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Abstract—This paper studies network resource allocation be-
tween users that manage multiple connections, possibly through
different routes, where each connection is subject to congestion
control. We formulate a user-centric Network Utility Maximiza-
tion problem that takes into account the aggregate rate a user
obtains from all connections, and we propose decentralized means
to achieve this fairness objective. In a first proposal, coopera-
tive users control their number of active connections based on
congestion prices from the transport layer to emulate suitable
primal-dual dynamics in the aggregate rate; we show this control
achieves asymptotic convergence to the optimal user-centric
allocation. For the case of noncooperative users, we show that
network stability and user-centric fairness can be enforced by
a utility-based admission control implemented at the network
edge. We also study stability and fairness issues when routing of
incoming connections is enabled at the edge router. We obtain in
this case a characterization of the stability region of loads that can
be served with routing alone and a generalization of our admission
control policy to ensure user-centric fairness when the stability
condition is not met. The proposed algorithms are implemented at
the packet level in ns2 and demonstrated through simulation.

Index Terms—Communication networks, cross-layer design, op-
timization, stochastic processes.

I. INTRODUCTION

T HE ISSUE of fairness in resource allocation is funda-
mental to any shared infrastructure; as such, it appears

naturally in telecommunication networks. An important ques-
tion in the network case is at which level of granularity or pro-
tocol layer should fairness be imposed. The main trend in net-
working research in recent times has been to seek fairness in the
transport layer, between the allocated rates of end-to-end flows
(or connections) traversing a network. Following the seminal
work of Kelly et al. [17], this problem can be framed in terms
of Network Utility Maximization (NUM), which captures var-
ious fairness notions between flows, including simplified yet
powerful models of deployed TCP congestion-control mecha-
nisms; see [35]. The success of this methodology has projected
NUM also into lower layers (routing, medium access, etc.) as a
unifying technique to encompass multiple control mechanisms
under a common fairness goal; see [6].
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From the standpoint of network users, however, is the re-
sulting fairness notion adequate? On the contrary, it appears
that a higher-layer aspect interferes: Users can open an arbi-
trary number of connections across the network, skewing the
overall rate allocation. In fact, aggressive applications often use
this technique to vie for a larger share of the bandwidth “pie,”
but even nonstrategic users who happen to overload a common
resource will be rewarded by a higher allocation. Therefore, as
argued in [3], we must go beyond flow-rate fairness for a more
relevant view of network resource allocation.
In this paper, the object of fair allocation is a set of users; by

definition, each user owns a set of connections, possibly through
different routes. Our goal of network efficiency and fairness is
the rate allocation between users, in a manner that optimizes
a user-centric NUM problem. To achieve this objective, we
propose to actively control the number of flows per user, as-
suming the underlying per-flow allocation is unchanged from
the aforementioned standard models of congestion control. We
now outline our contributions; other related work is summarized
in Section II.
Our first result, presented in Section III, is related to the moti-

vation of users to increase the number of active flows. We show,
under fairly general assumptions on the network topology, that
the aggregate rate a user obtains in a certain route increases with
the number of connections in this route, when the competing
connections are fixed; thus, users’ selfish incentives are aligned
with increasing connection numbers beyond limit, a mutually
destructive outcome.
Achieving user-centric fairness therefore requires controlling

connection numbers; in Section IV, we analyze whether this
objective is achievable in a decentralized fashion, assuming
temporarily that users are cooperative. Since connections may
use different routes, the required dynamics of aggregate rates
are of the form of multipath congestion control, which is well
known to suffer from oscillations. We propose for this purpose
a new variant of primal-dual congestion control that is shown
to be globally asymptotically stable and is well suited for
implementation through a connection-level dynamics, using
available congestion feedback from the network.
Since user cooperation cannot be counted on, in Section V

we propose a decentralized admission control rule based on user
utilities and thus tailored to our proposed user-centric fairness.
We analyze the performance of this control under a traffic model
of random connection arrival/departures through a fluid limit ar-
gument. The mechanism is shown to protect the network from
greedy users, imposing in situations of overload the desired no-
tion of fairness.
In Section VI, we turn our attention to the related problem

of connection-level routing: Users bring end-to-end jobs to
transfer, with routes chosen by the network. While each indi-
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vidual connection remains single-path, users may now profit
from several routes. We characterize the stability region of
this problem and give conditions under which it is attainable
by a simple congestion-based routing policy. We also show
how to combine admission control and routing to provide sta-
bility and fairness when the loads exceed the natural stability
region.
Finally, we provide in Section VII packet-level simulations

to test the proposed algorithms in practice. The algorithms are
implemented in , either at the end-hosts for the coopera-
tive control case, or at the edge router in the admission con-
trol/routing cases. Our simulations validate the accuracy of our
model predictions, in particular exhibiting the desired fairness.
Conclusions are presented in Section VIII, and an Appendix
contains some of the proofs. Partial versions of these results
were presented in [10] and [11]; for more extensive details, we
refer to the thesis [9].

II. RELATED WORK

Our work touches on several topics that have been studied in
other references; these are now overviewed.
The impact of parallel TCP connections on aggregate

throughput is analyzed in [13], experimentally and invoking the
TCP rate formulas of [30]. In [40], these formulas are used for
an analysis of strategic user incentives in a single-bottleneck
network. Our analysis, based on the NUM framework, enables
us to generalize the conclusions to arbitrary network topologies,
as well as different notions of flow-rate fairness.
Multipath congestion control involves endowing each

end-to-end connection with multiple paths over which to send
traffic, with the capability of controlling each path rate. This
has been analyzed from a theoretical perspective in the NUM
setting already in [17], for so-called primal algorithms that
solve a barrier approximation to NUM; [14] and [18] later
analyzed the delay stability of this solution. For the exact
NUM problem, the difficulty that appears is the lack of strict
concavity of the objective function, which leads to oscillations
in gradient-type methods. In this respect, the pure dual algo-
rithm considered in [36] yields a discontinuous dynamics that
chatters around the equilibrium value, converging only in a
mean sense. In [37], this is addressed by replacing the objective
function by a strictly concave approximation, thus leading to a
stable approximate algorithm. Another strategy to obtain strict
concavity is the so-called proximal optimization method, which
was applied to multipath TCP in [25], leading to discrete-time
algorithms that converge under suitable step-size conditions.
Nonstrict concavity also compromises stability of primal-dual
control laws (see [8]); in this regard, our proposal of Section IV
provides a new, globally convergent primal-dual law that could
be applied to the multipath TCP problem. From a practical
perspective, there is an ongoing discussion in the IETF on
multipath TCP implementations; see e.g., [23], [33], and [39].
In contrast to these transport-layer implementations, our main
motivation here is to use the analysis as a basis for controlling
the number of (individually single-path) connections to achieve
efficiency and fairness in the aggregate rates.
The use of connection-level control to modify the resource al-

location provided by the network was proposed in [4] and [5], in
the context of wireless networks. Motivated by the high loss rate
in these environments, which tampers with adequate congestion

feedback, the authors propose an Inverse-Increase Multiplica-
tive-Decrease algorithm to adjust the number of connections,
an application-layer strategy that imposes a certain resource al-
location on the problem, overcoming the lossy wireless channel.
Our results of Section IV rely on the same type of control, but
take the strategy further to impose an arbitrary desired fairness
model on the aggregate rates of a set of users over possibly mul-
tiple paths. This proposal is philosophically aligned with the
suggestion of [17] that user-specific utilities can be reconciled
with congestion control protocols by adjusting a weight param-
eter in the latter. However, adjusting the number of connections
is more amenable to implementation at the application layer,
without changing the current transport layer. A recent reference
on the latter strategy is [38]. Our approach has similarities to the
“coordinated congestion control” studied in [21], but there are
differences in the optimization objective sought and the connec-
tion dynamics considered.
Another way to take connection dynamics into account is

through a queuing model for network flows, modeled by sto-
chastic processes or their fluid limits, for which TCP resource
allocation is a service discipline. In this line, [1] and [7] showed
that the natural stability condition (all average link loads less
than their capacity) is indeed sufficient for stability in the mem-
oryless case. This analysis has been extended in several ways
in [24], [26], and [32] to more general hypotheses, particularly
in the job sizes. In [14] and [20], the corresponding conditions
were given for operation under multipath TCP; [20] also shows
that an “uncoordinated” control of single-path connections may
not in general be able to stabilize the complete region. In our
work of Section VI, we also employ single-path connections,
but we add congestion-based routing in a way that allows us to
cover the full stability region. Other related work on connec-
tion routing is [15], where optimal routing policies are obtained
under the assumption that the network provides a so-called bal-
anced fair allocation; this, however, does not apply to typical
congestion control protocols.
Note, finally, that such stochastic stability results are of an

open-loop nature: Either the loads are stabilized and users are
satisfied, or the network is unstable, and this is independent
of the congestion control applied. Some authors [16], [27]
have argued from here that admission control of connections
is required. While any reasonable admission control may over-
come such instability by discarding excess connections, the
distinguishing feature of our utility-based admission control of
Section V is that a desired fairness between users is imposed
in such situations of overload.

III. FLOW-LEVEL FAIRNESS LIMITATIONS

We consider a network composed of links, indexed by ,
with capacity , and a set of paths or routes, indexed by
. End-to-end connections (flows) travel through a single
path, specified by the routing matrix ( if route
contains link , and 0 otherwise). denotes the rate of a
single connection along route . Let denote the number
of such connections, with denoting the ag-
gregate rate. The rate through link can be expressed as

.
Connections present in the network regulate their rate through

some congestion control mechanism, which we model (cf. [35])
as seeking the solution of the following convex optimization.
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Problem 1 (Congestion Control): For fixed ,

subject to the capacity constraints .
The above optimization provides a notion of “flow-rate fair-

ness,” where reflects the choice of the congestion con-
troller,1 and this utility is assigned to the individual connection
rate . These utilities are assumed increasing and
strictly concave; we focus here on the usual -fair family [29],
which satisfies and encompasses many
commonly used fairness models.
Decentralized methods to solve Problem 1 involve the use of

duality. Let denote the Lagrange multipliers (prices) associ-
ated with each link constraint, and denote the aggregate route
prices

(1)

The Karush–Kuhn–Tucker (KKT) conditions for Problem 1 in-
clude , equivalent to the demand curve

(2)

with . In particular, for -fair utilities,
.

Therefore, congestion control algorithms behave as decen-
tralized ways to solve Problem 1, where reflects pro-
tocol behavior. This in turn defines a mapping
where, given the number of connections in each route,
the resource allocation is calculated as the solution
of Congestion Control Problem 1. From a user perspective, for
a given number of connections in each route, the allocated re-
sources are determined by this flow-rate fairness. However, a
user vying for more resources may challenge this by opening
more connections. We have the following result, proved in the
Appendix.
Theorem 1: Assume that has full row rank. Then, the map

above is such that

This result implies that greedy users have incentives to increase
the number of connections to bias the resource allocation over
any network topology.2 Moreover, this holds independently of
the utility used by the congestion control layer, i.e., the under-
lying algorithm. Formalizing this further, assume each user has
an increasing and concave utility modeling its valuation
of the total rate obtained from the network, and each strate-
gically chooses the number of connections. In this connection
game, Theorem 1 implies that a dominant strategy is to increase
the number of connections along any route. If a subset of greedy
users behave in this way, the number of ongoing connections
will growwithout bounds, an undesirable scenario. This formal-
izes and exhibits the limitations of flow rate fairness mentioned
in [3].

1To simplify the notation, we use for the utility of the lower-layer
congestion controller, of which TCP is a particular case.
2The hypothesis on is typically a nonissue since there are more routes than

links in the network.

A nonstrategic way of taking users into account is through
stochastic models for demand. Here, connections arrive on
route as a Poisson process of intensity , with each connec-
tion bringing a random amount of workload with mean .
For each network state , rates are assigned according to
Problem 1. This model was first analyzed in [1] and [7], where
under the hypothesis of exponentially distributed workloads,
the stochastic process is stable provided

(3)

where is the average load on route . This stability
condition has also been extended in different ways in [25], [26],
and [32], in particular to general workload distributions.
The stochastic stability of this system is therefore character-

ized. However, congestion control plays no role in enforcing
stability: If (3) is not satisfied, the number of ongoing connec-
tions will grow without bounds, up to a point where user im-
patience comes into play and connections are dropped. Some
authors [16], [27] argued that the above situation requires ad-
mission control of connections. While simple admission control
rules may overcome instability, the remaining question is how
to carry it out in a way that fairness between users is taken into
account. We now investigate further this notion of fairness.

IV. USER-CENTRIC FAIRNESS OVER MULTIPLE PATHS

Assume that there is a set of users, indexed by , that
open connections in the network. Each user therefore has
a set of routes and receives an aggregate rate of service

. Let be an increasing and concave utility
function that models user preferences instead of protocol be-
havior. The associated user-centric notion of fairness can be
expressed through the following NUM problem.
Problem 2 (User Welfare):

subject to link capacity constraints .
Here, the sum in the constraints is done over all the network
routes. Each route is associated with a single user, and if several
users open connections along the same path, we duplicate the
index accordingly. Note also that the above framework is very
general, with a user defined as a set of routes. This can model
users downloading data from several locations, multiple parallel
paths, the single-path case, etc.
A first step in our analysis will be to assume that users coop-

erate by controlling the aggregate rate on each route: We will
construct dynamics for the that globally drive the system to
the desired optimum, and then analyze how to implement them
through connection-level control. Consider the Lagrangian of
Problem 2

(4)
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The KKT conditions that characterize the saddle point of on
(4) imply that for each

either

or and (5)

In particular, (5) implies that , i.e.,
user only sends traffic through minimum price paths. While

is determined by the above, the optimal rates need not
be unique. Problem 2 coincides with the multipath congestion
control problem considered in [36], so a number of distributed
approaches are available to drive to the optimum. However,
some difficulties appear due to the lack of strict concavity in the
objective, which often leads to oscillatory behavior. Our pro-
posal is to use a variant of the primal-dual dynamics with an
additional damping term to obtain convergence. Consider the
following control law:

(6a)

(6b)

where , as before, and the gains , ,
. is the positive projection, which verifies

whenever and , otherwise .
Algorithm (6) is a modified primal-dual algorithm in which

end-users adjust their rates according to a predicted route price
, thus anticipating possible changes. This idea first ap-

peared in [31] in the context of combined multipath congestion
control and routing. Note that this damping term does not af-
fect the equilibrium, and due to the use of the projection, the
equilibrium of (6) verifies the KKT conditions (5). We have the
following.
Theorem 2: Under the control laws given in (6), all trajecto-

ries converge to a solution of Problem 2.
The proof is based on the following Lyapunov function:

(7)
where is an equilibrium and . Note that

for every , , in particular the last term is non-
negative due to the problem constraints and .
Also, this term vanishes in any equilibrium due to (6b), which in
turn imposes the complementary slackness condition. The full
derivation is presented in the Appendix.
Theorem 2 shows that the dynamics (6) become a good al-

ternative for multipath congestion control. This algorithm is de-
centralized since it only assumes that user can control the rate
on its own routes, using only the total route price and its deriva-
tive. However, instead of changing congestion control proce-
dures, we would like to derive connection-level controllers that
use the number of ongoing connections to drive the system to
equilibrium. This way, individual connections relay on current
transport-layer protocols, which hide the network complexity.
The application layer then controls only indirectly through
the number of connections. We now address this issue.

Fig. 1. Block diagram of the proposed connection-level control.

A. Connection-Level Control

We propose now connection-level dynamics for , the
number of connections on each route. In order to achieve this,
we shall consider a way to control such that
follows (6). Note that in this case . Consider
the following control law:

(8)

With this choice, it is easy to check that
, which is similar to (6) but

with a state-dependent gain .
The problem under consideration is best explained through

Fig. 1. On the right, we represent the network by an entity that
receives aggregate rates and returns congestion prices
per route. These are used by congestion control to generate the
rate per connection; thus, the inner loop represents TCP con-
gestion control, for fixed . What we wish to design here is the
outer loop (which operates at a slower timescale), controlling
the such that the overall dynamics of achieve the desired
user-centric fairness.
For further clarity, and to facilitate implementation, it is con-

venient to rewrite the dynamics of in terms of the congestion
price, eliminating the variable . Assume that congestion con-
trol can be modeled using utilities from the -fair family, we
have or equivalently

. The last term can be rewritten as

and therefore the dynamics of become

(9)

We have the following.
Proposition 1: The connection-level dynamics (9) globally

stabilize the equilibrium of Problem 2.
The proof is based on a Lyapunov function similar to (7),

with a minor modification to account for the state-dependent
gain (see Remark 3 in the Appendix). Observe also that in



FERRAGUT AND PAGANINI: NETWORK RESOURCE ALLOCATION FOR USERS WITH MULTIPLE CONNECTIONS 353

(9), the predictive terms in play opposing roles. This suggests
considering the simpler control law

(10)

in fact when translated to , this yields dynamics very similar
to (6), with derivative action in the control of , except that the
damping parameter is time-varying and route-
dependent, which is not compatible with our earlier stability
argument. Extending the proof to this case remains open at this
time. For the single-path case, we proved in [10] that the above
dynamics are locally asymptotically stable.
Also, the control law (9), while having guaranteed global

properties, uses the derivative action term that can be hard to
implement in practice due to noisy measurements of the price.
The simpler law (10) is more amenable to implementation, and
extensive (both fluid and packet level) simulations show that it is
well behaved [9]. In Section VII, we shall explore a packet-level
implementation of the latter mechanism.

V. UTILITY-BASED ADMISSION CONTROL

The model in Section IV is applicable to the case where users
cooperate by opening or closing connections based on an ap-
propriate feedback from the network. Since selfish incentives
of users do not encourage this behavior, we cannot generally
count on this cooperation. In such cases, the network must take
the role of controlling connection numbers, for which the sim-
plest means is admission control. This approach was advocated
in [27], where a stochastic model of connection arrivals and de-
partures is discussed, and admission control is used to ensure the
stochastic stability of the system when the average load is larger
than the link capacity; this is done without addressing fairness
in the resulting resource allocation. We now would like to de-
rive a decentralized admission control rule, that can be enforced
at the network edge, and such that in case of overload, resources
are allocated according to the User Welfare Problem 2.
From our analysis in Section IV, we see that in order to

achieve fairness, each user must increase its number of connec-
tions whenever , i.e., the user marginal utility is
greater than the current congestion price. If on the other hand
the inequality reverses, the number of connections must be
decreased. Consider the following admission control rule for
incoming (new) connections:

If admit connections on route

If drop connections on route (11)

where , as before. We call this rule Utility-Based
Admission Control. Equation (11) imposes a limit on the number
of connections a given user is allowed, and therefore a strategic
user will not get a larger share of bandwidth simply by opening
more connections, as in Theorem 1, since eventually the admis-
sion condition will not be met. In a scenario where all users
are pushing the limits, the network will operate in the region

for all , , which are the KKT conditions of
Problem 2.
We now formalize these arguments using a stochastic model

for the system. We discuss first the single-path case and post-
pone the discussion of the multipath case to Section V-C.

A. Admission Control in the Single-Path Case

In the single-path case, each user is associated with a single
route , and thus we can write for the user utility function
instead of . In this case, the rule (11) reduces to

If admit connection

If drop connection. (12)

Assume each user on route opens connections, which arrive
as a Poisson process of intensity , and brings an exponentially
distributed workload of mean . Connection arrival and job
sizes are independent and also independent between users. As-
suming a time–scale separation, i.e., that congestion control op-
erates faster than the connection-level process, the rate at which
is connection is served is , determined by
the solution of Problem 1. Also, the aggregate rate on route is

, and is the route price. This model was introduced
by [1] and [7]. When the admission control rule (12) is added,
the process is a continuous-timeMarkov chain with the fol-
lowing transition rates:

with rate

with rate (13)

where is the vector with a 1 in coordinate and 0 elsewhere,
and is the indicator function.
Without the admission condition, [1] and [7] prove that the

Markov chain is stable (positive recurrent) if the loads
satisfy the natural condition

for each (14)

On the other hand, admission control should stabilize the system
in any situation. This is indeed the case for rule (12).
Proposition 2: The Markov chain given by (13) is stable.
Proof Sketch: The proof relies on constructing a suitable

“box” set with large enough such
that, if , then the admission condition is violated. There-
fore, the process starting at an empty network cannot leave ,
and since the Markov chain is irreducible, it will converge to
an equilibrium distribution on a subset of the finite set . For
details, see [9].

B. Fluid Limit Analysis

Now that stability is assured, we proceed to analyze the fair-
ness of the admission control policy. We will do so by deriving
a suitable fluid model for the system (13). The model is based
in a large network asymptotic. The main idea is to scale the net-
work size appropriately, by enlarging the capacity of the links
and the arrival rate of flows, such that a law of large numbers
scaling occurs. An important remark is that for the scaling to
work appropriately, we also have to scale the user preferences
with the size of the network.
More formally, we take a scaling parameter and con-

sider a network with link capacities scaled by , i.e., .
We also assign each user a utility . Note
that with this choice, the utility functions verify the following
scaling property:
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That is, the user marginal utility for obtaining times band-
width in the scaled network is the same as that of the marginal
utility for the original amount in the original network.
We denote by and the rate allocation and route

prices in the scaled network, and as before, and de-
note the original values, i.e., . The following relationships
are direct from the KKT conditions.
Lemma 1: For any , the resource allocation and route

prices satisfy

Using the above relationships, we now derive the fluid model
of the system. To avoid technicalities, we shall replace the indi-
cator function in (13) by a smooth approximation , such that

if , and if . The original
model can therefore be approximated by

with rate

with rate (15)

Note that, as , the above model approximates (13). We
have the following result, proved in the Appendix.
Theorem 3: Consider a sequence of processes gov-

erned by equations (15) with , , ,
and utility functions that satisfy

with a scaling parameter. Consider also a sequence of
initial conditions such that has a limit .
Then, the sequence of scaled processes

is tight, and any weak limit point of the sequence converges as
to a solution of the following differential equation:

for (16)

where and are the allocation maps for .
Remark 1: We have constrained the dynamics (16) to the re-

gion ; a complete model would require describing what
happens if the trajectory reaches the boundary. In this regard,
we note that if the user average loads satisfy the
natural stability condition (14), it is shown in [1] that the trajec-
tory reaches zero in finite time. When for some
, the allocation drops to zero, but then the arrivals term in
(16) would move the state back into positive values, and then
back to zero as service rate appears. Thus, the state will remain
“chattering” around zero and should receive an average service
rate , a behavior that is difficult to express precisely in ordi-
nary differential equation terms; see [19] for fluid models that
take this aspect into account.
Here, we are mainly interested in the case of overload, where

at least one link capacity is exceeded, and admission control
must apply to some of the users. There might be certain users
that are completely isolated from this overload, using only non-
congested routes; these would be stabilized as discussed above.
Therefore, without loss of generality, we assume henceforth that
all participating users share at least one of the overloaded links;
in that case, the equilibrium of (16) will have nonzero for

all ’s; we can thus avoid boundary effects when analyzing the
local dynamics around equilibrium.
The equilibrium condition for (16) is

Since and is bounded above by 1, the only possi-
bilities are

and

or

and

As , the above translate to

and (17a)

or

and (17b)

The interpretation of the above conditions is the following: Ei-
ther the equilibrium allocation for user is less than its demand,
and the system is on the boundary of the admission condition,
or the user is allocated its full average demand and admission
control is not applied.
We would like to relate this to the User Welfare Problem 2

defined before. Considered the following.
Problem 3 (Saturated User Welfare):

subject to and .
Problem 3 has the following interpretation: Allocate re-

sources to the different users according to their utility functions,
but do not allocate a user more than its average demand. It
amounts to saturating the users to a maximum possible demand,
given by the value .
We have the following proposition, whose proof is direct of

the KKT conditions and (17).
Proposition 3: As , the equilibrium points of (16) con-

verge to the optimum of Problem 3.
Therefore, the equilibrium allocation under admission control

in an overloaded network is a solution of Problem 3. Note that if
traffic demands are very large , Problem 3 becomes
the original User Welfare Problem 2, and admission control is
imposing the desired notion of fairness. Moreover, if some users
demand less than their fair share according to Problem 2, the re-
sulting allocation protects them from the overload by allocating
these users their mean demand and sharing the rest according
to the user utilities. In Section VII, we shall give a numerical
example of this behavior.

C. Admission Control in the Multipath Case

Consider now the situation where the user opens connections
on several paths and obtains utility from the aggregate. Assume
that connection arrivals on each path are independent, following
a Poisson process of intensity , and with exponentially dis-
tributed workloads of mean . For example, this would be
the case of users downloading data from different sources at the
same time. The lower layers of the network allocate resources
as in the single-path situation, and each route has an average
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load . Assume that the network implements the ad-
mission control rule (11), controlling the aggregate rate each
user perceives. In this case, by a similar analysis, the dynamics
become , and in the overload
case, the dynamics converges to the solution of the following
problem.
Problem 4 [Saturated User Welfare (Multipath)]:

subject to , .
This in turn implies that the admission control rule (11)

applied to the aggregate load can be effectively used to drive
the network to a fair allocation, even when users’ demands are
transported over different routes.

VI. CONNECTION-LEVEL ROUTING

The analysis of the preceding section assumes that each
user establishes connections through some set of predefined
routes, possibly with multiple destinations. The user manages
simultaneously several connections over these routes and de-
rives a utility from the aggregate rate. Moreover, the user has
an independent arrival rate for each route. We now focus
on a slightly different situation: Here, each user has a set of
routes available to communicate with a given destination in the
network. These routes are indifferent for the user, all of them
serving the same purpose. Each user brings connections into
the network, and at each connection arrival, the user or the edge
router may decide over which route to send the data. This is a
typical instance of the multipath load balancing problem, but at
the connection-level timescale.
We consider an adaptation of the stochastic model for con-

nections of [1] and [7] to this problem. Assume that users have
multiple routes available to serve their jobs. User generates
incoming connections as a Poisson process of intensity and
exponential file sizes with mean . Thus, repre-
sents the user average load. Here, we do not distinguish between
the routes since each user may be served by a set of possible
routes. As for congestion control, we assume that the TCP layer
can be described as in the Congestion Control Problem 1. The
user or the network may now choose, at the start of the connec-
tion, to which route to send the data from the set , but each
connection behaves independently after that, following a single
specified path throughout its service. Nevertheless, by appro-
priately choosing the route, the load may be distributed across
multiple paths.
We formalize a routing policy in the following way: Given

the current state of the network, characterized by the vector
of ongoing connections per route, a routing policy is a

selection for a new connection.We denote by
the set of network states such that connections arriving from
user are routed through route . If the same physical
route is possible for many users, we duplicate its index ac-
cordingly, and is the total number of routes.
The only general requirement for the routing policy is that the

sets are a partition of the space for each , i.e.,

(18)

In a fluid limit, the dynamics of the number of connections
under the routing policy are given by

(19)

Here, as before denotes the total rate assigned to
the flows on route depending on network state. The saturation

is needed in this case because some routes may not be
used, and thus the number of flows must remain at 0.
Remark 2: We could have also considered more general

routing policies, in which each routing decision is assigned a
probability for each network state. The routing policy
constraint (18) in that case will be the same. However, in the
following we will only focus on deterministic routing policies.
Note also that the sets may be quite general. However, for

practical implementation, it is necessary that the routing policy
is decentralized, i.e., the decision of routing a flow of user
over route should be based on local information. We defer this
discussion for themoment and focus on necessary conditions for
stability of the system.

A. Necessary Condition for Stability

Our goal is to characterize the stability region of a routing
policy, with dynamics given by (19). More formally, we would
like to know for which values of the fluid model goes to zero
in finite time. We recall that finite time convergence of the fluid
model is related (cf. [34, Ch. 9]) to the stochastic stability of
the corresponding Markov chain models. We will first derive a
necessary condition for stability, which generalizes the stability
condition of [1] and [7] to the routing case.
For this purpose, introduce for each user the simplex of pos-

sible traffic fractions among available routes.

The following is the main result of this section.
Theorem 4: A necessary condition for the existence of a

policy that stabilizes the dynamics (19) is that, for each
user , there exists a split such that

(20)

Condition (20) is the nonstrict version of single-path condi-
tion (14) for the split traffic loads . Thus, (20) means
that for a routing policy to exist, it is necessary that the network
is “stabilizable” in the sense that there is a partition of the user
loads such that the underlying single-path network is stable. Of
course, if each user has only one possibility, then , and
we recover the single-path stability condition. The same condi-
tion (20) was obtained in [14] for stochastic stability in the case
of multipath TCP. In that case, however, the TCP layer must be
modified to make full simultaneous use of the available routes.
Here, each route remains single-path, with standard congestion
control, and the routing policy is used to achieve the same sta-
bility region, whenever possible.

Proof of Theorem 4: Consider the convex and compact
subset of , with the total number of links
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The set represents the excess of traffic in each link for each
possible split. If (20) is not feasible for a given load vector ,
then the set is disjoint with the closed negative orthant .
By convexity, there exists a strictly separating hyperplane
[2, Section 2.5], i.e., a fixed with and such that

The second condition implies in particular that has non-
negative entries since, if , taking , we have

, and therefore the inequality is violated for any
. Also, since , we have that . Define now

and consider the following state function:

(21)

Note that and .
Differentiating along the trajectories of (19), we get

where in the last step we used the fact that the term inside the
projection is negative whenever the projection is active. It fol-
lows that

In the last step, we used the fact that due to
the resource allocation being feasible. Regrouping the terms, we
arrive at

since by the definition of routing
policy. We conclude that is strictly increasing along the tra-
jectories, and being a linear function of the state, the number of
connections would grow without bounds. Thus, (20) is neces-
sary for stability.
The above Theorem remains valid if we change the policy
by a random splitting policy, possibly dependent on the

state , since must also be in the set for all .
We therefore have shown that if traffic cannot be split among
the routes such that each link is below its capacity on average,
then the system cannot be stabilized under any routing policy.
The analog to the sufficient stability condition in this case is

(22)

which is the strict version of (20). The following proposition is
direct from the single-path stability results of [1] and [7].
Proposition 4: If (22) holds, then there exists a routing policy

that stabilizes the system.
Proof: If such a choice of exists, then the random split-

ting policy that sends an incoming connection on route with
probability stabilizes the system. This is because the system
is equivalent to a single-path process with arrival rates due
to the Poisson thinning property, and condition (22) is the sta-
bility condition of the single-path case.
The above shows that the stability region of this system is

characterized completely. However, the random splitting policy
mentioned in the proof of Proposition 4 is not useful in a net-
work environment since it is not decentralized. Each user must
know in advance the average loads of the whole system in order
to select the weights to fulfill (22).

B. Decentralized Routing Policy

In a multipath setting in which each user may choose among
a set of routes, it is natural to try to balance the loads by using
the network congestion prices measured on each route. A simple
feedback policy for routing is, at each arrival, choose the route
with the cheapest price. In our previous notation, this amounts
to taking

(23)

Implicit in the above equation is some rule for breaking ties
when there are multiple routes with minimum price. Since con-
gestion price is inversely related with connection rate, this is
equivalent to routing new flows to the path with the best current
rate for individual connections. Note also that this is a suitable
generalization of the Join the Shortest Queue policy [12]: In fact,
in the case of parallel links of equal capacities, the identification
is exact. We shall see in Section VII that this closed-loop policy
does not suffer from the problems of simultaneously using all
paths, which can lead to a loss in the stability region, as ana-
lyzed in [20].
We shall investigate the stability of this policy under con-

dition (22). We need the following proposition, proved in the
Appendix:
Proposition 5: Given , let and

be the corresponding rate allocation and route prices from the
Congestion Control Problem 1. Choose also that satisfies
(22). Then, there exists such that

(24)

The previous bound is similar to the one used in [1] to prove
stability in the single-path scenario, but with the gradient eval-
uated at the optimum, instead of another feasible allocation. We
now apply this bound to obtain the following characterization
of the routing policy.
Theorem 5: Suppose (22) holds. Then, under the dynamics

(19) with the routing policy given by (23), we have

(25)
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Proof: We have that

where the inequality is trivial if the projection is not active. If
the projection is active, and thus by (28), so
the corresponding negative term can be omitted.
Regrouping the above in each user, we get

where we have used the definition of the routing policy and
the fact that the minimum price can be upper-bounded by any
convex combination of the prices. Applying Proposition 5, we
complete the proof.
It remains to see if we can use the inequality (25) to establish

asymptotic stability of the fluid dynamics through a Lyapunov
argument. Although it is tempting to postulate a Lyapunov func-
tion analogous to (21), there is an important difference: The
factor of (25) is a function of the state. This implies that the
left-hand side of (25) may not be integrated easily to get a Lya-
punov function for the state space whose derivative along the
trajectories yields the desired result.
We focus on a special case where we can give an affirma-

tive answer. Assume that the network is composed by a set of
parallel bottleneck links. Each user in this network has a set of
routes established in any subset of the links. Moreover, assume
that all users have identical -fair utilities denoted by and
file sizes are equal for each user, so we can take without loss of
generality .
In such a network, the resource allocation of Problem 1 can

be explicitly computed as a function of the current number of
flows . In particular, all flows through bottleneck face the
same congestion price , and as they have the same utility,
they will get the same rate, given by

By using that , we have

with such that .
Since if , the link prices should have the form

We now state the stability result for this type of network and
defer the proof to the Appendix.
Proposition 6: For the network of parallel links under consid-

eration, let the system be given by (19) with the routing policy

(23). Under the stability condition (22), the state converges to
0 in finite time.
We recall that (cf. [34, Corollary 9.2]) finite-time conver-

gence to zero of the fluid model implies the stability (ergodicity)
of the corresponding Markov chain model.

C. Combining Admission Control and Routing

Let us analyze now the possibility of extending the admission
control rules derived in Section V to the connection routing set-
ting. Recall that in order to perform admission control, we as-
sociate with each user a utility function , with being
the total rate the user gets from the network. Admission control
over a route was performed by comparing the marginal utility
with the route price. In the new setting, the end-user may choose
among several routes, and thus the natural way to merge the re-
sults of Section V with the connection level routing is the fol-
lowing combined law.

Admit new connection if .

If admitted: route connection through the cheapest path.

The network dynamics in this case converges to 0 when-
ever the stability condition (22) is met. In the overload case,
it can be shown that the equilibrium is in fact the solution of the
following.
Problem 5 (Saturated User Welfare With Routing):

subject to and for each .
The above optimization problem is similar to Problem 3, but

the constraint is imposed on the aggregate rate of each
user and its total average load.

VII. IMPLEMENTATION AND SIMULATIONS

In this section, we discuss practical implementation issues
and investigate the performance of the policies developed
through simulations. We do so in several scenarios. In the
first one, we consider the case where users cooperate control-
ling their number of active connections in a proactive way
to achieve a fair resource allocation according to the User
Welfare Problem 2. Then, we move on to explore the behavior
of utility-based admission control on an overloaded network,
showing that it imposes the desired notion of fairness. Finally,
we validate the connection-level routing policy proposed in
Section VI-B in an example where uncoordinated control is
known to reduce the stability condition.

A. Scenario 1: Controlling the Number of Connections

We implemented a packet-level simulation of the control law
(10) in the network simulator [28]. We have two users that
download data from three servers, with the topologies and link
capacities depicted in Fig. 2. In order to introduce an imbalance
between users, routes have different round-trip times (RTTs).
Each user then begins with a single TCP connection per route,
governed by TCP/Newreno. With this choice, the congestion
price on route is the packet-loss probability along that route,
and this is measured by the users counting the number of retrans-
mitted packets within connections.
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Fig. 2. Topology simulated in Scenario 1.

Fig. 3. Results for Scenario 1.

The users then maintain a variable for each
route, which is the target number of connections. This variable
is updated periodically by measuring the current values of
and and integrating (10). For this particular case, we choose

, which will give, in equilibrium, the
proportionally fair allocation Mb/s.
Each second, a user chooses whether to open or close a

connection on route by comparing the current number of con-
nections along that route with the corresponding
rounded to the nearest integer. Results in Fig. 3 show that the
number of connections on each route tracks an equilibrium
value, approximating the dynamics (10). The corresponding
total rate evolves reaching the desired allocation. This is
achieved by splitting unequally the shared link, but in a decen-
tralized way. A similar scenario, but with uncooperative users,
was presented in [11]; in this case, admission control can be
applied, leading to the same allocation.

Fig. 4. Topology for Scenario 2.

Fig. 5. Results for Scenario 2: (top) fully overloaded case and (bottom) when
one source is below its share.

B. Scenario 2: Fairness via Admission Control

In this case, we simulated the linear network topology of
Fig. 4, with single-path users that generate connections ac-
cording to a Poisson process as in Section V. The network
applies admission control using the rule (12), with utilities
chosen from the fair family with to approximate
max-min fairness. Simulations are performed in , and indi-
vidual connections are again controlled by TCP/Newreno. The
entry router is in charge of measuring loss probability along
the routes. This is done in this case by sniffing the connections,
although other approaches such as Re-ECN [3] could be used.
The max-min allocation for this network is Mb/s

and Mb/s. In the first simulation, the user
loads are such that the network is overloaded, with each user
load being greater than its fair share. The results show that the
users are admitted , , and connections
in equilibrium, with total rates according to the first graph in
Fig. 5. The max-min allocation is approximately achieved. Ob-
serve that, despite having the same equilibrium rate than user 2,
user 3 is allowed more connections into the network because its
RTT is higher, and thus its connections are slower.
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Fig. 6. Results for Scenario 3 and comparison to the fluid model.

In the second situation, we changed the load of user 2 to
Mb/s (below its fair share), and it is therefore saturated as in

Problem 3. The resulting rates are shown in the second graph in
Fig. 5. Here, admission control is protecting user 2 by allowing
its share of 4 Mb/s and reallocating the remaining capacity as in
Problem 3 to Mb/s, Mb/s.

C. Scenario 3: Connection-Level Routing

We now analyze the behavior of the decentralized routing
policy for connections presented in Section VI-B.We do so in an
example first identified by [20], which corresponds to a network
with the following routing matrix:

The network has three links and three users, each user with two
available paths: a one-hop or a two-hop route. Links are of unit
capacity. For the case of symmetric loads ( for users

), it is easily checked that the stability condition of (22)
implies , achievable by applying each user’s load only in
the one-hop path. To satisfy this allocation at the transport layer,
a multipath TCP protocol that coordinates path rates would be
required; if instead users open uncoordinated TCP flows in all
their routes, it is shown in [20] that the stability region is reduced
to for -fair TCP, in particular

for the case .
In our proposal, each connection remains single-path, and

there is no rate coordination between them, but connections are
routed to cheapest paths; thus, we are able to stabilize the full
region . In Fig. 6, we show simulation results for a sto-
chastic traffic with loads , starting from an initial
condition of on every route.We can see that the number
of connections on long routes is decreasing, and eventually the
system converges to a stable behavior. We also show the fluid
model trajectory according to dynamics (19) with the rule (23).
The fluidmodel reaches 0 in finite time, consistent with the point
at which the stochastic simulation reaches steady state.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed resource allocation in networks
from a connection-level perspective with the intention to bridge
the gap between classical NUM applied to congestion control

and the user-centric perspective. New notions of fairness ap-
pear as user utilities are evaluated on aggregates of traffic, which
can model different interesting situations. We showed how the
control of the number of connections can be used to impose
these new notions of fairness, and how the users can cooperate
in order to drive the network to a fair equilibrium. Moreover,
we showed how admission control and routing based on typical
congestion prices can be used to protect the network in over-
load and simultaneously impose fairness between its users. Fi-
nally, we showed practical implementations of the mechanisms
derived in our work, and simulations based on these implemen-
tations show that the proposals accomplish their goals.
In future work, we plan to address several theoretical and

technical questions that are still open. Stability results for ad-
mission control, and the stability region of the routing policy
proposed are two important theoretical questions. In practical
terms, it would be interesting to explore new network imple-
mentations based on current congestion notification protocols
that will help make these decentralized admission control mech-
anisms scalable to large networks.

APPENDIX

Proof of Theorem 1: Consider the map defined
by Problem 1. This map is continuous when [19]. We
will also assume that in a neighborhood of the solution, all links
are saturated (if there are locally nonsaturated links, they can be
easily removed from the analysis).
In this case, the KKT conditions of Problem 1 imply

From the first group of equations, we have that

(26)

and substituting in the link constraints, we have that the optimal
link prices must satisfy

Here, denotes a diagonal matrix with the entries of ,
is the vector of link rates, and is the vector of flow
rates determined by the demand curve in each route.
By using the Implicit Function Theorem, we have that

Define now the following matrices:

The diagonal entries of and are strictly positive, and the di-
agonal entries of are negative, since we assume the links are
saturated and therefore the prices involved are positive. After
some calculations, we arrive to



360 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 2, APRIL 2014

and thus

Note that the first matrix is invertible since has full row rank
and the diagonal matrix has definite sign.
We now turn to calculating . From (26), we have

where is the identity matrix. We would like to prove that the
diagonal terms of this matrix are nonnegative. Since is a di-
agonal matrix with positive entries, we can reduce the problem
to proving that the matrix has
positive diagonal entries, where is also a diagonal
matrix with strictly positive entries, so is
well defined and

which is of the form . This last matrix is sym-
metric and verifies .
Thus, it is a self-adjoint projection matrix, and therefore is pos-
itive semidefinite. From this, we conclude that the diagonal en-
tries of are nonnegative, and since the diagonal
entries of are not altered by this transformation, has non-
negative diagonal entries, which concludes the proof.

Proof of Theorem 2: Consider the Lyapunov function in
(7). Differentiating along the trajectories, we get

(27)

Noting that and are nonnegative, we can apply the in-
equality to get rid of both posi-
tive projections. By inserting the values at equilibrium appro-
priately, we have

(I)

(II)

(III)

(IV)

(V)

(VI)

Note that
, so these terms cancel out. The complementary

slackness condition implies since either and

or and . To bound , we associate its
terms on each user to get

The first term in the right-hand side is since is increasing.
Each of the terms in the sum is also due to the optimality
condition (5), and thus after summing over , we conclude
. The remaining terms can be grouped together, and after some
manipulations, we have

since each term in the last sum is either 0 or .
We therefore conclude that the function is decreasing
along the trajectories. Stability now follows from the LaSalle
Invariance Principle [22]. Assume that . In particular,
the terms and must be identically 0 since they
are negative semidefinite. Imposing we conclude that

for all and for all routes which do not have
minimum price. Moreover, since must
be in equilibrium. We also have that

requires that either or at all times. Therefore,
and must be in equilibrium. It follows that is in

equilibrium, and returning to the dynamics, we must have
a constant. If , it would mean that ,

implying that is violated at some link, contradicting
. Therefore, and since , we must

have . Therefore is in equilibrium. We conclude
that in order to have , the system must be in a point
that satisfies the KKT conditions (5), and therefore the system
will converge to an optimal allocation for Problem 2. Since
is radially unbounded, the convergence holds globally.
Remark 3: In the case of a state-dependent gain ,

as required for the dynamics (8), we can change the terms de-
pending on in (7) to , and (27) follows. For
further details, we refer to [9].

Proof of Theorem 3: The proof is very similar to the fluid
limit result from [19], but with additional considerations for the
admission control term. We shall use the following stochastic
representation of the process , in terms of standard Poisson
processes with a time scaling. Consider and to
be a family of independent Poisson processes of intensities
and , respectively. Consider also the following processes:

Here, tracks the amount of time the admission condition is
satisfied, and tracks the amount of service provided to route
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. The Markov chain evolution (15) of starting at
can be written as

where the term comes from the fact that the arrival rate
of is .
Define . Now for each and

where we have used Lemma 1 for . We also have

Therefore, the process satisfies the following:

The conclusion now follows from the same arguments
in [19] applying the hypothesis for and the functional
law of large numbers for the processes and , namely,

and . Note that the func-
tions are Lipschitz since they are the integral of a bounded
function ( is bounded by the maximum capacity in the
network). Also, is Lipschitz because is bounded by 1.
We conclude that any limit point of must satisfy

Differentiating the above equation at any regular point of the
limit, we get the desired result.

Proof of Proposition 5: The proof of the Proposition is
based on the following result, proved in [9]. which deals with
the quantities when . Let be such that

for some . Then, we have

(28)

Since the inequality in (22) is strict, we can choose
such that , is such that .

Consider now . Since is the optimal allocation,
and is another feasible allocation for the convex Problem 1,
the inner product must satisfy

Otherwise, one could improve the utility of solution by
moving it in the direction of .
Applying the above condition to and using

we conclude that

The above can be rewritten as

which proves the result for componentwise.
If now is such that for some , we can take limits

from points inside the orthant and use (28) to obtain the
result.

Proof of Proposition 6: Consider the candidate Lyapunov
function.

(29)

The above function is continuous and nonnegative in the state
space, radially unbounded, and is only 0 at the equilibrium
. Its derivative along the trajectories verifies

(30)

Invoking Theorem 5, we conclude that in the state
space, and it is only 0 when all prices are 0, which can only
happen at the origin. This implies asymptotic stability of the
fluid dynamics.
To obtain finite time convergence, note that verifies

where is an appropriate constant.
We can obtain the following bound:

and thus . Combining this with the result
from Theorem 5, we get .
Integrating the above inequality yields

and we conclude that , and therefore , reach 0 in finite time,
proportional to .
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