫ0: a constant related to the radio trasmission

device and propagation environments;
• rmax: the maximum allowable distance

between a node and its cluster head.
. – p.16/42
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Voronoi Cell

Definition: a cell that covers most of the nodes in a
cluster.

ρm: the radius of the minimal ball that covers the
Voronoi cell. The ball is centered at the nucleus of
the cell.

The probability thatρm is greater than a certain
valueρ has an upper bound:

Prob{ρm > ρ} ≤ 1 − [1 − exp(−µpλρ2)]7, (4)

where
• µ = 2(π

7
+ sin π

14
+ cos 5π

14
),

• pλ: the equivalent intensity for the point
process that describes the cluster head nodes.. – p.17/42
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Voronoi Cell

The above Eq. can be simplified:

Prob{ρm > ρ} ≤ 7 exp(−µpλρ2). (5)

Objective: to ensure that the probability of all the
member nodes are beyond the minimal ball is very
low,

Define a parameter (degree of clustering)α that:

Prob{ρm > ρ} ≤ α, (6)

whereα is a very small value specified from cluster
design requirement.

. – p.18/42
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Maximum Hop Distance

By combining the two Eqns., we can choose

α = 7 exp(−µpλρ2). (7)

We can find such aρ that must meet

ρ =
√

− ln(α/7)/(µpλ). (8)

In this way, we can make sure thatρm ≤ ρ in most
cases, i. e., the minimal ball covers most of the
nodes in the Voronoi cell.

. – p.19/42
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Maximum Hop Distance

Equivalently, the maximum distance of a node to a
cluster head must be bounded by the above Eqn. in
order to fall inside of the ball, that is,

rmax ≤
√

− ln(α/7)/(µpλ). (9)

Almost all the nodes are within one hop distance
from a cluster head. Therefore, we can letrmax take
the maximum value.

. – p.20/42
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Minimum Signal Power

Using the equal sign in above Eqn.,

Smin = −
ǫ0µpλ

ln(α/7)
, (10)

whereSmin is the minimum signal power a node has
received.

Therefore, we can approximately estimate the value
of the number of active nodes, by usingN = λA, if
the probability of a node becoming cluster head, i.e.,
p value, is given.

. – p.21/42



Dr. Ming Yu 
@ SUNY Binghamton 

Energy Efficient Clustering

In the network level, the requirement on clustering is
to have as less number of clusters as possible.

Within a cluster, the CMs must be as close to their
CH as possible.

To measure the cost incurred by the two
requirements:

C(q) = e1k|D0| + e2

k
∑

j=1

m|D1|, (11)

whereD0 is the average distance from a CH to the
BS; andD1 is the average distance of a CM to its
CH.

. – p.22/42
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Energy Efficient Clustering

After some manipulations, we have

C(p) = e1d0anp+ e2np(
1

p
− 1)

2

3
rmax. (12)

Now the energy efficient clustering becomes an
optimization problem: how to choose an optimalp
to minimize the total energy consumptions spent in
intra- and inter-cluster communications?

. – p.23/42
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How to Choose Energy Coefficient?

Assume that the average energy consumption in
network layer for a CH to receieve and transmit a
unit of data (e. g., one bit, or one packet) over a hop
distance ofH areEr andEt, respectively.

The total energy spent in network layer:

e1 = (Er + Et)/H, (13)

whereEr = Eelec, Eelec is the energy spent on
electrical device for receiving a unit of data; and
Et = Eelec + ǫ0H

γ, ǫ0 andγ can take different
values, depending onH, as defined in Table??.

. – p.24/42
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How to Choose Energy Coefficient?

Assume that the average energy consumption in
MAC layer for a CM isEr for the receiving of the
data bit per time unit (e. g., a time slot);Et for the
successful transmission of the bit per time unit;Ec

for a collision that lasts for one time unit; andEi for
an idle that lasts for one time unit.

The total energy spent in MAC layer:

e2 = (ws(Er + Et) + wiEi + wcEc)/D1, (14)

. – p.25/42
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Estimating N Value

It can be found that

popt = 1/(
√

c1Smin − 1), (15)

wherec1 = −4c2
0
A ln(α/7)/(ǫ0µ).

Assume that during thejth cluster updating cycle,
the measurement ofSmin is denoted as̃Smin(j), the
corresponding value ofpopt asp̃opt(j).

Ñ(j) = −
ln(α/7)AS̃min(j)

ǫ0µp̃opt(j)
, (16)

whereÑ(j) is the calculated value ofN in in thejth
cluster updating cycle. . – p.26/42
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Smoothing Estimations

By using a moving averaging model:

N̂(j + 1) = βN̂(j) + (1 − β)Ñ(j + 1), (17)

where0 < β < 1 is a smoothing factor used to
adjust the estimation speed and accuracy.

The optimal number of clusters can be easily
obtained

k̂opt(j + 1) = N̂(j + 1)p̃opt(j + 1). (18)

Note that we can also have

p̃opt(j + 1) = 1/(

√

c1S̃min(j) − 1). (19)
. – p.27/42
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The Adaptive Clustering Algorithm

1. Initially, specify the value ofα, such asα = 0.001.
2. Each node measures and records the minimum value
Smin(j) in the current cycle.
3. Each node computes itspopt value.
4. Each node computes itsN andkopt values.
5. By checking the inequality:

|N̂(j) − N̂(j − 1)| ≤ δ. (20)

whereδ is a predefined QoS parameter. If yes, don’t
activate a cluster updating process. Go to step 2.
6. The node adopts thepopt(j) value and tries to become
a cluster head with this new probability.
7. Letj = j + 1, go to step 2.

. – p.28/42
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Remarks

Each node actively monitors its received signal
power levels during the cluster updating cycles.

The updating process is triggered by some serious
changes in network status, by trading off energy
consumption and the adaptivity.

Each node attempts to find and stay at its optimal
cluster locally. The algorithm is carried out by all
nodes simultaneously and independently.

If no serious changes, the algorithm is aborted
silently. Otherwise, the node will automatically
adjust its cluster to adapt to the changes in real-time.

. – p.29/42
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Conclusion

We propose
• a networking architecture for large-scale sensor

networks
• an adaptive clustering technique

The simulation results have demonstrated that the
two-tier hierarchical architecture

• adapts to changes in network topology,
• scales well to large network sizes,
• is power-aware and energy-efficient.

Future work would be further investigating the
applicability of the proposed technique and
algorithm to a larger number of other sensor
networks.

. – p.30/42
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Simulation Results
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Figure 2: Optimal Probability and Total Energy Spent
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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. – p.36/42



Dr. Ming Yu 
@ SUNY Binghamton 

Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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Figure 12: Energy-Efficient Routing Scenario 3. – p.41/42
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Simulation Results
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