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ABSTRACT 
 
 

In this thesis, we study the backbone network traffic aggregation problem by extensive 

simulations based on the method of clustering the representative time constants (RTCs) 

of Markov modulated Poisson processes (MMPP) models. 

               

It is found that the decaying time constants of the aggregated traffic process are the 

products of the eigenvalues of the transition matrix of the individual traffic. If the time 

constants are well clustered around some RTCs, the corresponding states can be merged 

in the state space. In the worst case, if the time constants are uniformly distributed over 

the log-scale, we prove that there exist a minimum number of states that can approximate 

the traffic aggregation.  

 

In this thesis, we design several numerical and simulation examples to demonstrate how 

to aggregate traffic described by MMPP models and how to reduce the order of the 

models while approximate the network performance, such as queue length distribution, 

mean delay, and packet loss ratio. 
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1. INTRODUCTION 
 
 
 

The diversity of the packet generation mechanism, the inherently bursty nature of 

data communications, and the various stages of switching the packets have to go through, 

often make the exact traffic modeling mathematically intractable. The major difficulties 

are due to the lack of appropriate description of the traffic aggregation processes and the 

large dimension of the model sizes. 

 

In this Thesis, the main purpose is to develop an efficient traffic aggregation 

technique based on MMPP models. It enables us to gain analytical insight to practical 

traffic modeling, to which the existing methods could not be applied because of the state-

space explosion problem. 

 

Recently, the traffic measurements over high-speed data networks have shown 

that the traffic exhibits variability over many time scales. Especially, the second order 

properties of counting process seemingly display long-range dependence (LRD) and self-

similarity. Therefore, it is natural to model the LRD over several time scales by fitting the 

covariance function of the two-state MMPP processes to that of the traffic measurements 

[3]. Here, one two-state MMPP is insufficient to fit the second order properties. In [4], 

the authors propose a special Markovian arrival processes (MAP) or MMPP structure and 

approximate the variance of arrival process at identified time scales by using wavelet 
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transform of finite sequences. But as the authors realized, Only capturing the first- and 

second-order characteristics of counts are known to be insufficient when attempting to 

predict queueing behavior. 

 

In [5], it has been found that the asymptotic behavior of an infinite queue fed with 

different arrival processes that all exhibit the LRD property can be vastly different. Thus, 

it is also insufficient to consider only the correlation structure of the input process for 

accurate performance prediction. It has been found that the marginal distribution and the 

finite range of time scales of the arrival process must be also considered, as well as the 

correlation structure. Especially, the time scale associated with a queueing system is a 

function of the maximum buffer size. Thus, for finite buffer queues, the impact on 

performance of the correlation in the arrival process becomes nil beyond a time scale 

which was called correlation horizon (CH). Also, the loss rate depends in a crucial way 

on the marginal distribution of the fluid arrival process. 

 

A direct impact of the discovery of CH is that more traditional traffic models such 

as MMPP can still be used to model traffic exhibiting LRD within the interest of time 

scales, if we can also fit the marginal distribution of the counting process. In [6], the 

authors propose a method to use L two-state MMPP’s to the empirical auto-covariance 

with L time scales and use one M-state MMPP to fit the marginal distribution. Basically, 

this is a numerical fitting method. The total number of state used in the model is still very 

large when matrix exponential operations are involved. Clearly, the state-space explosion 

becomes the main hindrance to numerical solutions to the queueing model with 
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multiplexed MMPP arrivals [1]. 

 

          A practical and more efficient way of modeling would be to use one multi-state 

MMPP for a single traffic stream and develop approximate algorithm to reduce the state 

space of the aggregated traffic. In [1], the authors developed an efficient algorithm to fit 

an MMPP model to trace data. The rates were chosen according to a predetermined 

spacing parameter ‘a’. The number of states corresponding to the number of rates chosen 

depends only on the largest and smallest values of the time series. 

 

Related to the traffic aggregation problem, the following questions remain 

unanswered. How many states are needed for an approximate MMPP model of the 

aggregated traffic?  If we know the number of states for the aggregation model, what are 

those most important or representative states that the model has to capture? If we just 

choose the maximum and minimum rates to decide the rest of rates to be modeled, we 

may miss the most representative ones. Also for a general model reduction, the rate limit 

is unknown, because we don't know which rates are more representative than the others. 

In this thesis work, we will try to answer these questions. 
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2. AGGREGATION BASSED ON MMPP MODELS 
 
 

In this section, we assume that the network traffic is adequately modeled by 

MMPP. 

 

2.1 Representative Time Constants 

 

Mathematically, a discrete-time Markov chain (X, J) = {(Xk, Jk), k = 0, 1, … } 

with state space N0  x S0 is a discrete MMPP if and only if for k = 0, 1, …,  

    

                                                                        (1) 
 
 

for all l, m ∈ N0 and i, j ∈ S0, with parameters Λ =  diag(λi) and P = (pij), where, λi is the 

Poisson arrival rate to the state i of the Markov chain;  pij  is the transition probability 

between the states i and j of the Markov chain. We use the notation MMPP(P, Λ) to 

represent (X, J), where P and Λ are assumed to be time-invariant matrix of dimension  

n x n, where n is the number of the states of the Markov chain.  
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The irreducible stochastic matrix P has stationary probability vector π,  

                                         π Ρ = π , π e = 1,                                                           (2) 

Where e = ( 1,1, …, 1) 
T 

is a column vector of ones with length m. The mean arrival rate 

vector is 

                                                  λ = (λ1, λ2 …, λn ) 
T                                       (3) 

                                              
It is well-known that the superposition of two MMPP processes, MMPP1(P1, Λ1) and 

MMPP2(P2, Λ2), is also an MMPP process with parameters: 

                                                       P  = P1 ⊗ P2                                                                       

                                                       Λ  = Λ1 ⊕ Λ2                                                             (4) 
 
where ⊗ and ⊕ denote the Kronecker product and the Kronecker sum, respectively [7]. If 

MMPP1 and MMPP2 are of orders n1 and n2, respectively, then the order of the 

superposition process is n = n1 x n2. This is the so-called state-space explosion problem. 

As pointed out in [1], it is much easier to obtain traffic measurements as counts over 

discrete intervals than interarrival times of individual packets. But the continuous-time 

MMPP is better suited as an arrival process in extant algorithms and software queueing  

models than is the discrete-time MMPP. Therefore, it is preferred to convert the discrete-

time MMPP to a continuous MMPP when conducting queueing analysis, i. e., to find an 

in infinitesimal generator Q = (qij ) that corresponds to the discrete transition matrix P of 

the discrete MMPP.  
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One way is to choose 

                                                            Q = P – I                                                               (5) 
 

In this way, both processes will have the same mean sojourn time in every state i, 

probability of any given sequence of states, and steady-state distribution. The stationary 

vector of the Markov chain can be also obtained from 

 
                                                      πQ = 0,         π e = 1.                                                   (6) 
 

Let Nt be the number of arrivals in (0, t]. The moment generating function of Nt is given 

in [7]: 

                                             φ(z, t)  =  π exp{[Q + (z - 1)Λ] t} e.                                     (7) 
 
 

For the time-stationary version of the MMPP, 

 
                                                           E (Nt)  =  πλt,                                                         (8) 

                                            V (Nt)  =  πλt + 2t[(πλ)
2 
− πΛ(Q + eπ)

−1
λ] 

                                                            + 2πΛ(e
Qt

 − I)(Q + eπ)
−2
λ.                                  (9) 

 
 

For a two-state MMPP, there exist many methods to approximate both the mean 

and variance functions of the MMPP process [3], [6], [8]. For a general MMPP, it will be 

too complicated to fit the variance-time curve. Even if we found a good fit to the 

variance-time curve, it still may not help us in accurately predict network performance, as 

we discussed before.  
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It can be seen from Eqn. (9) that the decaying time constants of the variance 

function are determined by e
Qt

. Moreover, in terms of the definition of Q in Eqn. (5), by 

combining Eqn. (4), we have 

                                                  e
Qt  = e 

[P1 ⊗ P2]t e− t 
                                              (10) 

 
where we use e

-It
 = e

-t
 I.  

 
 

           To simplify the discussion here, we first assume that Pi, i = 1, 2, have distinct 

eigenvalues ri1, ri2, …, rin and eigenvectors Yi1, Yi2 …, Yin, respectively. Thus,             

( Pi − rij In)Yij = 0,  i = 1, 2,  j = 1, 2, …, ni. We define a transformation matrix                

Γ = (Yi1, Yj2 …, Yin). Then we have 

                                         Γi
-1 PiΓi  =  diag (ri1, ri2, , …, rin ).                                     (11) 

And 

                                        e
Pit 

 =  Γi diag (e
ri1t 

, e
ri2t , …, erint

) Γi
-1                            

(12) 

If the Pi  matrix does not possess distinct eigenvectors, we can transform the 

matrix into the Jordan canonical form, which is composed of small Jordan blocks. For a 

typical Jordan block of order n which corresponds to a multiple eigenvalue r, we can find 

that e
Pit

  is also a Jordan block, with components of e
rt

 , t e
rt

, t
2
/2! e

rt
 , t

 n-1
/(n-1)! e

rt
 .  
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In this case, we can directly merge these n states into one and then apply our time-

scale clustering method in the same way as the case of P that can be diagonalized. 

 

In terms of the definition of eigenvalue and eigenvector, we have                    

                          ( P1 ⊗ P2 ) ( Y1i ⊗ Y2j )    =  P1Y1i  ⊗  P2Y2j 

                                                                     =  r1iY1i  ⊗  r2jY2j 

                                                                =  (r1i r2j) (Y1i  ⊗  Y2j).                            (13) 

Therefore, the eigenvalues of P1 ⊗ P2 are r1i r2j, with eigenvectors Y1i ⊗ Y2j, i 

= 1, 2, …, n1 and j = 1,2, …, n2. The total number of eigenvalues is n1n2. 

Based on Eqn.'s (10) and (13), we can see that the n decaying time constants are 1 

- r11 r21, 1 - r11 r22, ..., and 1 - r1n1 r2 n2 . The time constants of the aggregated traffic 

span a much larger range than the individual traffic. Note that for a practical size of 

traffic modeling by using MMPP, n = 20  ~ 30, there are many methods to find the 

eigenvalue easily. Also, there is no need to find the corresponding eigenvectors. 
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Now let's rearrange these time constants from the smallest to the largest and 

simply denote these constants by r1, r2,, …, rn that is, r1 ≤ r2, ≤ … ≤ rn. The 

corresponding eigenvectors are denoted by Y1, Y2 …, Yn. The transformation matrix is 

thus 

                                                      Γ = (Y1, Y2 …, Yn)                                                  (14) 

In order to aggregate these time constants into different groups of time scales, a 

natural choice is to use a log-scale, which also emphasizes the small time constants. 

Mathematically, among a group of time constants distributed over the log-scale, the one 

that has the shortest average (Euclidean) distance approximately represents the decaying 

property of the group. Thus, it is called RTC. The others can be represented by the RTC 

are called merged time constants (MTC's). 

 

2.2 Traffic Aggregation By RTC's 

 

In this section, we propose a new clustering technique that finds the most 

representative time constants. First, we need to determine how many RTC's are needed in 

order to approximate the original full-state MMPP process that describes the aggregated 

traffic process with satisfactory accuracy. Second, we need to determine which of the 

time constants are representative. 
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Assume that the time constants of the full-state MMPP process can be described 

by a random variable x, which is the Euclidean distance to the origin on the log-scale 

axis. In the case that x is non-uniformly distributed over the axis, i. e., x takes values 

around a few clustered points on the axis, the number of RTC's needed will be less than 

the one for the case when x is uniformly distributed. Therefore, the worst case would be 

that all the time constants are uniformly distributed over the axis. 

 

In order to determine how many RTC's are needed in the worst case, we assume 

that x is uniformly distributed over the range of the time constants, which is Δr = rn – r1. 

We denote by p the probability that a time constant will be chosen as a RTC. The average 

number of RTC's is denoted by NRTC. The average number of MTC's that will be merged 

into a RTC is denoted by NMTC. With these notations, we can see that the n time 

constants will be grouped into np clusters, each cluster contains n = (np) time constants in 

average, and one of them will serve as the RTC for this cluster. Therefore, we have 

NRTC  =  np 

                                                  NMTC  = ( n / np ) – 1 = ( 1/P ) – 1,                              (15) 

The first requirement in state space reduction is to have less number of RTC's. 

The second one is to have each MTC within a RTC is closer to its RTC.  

 

 

 

 10



To meet both requirements, we design a combined cost function that measures 

both cost of the number of RTC's and the distance of an MTC to its RTC. Thus the cost 

function, denoted by C(p), can be chosen as 

                            

                                   C(p)  =  (1− α) NRTC      

                                                      NRTC 

                                                  + α ∑  NMTC E{| xMTC  − xRTC |
2
}                           (16)  

                                                      j = 1 
 

Where 0 < α < 1 is a weighting factor that trades off the two requirements. A 

smaller value of α means higher approximation accuracy is emphasized. A larger value 

of means less number of RTC's is emphasized. 

 

Based on the uniform distribution of x, we find that E{|  xRTC |}  =  Δr / 2 and  

E{| xMTC  − xRTC |}  =  Δr / (4np). Therefore, 

                               C(p) = ( 1 − α )np + αnp ( 1/p  − 1 )  Δr
2
/ (16n

2
p
2

)                       (17) 

 

By taking dC(p) = dp = 0, we find 
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                                                     p
3
 + c1p = c0 ,                                                           (18) 

Where, 

                                          c0  =  (1 − α)Δr
2
 / (16αn

2
) 

                                          c0  =  2 c 1                                                                             (19) 

            Noting that the polynomial discriminant D = (c1/3)
3

 + (c0/2)
2

 > 0, one root is real 

and the other two are complex conjugates. In terms of the cubic formula, we have 

 

                                           popt = (c1/3u) − u                                                                 (20) 

  Where, 

                                 u =    3√(- c0/2  + √ (c0
2
 / 4 + c1

3
/27)) 

 

           It can be verified that d
2
C(p) = d

2
p⏐p=popt  > 0, which means C(p) is indeed 

minimized at popt, which is the optimal probability for a time constant to be chosen as a 

RTC. Thus, we have the optimal number of RTC's: 

 NRTC  =  npopt                                                                      (21) 
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           For the aggregation of two traffic streams with the same size of state-space n1 = n2 

= N, based on Eqn.'s (20) and (21), we can even find a α value that satisfies NRTC  ≤ N, i. 

e., the aggregation process does not increase the size of the state space. Thus, the state-

space explosion problem can be solved if we aggregate the state-space according to the 

corresponding time scales. 

 

 

After we obtain the NRTC  value, we can find out which of those time constants 

becomes RTC's by computer simulation. In this paper, we also develop a simple binary 

search algorithm to find RTC's. 

           Denote Δ xi = xi – xi-1 , i = 1,2, …, n , as the increment between two consecutive 

time constants on the log-scale, i.e., Δ xi = log ri – log ri-1. Let's order the series from 

largest to smallest, we get x1, x2, ..., and xn Denote the step counter as k and the number 

of RTC's found as nk. Initially, set k = 1 and n1= 2 or n2 = 1, which corresponds to the 

case of x1 stands more closely to the rest of the points than to the origin. At each step, we  

chose two RTC's from the two clusters separated by a distance Δxk. The point that stands 

closely to the center of a cluster will be selected as the RTC for the cluster. Within a 

cluster, we find the two sub-clusters that separated by the maximum distance among 

them. Again, in each of the sub-clusters, we chose the point that stands closely to the 
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center of the sub-cluster. Then, set k = k + 1 and nk = nk + 2. The searching continues 

until we find the total number of RTC's meets nk+1 > NRTC  and nk  < NRTC, where 

NRTC is defined in Eqn. (21). 

 

           It is worth noting that the above algorithm also works for the case of non-

uniformly distributed x. If the time constants are naturally clustered around some RTC's, 

we may find a good approximate model for the aggregated traffic. Otherwise, any 

approximation may work but not work well, if the approximation uses a reduced state 

space. As we mentioned before, in order to ensure that the reduced state space can 

approximate the original system model, the variance function has to be approximated 

with satisfactory accuracy, in addition to the marginal distribution. Therefore, we define a 

small constant ∈0 that measures the difference of the variance function caused by the 

reduced state space: 

                                                | V(Nt) − Vα(Nt) | ≤ ∈0                                                  (22) 

Where V(Nt) is the variance of the reduced state space model, which can be evaluated by 

Eqn. (9). if the difference between the variance functions is small than ∈0, the reduced 

state space model results in the good approximation when it is used to predict system 

performance. Otherwise, we need to change the α value and find a different reduced state 

space model. 

 

 14



 

 

3. SIMULATION RESULTS 

 

The simulations for this approximation algorithm is twofold (i) Matlab was used 

to test the effectiveness of the approximation algorithm by comparing the Queuelength 

probabilities (ii) NS-2 was used for the traffic generation and for evaluating the 

performance of the proposed approximation algorithm. 

 

3.1 Queueing Analysis 

 

Here we will now compare the queuelength probabilities for a matrix with 121 

states and the reduced matrices of order 60 And 25 states. The superposition of two 11 

states MMPP matrices yields another matrix, which is also of the type MMPP with 121 

states. The queue length probabilities are computed for different values of buffer size n 

ranging from 0 to 100. Here while describing Fig (1) and Fig (2) we use the terms buffer 

size and queue length inter-changeably. Queue length probability is the probability that 

the packets are waiting in the buffer to receive service. In Fig (1) we show the 

comparison of the queue length probability with respect to the queue length or the size of 

the buffer. We can observe that the probability of packets waiting in the queue for traffic 

stream with 60 states is less than that of 121, but if we observe closely we find that this 

exists only when the size of the buffer is less than 30. Beyond a buffer size of 30 we can 

see that the queue length probability remains virtually the same irrespective of the 
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increase in the buffer size. This can be attributed to the reason that initially when the 

buffer size is less, the number of packets which arrive at the queue is a sizeable number 

compared to the buffer size, thus resulting in a lager value of queue length probability. 

  

 

           Fig (1) – Queue Length comparison for 121 and 60 state MMPP process 

  

As the size of the buffer is being increased we observe a progressive decrease in 

the queue length probability, this is because the number of packets that are arriving at the 

queue are minute when compared with the size of the queue. Similarly in Fig (2) we can 

see that the original matrix with 121 states is approximated well by 25 states. Now again 

as when the buffer size is less the number of packets which are arriving at the queue is a 

sizeable number when compared with the length of the queue. As the queue length is 

being increased the number of packets is less compared to the length of the queue and so 

as the queue length is increased this ratio falls down and both the curves follow the same 

path.   
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           Fig (2) – Queue Length comparison for 121 and 25 state MMPP Process 

 

3.2 An MMPP Traffic Model 

 

The model used for this simulation was derived keeping in mind the human 

actions on a terminal interface that cause a sequence of events and behaviors of protocols 

at various layers of the protocol stack. For example, the generation of a request at the 

application level is translated into many transport level connections, and in turn each of 

these connections generates a sequence of data segments. These data segments are 

transported through the network layer through IP packets. Based on this we take into 

account three different time scales. A flow can be defined as a single TCP connection, 

initiated by a three-way handshake process. Using a closing procedure we can the TCP 

connection that has been established. Each flow generates a sequence of packets, which 
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are injected into the network. In fact, flows are not generated by themselves, rather by 

sessions. A session can be defined as the set of correlated flows that are injected into the 

network interface. Examples of session can be downloading less from the server 

connected through the means of FTP until it is disconnected, downloading some files 

from a web server in limited period of time; all the e-mail messages generated by a user 

that replays to all the previously downloaded e-mails or even a user connecting to the 

internet. 

 

To generate a simple and generic model, which is, based only Markovian process, 

we adopt a poisson arrival process at the session level. 

 

 Sessions are generated according to Poisson process with arrival rate λs. Each 

session starts the arrival of a new flow. The number of flows generated by a session is a 

geometrically distributed random variable with mean equal to Nf. At the generation of the 

last flow the session ends. 

 

           Flows belonging to a session are generated according to poisson process with 

arrival rate λf.  Each flow starts with generation of packets and the flow ends when Np 

packets have been generated. Np is the mean of number of packets to be generated which 

have a geometric distribution. Packets belonging to the same flow are generated 

according to poisson process with arrival rate λp. 
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                        Fig (3) – Sessions, TCP Flows and Packets 

 

Fig (3) shows the realization of the model we have been talking thus far. In this 

figure, three sessions arrive and each one in turn generates number of flows and each flow 

generated again generates number of packets, which will be multiplexed on the links 

along the source-destination paths. 

 

Due to the above assumptions the packet and the flow arrival rates are also 

MMPP as discussed in [2] 

 

 

 

1) Setting the Model Parameters: The model described above can be described by the 

following parameters: 
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• λs     : arrival rate for new sessions; 

• λf   : arrival rate for new flows per active session; 

• λp  : arrival rate for packets per active flow; 

• Nf : average number of flows generated per session; 

• Np : average number of packets generated per active flow; 

 

As discussed in [2] three of the above parameters can be set based on the traces. 

To define the number of states for the traffic stream we vary the values of the number of 

active flows and the number of active sessions. The number of states of the traffic stream 

to be injected into the network can be decided using the following formula [(Nf  x Np) + 

number of sessions]. Using this formula we have varied the number of flows considering 

only 1 session. This means that all the flows are generated in one session. For example, 

say we want to generate a traffic stream of 121 states. For this we set Nf  as 12, Np as 10 

and all the flows are generated in a single session. The transition from state (i, j) to          

(i − 1, j) implies the termination of a flow. But this does not mean that the flow 

terminated was the last flow of the session; its rate is iμf, where  μf  =    λp / (Np − 1) and  

β = 1 − 1/ Nf . 

In a similar way, when the last flow of the session arrives, the session is not active 

anymore. Thus the there is a state transition from (i, j) to (i + 1, j − 1); this occurs at the 
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rate j(1 − β)λf 

In Fig (4) we show the plot of the traffic generated. The traffic has been generated 

for a 121 state MMPP process and the simulation time was 1000 seconds, if we observe 

the trace we can see that on an average the number of packets generated every time 

instant are between 150 and 200 packets. The traffic statistics have been shown in Table 

(1). It can be observed that the traffic described by an MMPP process is not very bursty 

as traffic described for IP links. 

 

 

Fig (4) – MMPP Traffic Trace 

 

On x-axis we have time, which is the time for which the packets have been generated. 

The total time for simulation was 1000s and on y-axis we have packets generated. We 

plot the packets generated at each instant of time.  
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Parameters Collected Data 
Number of Nodes used 

Simulation Time 
Packet Size 

Total Number of Packets generated 

2 
1000 seconds 

500 bytes 
78732 

                                        
 
                                               Table (1) – Traffic Statistics 
 

 

For analytical purposes, the traffic traces have been observed for two other cases as well. 

The traffic traces that have been generated for 200s and 500s can be seen in Fig(5) and 

Fig (6). From these traces it is evident that MMPP traffic appears burstier as we increase 

the length of simulation. This happens because as the length of simulations is increased 

more will be the packets that are generated from the flows, which are in turn generated by 

the sessions.  When these traces are compared it is clear that the trace generated for 1000 

seconds has maximum burstiness. 

 
 

Fig (5) – MMPP Traffic Trace for 200  
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Fig (6) – MMPP Traffic Trace for 500 
 

 

3.3 Performance Evaluation 

 

The fidelity of the approximation process to MMPP with reduced states can be 

tested by estimating the mean packet delay. This test would reveal if the aggregated 

MMPP process is capturing the important characteristics of the original MMPP process. 

For the simulation of mean delay we use an infinite sized buffer which has constant 

service rate. We will now compare the mean delays for the original MMPP process and 

reduced states. As discussed in [1] Let the virtual waiting time and waiting time as seen 

by the arrival be WV and WA respectively. Then we have 

                                             E(WV) = ( 3ρ - 2bQe ) / (2( 1 - ρ))                                  (23) 

         E(WA) = ( 1 – beQ ) / ρ + E(V)                                       (24) 
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 Where b = (( 1- ρ)g + πQ ) ( eπ + Q0 + Q)
-1 

, g is the stationary probability vector of 

the irreducible matrix G, which is a unique solution to the matrix functional equation  

 

            G = e
(Q0+QG)                                                          

(25) 

The matrix G is computed from (25), starting with the stochastic matrix G0 = eπ, 

for the later substitutions we use successive substitution method. In some cases it requires 

almost 40,000 iterations for the successive substitution process to converge. The 

convergence point for this iterative process has been set to ten decimal places. This 

computation takes no more than a couple of minutes on 2.8 GHz Dual Processor with 4 

GB of RAM. The mean delay is then computed for different values of ρ, in Fig (6) we 

show the comparison of mean delay with respect to the traffic intensity, ρ. Using little's 

formula the mean queue lengths at an arbitrary time and at arrivals is given by E(QV) = 

E(WV)  and  E(QV) = E(WA),  respectively.  
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                   Fig (7) – Delay comparison for 121 and 60 state MMPP process 

 

The second test to fidelity is the comparison of the packet loss ratio. In this case 

we take a finite buffer queue which is kept constant at n = 100, and simulate the packet 

loss ratio for different traffic intensities. Here we calculate the packet loss by computing 

the ratio of the number of packets dropped to the number of packets generated. It is 

known fact that when packets arrive at a rate faster than the rate at which they receive 

service from the queue, the queue will be filled with not many packets receiving service. 

This will eventually result in dropping of the packets from the queue. This is because the 

queue will be swamped with incoming packets and when the buffer is filled the packets 

that arriving later will be dropped. This tail drop will continue until the existing packets 

in the queue are being serviced and queue starts accepting packets again.  
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                   Fig (8) – Packet loss comparison of 121 and 60 state MMPP process  

 

For our simulation we achieve tail drop by varying the traffic intensity ρ values 

from 0.2 to 0.7 . For this simulation we have collected traffic traces of the first 200s from 

the total runtime and the dropped packets have been observed from the generated traffic 

traces. 

 

In the Fig (8) we show the packet loss ratio comparison for MMPP process’s of 

states 121 and 60, we can observe that for the reduced process the packet loss is less 

when compared to the original MMPP process of 121 states. This shows that after 

approximation of 121 state MMPP process to a 60 state MMPP the number of packets 

that are being dropped are less when compared to actual process. Initially when the traffic 

intensity is at 0.2 and lesser, we see that the packet loss ratio is also very less. This is 

because when the traffic load is less we do not have many packets to be serviced. The 

packet loss ratio then steadily increases as the traffic intensity is increased to 0.3. The 

packet loss curves for the reduced model follows the shape of the original model, we can 
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see this clearly when the traffic intensity is increased from value of 0.3 to 0.6. Beyond 

this range of 0.6 as the traffic intensity is increased the packet drops increases. If the 

traffic intensity is further beyond this point it will fast approach the curve of 121 state 

model. 

 

Fig (9) – Packet Loss ratio comparison for 121 and 25 state MMPP 

 

In Fig (9) we show the comparison of the packet loss ratio between the 121 state 

MMPP and 25 state MMPP process. For this simulation again we have observed the 

traffic traces generated when the simulation was run. The traffic intensity was varied 

from 0.2 to 0.7. Similar to Fig (8), in Fig (9) also the packet loss ratio is lesser than the 

original MMPP model. When compared to the packet loss for 60 states, the 25 states 

model had a maximum of 0.5 packet loss ratio. Where as the 60 state model on an 

average was more than 0.6. This clearly shows an improvement of the performance for 

the reduced MMPP of 25 states. Here the curve for the reduced model almost maintains a 

path parallel to the 121 state MMPP process. Further reduction in the number of states 

might result in lesser packet loss ratio, but it could also result in error approximations. 
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This shows that the state space could be successfully reduced to almost 25 percent of the 

original number of states. 
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4. CONCLUSION  

 

In this thesis, we find that if the time constants of the transition matrix are 

naturally clustered around some RTC's, we may find a good approximate model for the 

aggregated traffic. Our simulations have shown that the aggregated traffic provides a 

good match to the actual traffic stream, this has been shown in the queuelength 

comparisons between the aggregated and actual traffic stream. The performance 

evaluations have revealed that for the aggregated traffic the delay and packet loss are 

lesser than that for the actual stream indicating the improvement in performance when the 

traffic stream was aggregated. Also, the clustering of the time constants play an important 

role in the aggregation of the traffic stream. Thus the aggregation algorithm was effective 

in reducing the State-Space explosion. 
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Appendix 

 

The Parameters of the 121-State Traffic Model 

 

A1. The P Matrix:  
Format: row 1, row 2, …, row 121. 

The P matrix: 
 
 
0.25 0.25 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0.05 0.225 0.225 0 0 0 0 0 0 0 0 0.05 0.225 0.225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0.1 0.2 0.2 0 0 0 0 0 0 0 0 0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0.15 0.175 0.175 0 0 0 0 0 0 0 0 0.15 0.175 0.175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0.2 0.15 0.15 0 0 0 0 0 0 0 0 0.2 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0.25 0.125 0.125 0 0 0 0 0 0 0 0 0.25 0.125 0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0.3 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0.35 0.075 0.075 0 0 0 0 0 0 0 0 0.35 0.075 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0.4 0.05 0.05 0 0 0 0 0 0 0 0 0.4 0.05 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0.45 0.025 0.025 0 0 0 0 0 0 0 0 0.45 0.025 0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 
 
0.05 0.05 0 0 0 0 0 0 0 0 0 0.225 0.225 0 0 0 0 0 0 0 0 0 0.225 0.225 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0.01 0.045 0.045 0 0 0 0 0 0 0 0 0.045 0.2025 0.2025 0 0 0 0 0 0 0 0 0.045 0.2025
 0.2025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0.02 0.04 0.04 0 0 0 0 0 0 0 0 0.09 0.18 0.18 0 0 0 0 0 0 0 0 0.09 0.18 0.18 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0.03 0.035 0.035 0 0 0 0 0 0 0 0 0.135 0.1575 0.1575 0 0 0 0 0 0 0 0 0.135 0.1575
 0.1575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0.04 0.03 0.03 0 0 0 0 0 0 0 0 0.18 0.135 0.135 0 0 0 0 0 0 0 0 0.18 0.135 0.135 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0.05 0.025 0.025 0 0 0 0 0 0 0 0 0.225 0.1125 0.1125 0 0 0 0 0 0 0 0 0.225
 0.1125 0.1125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0.06 0.02 0.02 0 0 0 0 0 0 0 0 0.27 0.09 0.09 0 0 0 0 0 0 0 0 0.27 0.09 0.09 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0.07 0.015 0.015 0 0 0 0 0 0 0 0 0.315 0.0675 0.0675 0 0 0 0 0 0 0 0 0.315
 0.0675 0.0675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0.08 0.01 0.01 0 0 0 0 0 0 0 0 0.36 0.045 0.045 0 0 0 0 0 0 0 0 0.36 0.045
 0.045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0.09 0.005 0.005 0 0 0 0 0 0 0 0 0.405 0.0225 0.0225 0 0 0 0 0 0 0 0 0.405
 0.0225 0.0225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0.45 0 0 0 0 0 0 0 0 0 0 0.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0.02 0.09 0.09 0 0 0 0 0 0 0 0 0.04 0.18 0.18 0 0 0 0 0 0 0 0 0.04 0.18
 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.08 0.08 0 0 0 0 0 0 0 0 0.08 0.16 0.16 0 0 0 0 0 0 0 0 0.08 0.16
 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.07 0.07 0 0 0 0 0 0 0 0 0.12 0.14 0.14 0 0 0 0 0 0 0 0 0.12
 0.14 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.06 0.06 0 0 0 0 0 0 0 0 0.16 0.12 0.12 0 0 0 0 0 0 0 0 0.16
 0.12 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.05 0.05 0 0 0 0 0 0 0 0 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0.2 0.1 0.1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.04 0.04 0 0 0 0 0 0 0 0 0.24 0.08 0.08 0 0 0 0 0 0 0 0 0.24
 0.08 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0.03 0.03 0 0 0 0 0 0 0 0 0.28 0.06 0.06 0 0 0 0 0 0 0 0
 0.28 0.06 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.02 0.02 0 0 0 0 0 0 0 0 0.32 0.04 0.04 0 0 0 0 0 0 0 0
 0.32 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0.01 0.01 0 0 0 0 0 0 0 0 0.36 0.02 0.02 0 0 0 0 0 0 0 0
 0.36 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0.175 0.175 0 0 0 0 0 0 0 0 0
 0.175 0.175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.135 0.135 0 0 0 0 0 0 0 0 0.035 0.1575
 0.1575 0 0 0 0 0 0 0 0 0.035 0.1575 0.1575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.12 0.12 0 0 0 0 0 0 0 0 0.07 0.14 0.14 0 0 0 0 0
 0 0 0 0.07 0.14 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.105 0.105 0 0 0 0 0 0 0 0 0.105 0.1225
 0.1225 0 0 0 0 0 0 0 0 0.105 0.1225 0.1225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.09 0.09 0 0 0 0 0 0 0 0 0.14 0.105 0.105 0
 0 0 0 0 0 0 0 0.14 0.105 0.105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.075 0.075 0 0 0 0 0 0 0 0 0.175 0.0875
 0.0875 0 0 0 0 0 0 0 0 0.175 0.0875 0.0875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0.06 0.06 0 0 0 0 0 0 0 0 0.21 0.07 0.07 0
 0 0 0 0 0 0 0 0.21 0.07 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0.045 0.045 0 0 0 0 0 0 0 0 0.245
 0.0525 0.0525 0 0 0 0 0 0 0 0 0.245 0.0525 0.0525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.24 0.03 0.03 0 0 0 0 0 0 0 0 0.28 0.035
 0.035 0 0 0 0 0 0 0 0 0.28 0.035 0.035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0.015 0.015 0 0 0 0 0 0 0 0 0.315
 0.0175 0.0175 0 0 0 0 0 0 0 0 0.315 0.0175 0.0175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0.35 0 0 0 0 0 0 0 0 0 0
 0.35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0
 0 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.18 0.18 0 0 0 0 0 0 0 0 0.03
 0.135 0.135 0 0 0 0 0 0 0 0 0.03 0.135 0.135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.16 0.16 0 0 0 0 0 0 0 0 0.06
 0.12 0.12 0 0 0 0 0 0 0 0 0.06 0.12 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.14 0.14 0 0 0 0 0 0 0 0 0.09
 0.105 0.105 0 0 0 0 0 0 0 0 0.09 0.105 0.105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.12 0.12 0 0 0 0 0 0 0 0 0.12
 0.09 0.09 0 0 0 0 0 0 0 0 0.12 0.09 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0.15
 0.075 0.075 0 0 0 0 0 0 0 0 0.15 0.075 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.24 0.08 0.08 0 0 0 0 0 0 0 0
 0.18 0.06 0.06 0 0 0 0 0 0 0 0 0.18 0.06 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0.06 0.06 0 0 0 0 0 0 0 0
 0.21 0.045 0.045 0 0 0 0 0 0 0 0 0.21 0.045 0.045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0.04 0.04 0 0 0 0 0 0 0 0
 0.24 0.03 0.03 0 0 0 0 0 0 0 0 0.24 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.02 0.02 0 0 0 0 0 0 0
 0 0.27 0.015 0.015 0 0 0 0 0 0 0 0 0.27 0.015 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0.3 0 0
 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0 0 0 0 0
 0 0.125 0.125 0 0 0 0 0 0 0 0 0 0.125 0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.225 0.225 0 0
 0 0 0 0 0 0 0.025 0.1125 0.1125 0 0 0 0 0 0 0 0 0.025 0.1125 0.1125 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.2 0 0 0 0 0 0
 0 0 0.05 0.1 0.1 0 0 0 0 0 0 0 0 0.05 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.175 0.175
 0 0 0 0 0 0 0 0 0.075 0.0875 0.0875 0 0 0 0 0 0 0 0 0.075 0.0875 0.0875 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.15 0.15 0 0
 0 0 0 0 0 0 0.1 0.075 0.075 0 0 0 0 0 0 0 0 0.1 0.075 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.125
 0.125 0 0 0 0 0 0 0 0 0.125 0.0625 0.0625 0 0 0 0 0 0 0 0 0.125 0.0625 0.0625 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.1 0.1 0 0
 0 0 0 0 0 0 0.15 0.05 0.05 0 0 0 0 0 0 0 0 0.15 0.05 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0.075
 0.075 0 0 0 0 0 0 0 0 0.175 0.0375 0.0375 0 0 0 0 0 0 0 0 0.175 0.0375 0.0375 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.05
 0.05 0 0 0 0 0 0 0 0 0.2 0.025 0.025 0 0 0 0 0 0 0 0 0.2 0.025 0.025 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45
 0.025 0.025 0 0 0 0 0 0 0 0 0.225 0.0125 0.0125 0 0 0 0 0 0 0 0 0.225 0.0125
 0.0125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0
 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 

 36



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3
 0.3 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
 0.27 0.27 0 0 0 0 0 0 0 0 0.02 0.09 0.09 0 0 0 0 0 0 0 0 0.02 0.09 0.09 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12
 0.24 0.24 0 0 0 0 0 0 0 0 0.04 0.08 0.08 0 0 0 0 0 0 0 0 0.04 0.08 0.08 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0.18 0.21 0.21 0 0 0 0 0 0 0 0 0.06 0.07 0.07 0 0 0 0 0 0 0 0 0.06 0.07 0.07 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0.24 0.18 0.18 0 0 0 0 0 0 0 0 0.08 0.06 0.06 0 0 0 0 0 0 0 0 0.08 0.06 0.06 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0.3 0.15 0.15 0 0 0 0 0 0 0 0 0.1 0.05 0.05 0 0 0 0 0 0 0 0 0.1 0.05 0.05 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0.36 0.12 0.12 0 0 0 0 0 0 0 0 0.12 0.04 0.04 0 0 0 0 0 0 0 0 0.12 0.04 0.04 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0.42 0.09 0.09 0 0 0 0 0 0 0 0 0.14 0.03 0.03 0 0 0 0 0 0 0 0 0.14 0.03 0.03 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0.48 0.06 0.06 0 0 0 0 0 0 0 0 0.16 0.02 0.02 0 0 0 0 0 0 0 0 0.16 0.02 0.02 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0.54 0.03 0.03 0 0 0 0 0 0 0 0 0.18 0.01 0.01 0 0 0 0 0 0 0 0 0.18 0.01 0.01 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0.35 0.35 0 0 0 0 0 0 0 0 0 0.075 0.075 0 0 0 0 0 0 0 0 0 0.075 0.075 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0.07 0.315 0.315 0 0 0 0 0 0 0 0 0.015 0.0675 0.0675 0 0 0 0 0 0 0 0 0.015
 0.0675 0.0675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0.14 0.28 0.28 0 0 0 0 0 0 0 0 0.03 0.06 0.06 0 0 0 0 0 0 0 0 0.03 0.06 0.06
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0.21 0.245 0.245 0 0 0 0 0 0 0 0 0.045 0.0525 0.0525 0 0 0 0 0 0 0 0
 0.045 0.0525 0.0525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0.28 0.21 0.21 0 0 0 0 0 0 0 0 0.06 0.045 0.045 0 0 0 0 0 0 0 0 0.06
 0.045 0.045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0.35 0.175 0.175 0 0 0 0 0 0 0 0 0.075 0.0375 0.0375 0 0 0 0 0 0 0 0
 0.075 0.0375 0.0375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0.42 0.14 0.14 0 0 0 0 0 0 0 0 0.09 0.03 0.03 0 0 0 0 0 0 0 0 0.09 0.03
 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0.49 0.105 0.105 0 0 0 0 0 0 0 0 0.105 0.0225 0.0225 0 0 0 0 0 0 0 0
 0.105 0.0225 0.0225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0.56 0.07 0.07 0 0 0 0 0 0 0 0 0.12 0.015 0.015 0 0 0 0 0 0 0 0 0.12
 0.015 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0.035 0.035 0 0 0 0 0 0 0 0 0.135 0.0075 0.0075 0 0 0 0 0 0
 0 0 0.135 0.0075 0.0075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0 0 0 0 0 0 0 0 0 0.05 0.05 0 0 0 0 0 0 0 0 0 0.05 0.05 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.36 0.36 0 0 0 0 0 0 0 0 0.01 0.045 0.045 0 0 0 0 0 0 0 0
 0.01 0.045 0.045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.32 0.32 0 0 0 0 0 0 0 0 0.02 0.04 0.04 0 0 0 0 0 0 0 0
 0.02 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.24 0.28 0.28 0 0 0 0 0 0 0 0 0.03 0.035 0.035 0 0 0 0 0 0
 0 0 0.03 0.035 0.035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0.24 0.24 0 0 0 0 0 0 0 0 0.04 0.03 0.03 0 0 0 0 0 0 0
 0 0.04 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.2 0.2 0 0 0 0 0 0 0 0 0.05 0.025 0.025 0 0 0 0 0 0 0
 0 0.05 0.025 0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.16 0.16 0 0 0 0 0 0 0 0 0.06 0.02 0.02 0 0 0 0 0
 0 0 0 0.06 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.56 0.12 0.12 0 0 0 0 0 0 0 0 0.07 0.015 0.015 0 0
 0 0 0 0 0 0 0.07 0.015 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.64 0.08 0.08 0 0 0 0 0 0 0 0 0.08 0.01 0.01 0 0 0
 0 0 0 0 0 0.08 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.72 0.04 0.04 0 0 0 0 0 0 0 0 0.09 0.005 0.005
 0 0 0 0 0 0 0 0 0.09 0.005 0.005 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45 0.45 0 0 0 0 0 0 0 0 0 0.025 0.025 0 0 0 0
 0 0 0 0 0 0.025 0.025 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.405 0.405 0 0 0 0 0 0 0 0 0.005
 0.0225 0.0225 0 0 0 0 0 0 0 0 0.005 0.0225 0.0225 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0.36 0.36 0 0 0 0 0 0 0 0 0.01 0.02
 0.02 0 0 0 0 0 0 0 0 0.01 0.02 0.02 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0.315 0.315 0 0 0 0 0 0 0 0 0.015
 0.0175 0.0175 0 0 0 0 0 0 0 0 0.015 0.0175 0.0175 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.27 0.27 0 0 0 0 0 0 0 0 0.02
 0.015 0.015 0 0 0 0 0 0 0 0 0.02 0.015 0.015 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45 0.225 0.225 0 0 0 0 0 0 0 0 0.025
 0.0125 0.0125 0 0 0 0 0 0 0 0 0.025 0.0125 0.0125 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.18 0.18 0 0 0 0 0 0 0 0 0.03
 0.01 0.01 0 0 0 0 0 0 0 0 0.03 0.01 0.01 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0.135 0.135 0 0 0 0 0 0 0 0
 0.035 0.0075 0.0075 0 0 0 0 0 0 0 0 0.035 0.0075 0.0075 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.72 0.09 0.09 0 0 0 0 0 0 0 0 0.04
 0.005 0.005 0 0 0 0 0 0 0 0 0.04 0.005 0.005 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81 0.045 0.045 0 0 0 0 0 0 0 0
 0.045 0.0025 0.0025 0 0 0 0 0 0 0 0 0.045 0.0025 0.0025 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0
 0 0 0 0 0 0.05 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.45 0.45 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.4 0.4 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.35 0.35 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.3 0.3 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.25 0.25 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.2 0.2 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.15 0.15 0 0 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.1 0.1 0 0 0 0
 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.05 0.05 0
 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 
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A2. The Rate Vector 
 

diag(L)'  = 

 

     0     6    12    18    24    30    36    42    48    54    60     6    12    18    24    30    36    42    

48    54    60    66    12    18    24    30    36    42    48    54    60    66    72    18    24    30    

36    42    48    54    60    66    72    78    24    30    36    42    48    54    60    66    72    78    

84    30    36    42    48    54    60    66    72    78    84    90    36    42    48    54    60    66    

72    78    84    90    96    42    48    54    60    66    72    78    84    90    96   102    48    54    

60    66    72    78    84    90    96   102   108    54    60    66    72    78    84    90    96   102   

108   114    60    66    72    78    84    90    96   102   108   114   120 
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A3: The Stationary Vector 
 

pi = 

 

0.00030072865982   0.00150364329911   0.00338319742299   

0.00451092989733    0.00394706366016   0.00236823819610   

0.00098676591504   0.00028193311858   0.00005286245973   

0.00000587360664   0.00000029368033   0.00150364329911   

0.00751821649554   0.01691598711497   0.02255464948663   

0.01973531830080   0.01184119098048   0.00493382957520   

0.00140966559291   0.00026431229867   0.00002936803319   

0.00000146840166   0.00338319742299   0.01691598711497   

0.03806097100869   0.05074796134491   0.04440446617680   

0.02664267970608   0.01110111654420   0.00317174758406   

0.00059470267201   0.00006607807467   0.00000330390373   

0.00451092989733   0.02255464948663   0.05074796134491   

0.06766394845989   0.05920595490240   0.03552357294144   

0.01480148872560   0.00422899677874   0.00079293689601   

0.00008810409956   0.00000440520498   0.00394706366016   

0.01973531830080   0.04440446617680   0.05920595490240   

0.05180521053960   0.03108312632376   0.01295130263490   

0.00370037218140   0.00069381978401   0.00007709108711   

0.00000385455436   0.00236823819610   0.01184119098048   

0.02664267970608   0.03552357294144   0.03108312632376   

0.01864987579426   0.00777078158094   0.00222022330884   

0.00041629187041   0.00004625465227   0.00000231273261   

0.00098676591504   0.00493382957520   0.01110111654420   

0.01480148872560   0.01295130263490   0.00777078158094   

0.00323782565873   0.00092509304535   0.00017345494600   
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0.00001927277178   0.00000096363859   0.00028193311858   

0.00140966559291   0.00317174758406   0.00422899677874   

0.00370037218140   0.00222022330884   0.00092509304535   

0.00026431229867   0.00004955855600   0.00000550650622   

0.00000027532531   0.00005286245973   0.00026431229867   

0.00059470267201   0.00079293689601   0.00069381978401   

0.00041629187041   0.00017345494600   0.00004955855600   

0.00000929222925   0.00000103246992   0.00000005162350   

0.00000587360664   0.00002936803319   0.00006607807467   

0.00008810409956   0.00007709108711   0.00004625465227   

0.00001927277178   0.00000550650622   0.00000103246992   

0.00000011471888   0.00000000573594   0.00000029368033   

0.00000146840166   0.00000330390373   0.00000440520498   

0.00000385455436   0.00000231273261   0.00000096363859   

0.00000027532531   0.00000005162350   0.00000000573594   

0.00000000028680 
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A4: The Time Constants 
 
    
0.0000 
0.1500 
0.1500 
0.2775 
0.3000 
0.3000 
0.4050 
0.4050 
0.4500 
0.4500 
0.5100 
0.5325 
0.5325 
0.6000 
0.6000 
0.6150 
0.6150 
0.6600 
0.6600 
0.6975 
0.7200 
0.7200 
0.7500 
0.7500 
0.7500 
0.7800 
0.7800 
0.7875 
0.7875 
0.8250 
0.8250 
0.8250 
0.8250 
0.8400 
0.8625 
0.8625 
0.8775 
0.9000 
0.9000 
0.9000 
0.9000 

0.9000 
0.9000 
0.9150 
0.9150 
0.9300 
0.9300 
0.9300 
0.9300 
0.9375 
0.9450 
0.9450 
0.9600 
0.9600 
0.9600 
0.9750 
0.9750 
0.9750 
0.9750 
0.9825 
0.9825 
0.9900 
0.9900 
0.9900 
0.9975 
1.0050 
1.0050 
1.0125 
1.0125 
1.0200 
1.0200 
1.0200 
1.0200 
1.0275 
1.0275 
1.0350 
1.0350 
1.0350 
1.0350 
1.0425 
1.0425 
1.0500 

1.0500 
1.0500 
1.0500 
1.0500 
1.0500 
1.0800 
1.0800 
1.0875 
1.0875 
1.1100 
1.1100 
1.1250 
1.1250 
1.1400 
1.1400 
1.1400 
1.1400 
1.1700 
1.1700 
1.1925 
1.1925 
1.2000 
1.2000 
1.2000 
1.2000 
1.2450 
1.2450 
1.2750 
1.2750 
1.2975 
1.2975 
1.3500 
1.3500 
1.3500 
1.3500 
1.4250 
1.4250 
1.5000 
1.5000 
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