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Exact and Heuristic Algorithms for Data-Gathering
Cluster-Based Wireless Sensor Network
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Hui Lin and Halit Üster

Abstract—Data-gathering wireless sensor networks (WSNs) are
operated unattended over long time horizons to collect data in sev-
eral applications such as those in climate monitoring and a va-
riety of ecological studies. Typically, sensors have limited energy
(e.g., an on-board battery) and are subject to the elements in the
terrain. In-network operations, which largely involve periodically
changing network flow decisions to prolong the network lifetime,
are managed remotely, and the collected data are retrieved by a
user via internet. In this paper, we study an integrated topology
control and routing problem in cluster-based WSNs. To prolong
network lifetime via efficient use of the limited energy at the sen-
sors, we adopt a hierarchical network structure with multiple sinks
at which the data collected by the sensors are gathered through the
clusterheads (CHs). We consider a mixed-integer linear program-
ming (MILP) model to optimally determine the sink and CH loca-
tions as well as the data flow in the network. Our model effectively
utilizes both the position and the energy-level aspects of the sen-
sors while selecting the CHs and avoids the highest-energy sensors
or the sensors that are well-positioned sensors with respect to sinks
being selected as CHs repeatedly in successive periods. For the so-
lution of the MILP model, we develop an effective Benders decom-
position (BD) approach that incorporates an upper bound heuristic
algorithm, strengthened cuts, and an -optimal framework for ac-
celerated convergence. Computational evidence demonstrates the
efficiency of the BD approach and the heuristic in terms of solution
quality and time.

Index Terms—Benders decomposition (BD), network design,
wireless sensor networks (WSNs).

I. INTRODUCTION

R ECENT advances in wireless networking, embedded
microprocessors, integration of microelectromechanical

systems (MEMS), and nanotechnology have enabled rapid
development of low-cost, low-power, and multifunctional sen-
sors [1], [2]. Very small in size, sensors are capable of sensing,
data processing, and communicating with each other or with
the data sinks. A group of sensors communicating in a wireless
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medium for the purpose of gathering data and transmitting it to
a user (sinks) form a wireless sensor network (WSN).
In the WSN applications, the main purpose is to monitor

and collect data by the sensors and then transmit this data to
the sinks. Tilak et al. [3] categorize WSNs as time-driven,
event-driven, sink-initiated, and hybrid in terms of data de-
livery scheme. In the time-driven model, the sensors sense
their data continuously at a prespecified rate and send it to the
sink periodically. For event-driven and sink-initiated models,
sensors report to the sinks only when a certain event occurs or
when a request is initiated by the sink. They are well suited
to time-critical applications. A hybrid model is defined as a
combination of the above methods. In this paper, we consider
time-driven sensor network applications such as environmental
sensor networks for monitoring ecological habitats.
WSNs present a great opportunity for ecological monitoring

that was not possible before due to the remoteness of areas of in-
terest and/or infeasibility of in-person attendance in data collec-
tion. Use ofWSNs does not only make eco-monitoring possible,
but also facilitates more frequent data collection [4]. In addi-
tion, as habitat monitoring can be very sensitive to human pres-
ence, an unattended WSN provides a noninvasive approach to
obtain real-time environmental data. For example, researchers
from the University of California, Berkeley, CA, USA, and the
College of the Atlantic, Bar Harbor, ME, USA, deploy sensors
in Great Duck Island, ME, USA, to monitor the nesting burrows
of Leach’s Storm Petrels [5], [6]. The PODS project at the Uni-
versity of Hawaii at Manoa, Honolulu, HI, USA, deploys sen-
sors in Volcanoes National Park on the Big Island of Hawaii to
monitor the ecological environment and the events around the
rare and endangered species of plants [7]. Other applications in-
clude studies in the Chihuahuan desert [8], monitoring icecaps
and glaciers [9], forest monitoring [10], [11], and others as men-
tioned in [12]–[14].
The general framework of WSN network operations of our

interest can be outlined as follows. Initially, a set of sensors,
which are equipped with limited energy resource (e.g., battery)
as well as sensing, processing, and communication capabilities,
is deployed in a geographical region. Data collected by the sen-
sors are forwarded to specially designated sensors, called clus-
terheads (CHs), which conduct some processing to aggregate
their received data. CHs then forward the data to specific loca-
tions, called sinks, either directly or through other CHs. In this
underlying setting, which is also depicted in Fig. 1, design of
the network refers to the determination of CH and sink loca-
tions, while the operation decisions refer to the routing of data
from the sensors to the sinks in that network.
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Fig. 1. Sample network, data flow, and notation.

Given limited energy levels at the sensors, as is the case in
many applications of WSNs, one of the main concerns in net-
work design and operation is the network lifetime, which we
consider in this study to be the time between two sensor deploy-
ments. Sensor redeployments may be needed due to several rea-
sons, e.g., having less than a critical number of operational sen-
sors with enough remaining energy in the network. Typically,
the lifetime is assumed to be divided into periods of uniform
length, and for each period, network design and operations de-
cisions are made in such a way that the number of periods in
a deployment cycle is maximized. Consequently, the network
lifetime is defined as the number of periods that can be achieved
with a deployment.
Topology control and routing are two fundamental problems

in effective design and operation of WSNs. The close relation-
ship between these decisions and their relation to network life-
time are especially underlined by the WSN-specific design/op-
eration attributes that include energy efficiency and computa-
tion–communication tradeoff. As mentioned, energy efficiency
is amajor concern since each sensor has finite and nonrenewable
energy resource. Communication–computation tradeoff refers
to the fact that communication consumes more energy than per-
forming computations on board a sensor [15]. This is critical
as it relates to the energy efficiency. Although the direct com-
munication of a sensor with a sink is preferable for the overall
network, this is impractical or, otherwise, leads to excessive en-
ergy use, thus shortening the network lifetime [16]. Therefore,
routing schemes where the data size is decreased via in-network
data aggregation (i.e., using energy for computation rather than
communication) along the paths from sensors to a sink (user)
are usually preferred.
Having defined the problems, operational attributes, and met-

rics discussed above, our purpose in this paper is to address the
optimum design and operation of a WSN for a period within
a deployment cycle. To this end, we consider an optimization
approach to effectively integrate topology control and routing
decisions in a cluster-based hierarchical network structure in

which in-network data aggregation is facilitated for better en-
ergy efficiency.
This paper builds on the work described in [17]. In that study,

the authors develop and examine three mathematical models
whose objectives dictate alternative policies to be employed in
each period of a deployment cycle for the purpose of maxi-
mizing the network lifetime. The first two models, the mini-
mization of total energy usage in the network and the minimiza-
tion of themaximum energy usage at a sensor, may face the issue
of quick energy drainage, which occurs at certain sensors in the
former and in the whole network in the latter. The third pro-
posed model, the minimization of the weighted sum of the total
energy usage and the range of remaining energy distribution in
the network, improves energy efficiency and provides network
lifetime that is significantly longer than the ones by the first two
models as shown in experimental studies. However, in [17], the
authors do not provide an exact solution method that can be uti-
lized to improve and/or benchmark the solution quality of their
heuristic algorithm.
In this paper, we study the third model in [17] further. Specif-

ically, we consider two important extensions of this model.
• First, in the modeling context, we incorporate a total fixed
cost term associated with CH selection into the objective
function. By setting a higher fixed cost of usage (as a CH)
for a sensor with low energy, the model attempts to avoid
some well-positioned sensors from being selected as CHs
repeatedly in successive periods and to protect these sen-
sors from quick energy depletion. This approach also facil-
itates a uniform energy consumption profile at the sensors
across the network. This is important because in a hierar-
chical setting, where data flow from sensors to the sinks
occurs via CHs, a CH not only functions to capture infor-
mation in its vicinity, but also as an aggregator/relay node
to process and transfer the data generated by other sensors
to the sinks. Thus, CHs consume more energy than regular
sensors, while the whole network operation enjoys taking
advantage of the computation–communication tradeoff.

• Second, observing that the model is amenable to exact so-
lution via Benders decomposition (BD), in the method-
ological context, we focus our efforts on devising an ef-
ficient BD Algorithm as a solution method. In particular,
we develop a solution approach that incorporates an ef-
fective heuristic algorithm and strengthened Benders cuts
in an -optimal BD framework. Computational evidence
demonstrates the efficient performance of the approach
in terms of solution quality and time. In particular, our
heuristic algorithm provides a good initial upper bound and
facilitates the generation of initial Benders cuts, while the
strengthened Benders cuts and -optimal framework accel-
erate the convergence of the BD algorithm.

The remainder of the paper is organized as follows. In
Section II, we provide a review of the most related research
in WSN design. In Section III, we present the details of the
system model along with our assumptions, and in Section IV,
we introduce a detailed problem definition and present the
optimization model. The solution methodology is developed in
Section V, and numerical results from a computational study
are presented in Section VI. Finally, conclusions and future
research directions are summarized in Section VII.
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II. RELATED LITERATURE

Clustering of sensors has been shown effective in prolonging
sensor network lifetime in the literature. The basic idea is to
organize WSNs into a set of clusters, and within each cluster,
sensors transmit the collected data to their CHs. Each CH ag-
gregates its received data and forwards it to the sink either di-
rectly or via relaying through other CHs. This is beneficial in
terms of energy efficiency in three ways: 1) Hierarchical struc-
ture facilitates a multihop sensor-to-sink data transfer scheme
which eliminates the quick energy drainage at the sensors that
are away from the sink; 2) data aggregation is performed at the
CHs to reduce data redundancy so that energy savings in com-
munication are realized; and 3) periodic reclustering can bal-
ance the energy consumption by reassigning the CHs and the
sinks and adjusting the routing in the network. Noting that the
reviews on routing in WSNs include [31]–[33] and general re-
views are given in [34], [35], and more recently in [36], in what
follows, we specifically discuss the works that are more closely
related to this research in the context of network topology and
data routing.
Heinzelman et al. [18] develop a data aggregating

cluster-based routing protocol Low Energy Adaptive Clustering
Hierarchy (LEACH). In LEACH, they assume a single-hop
CH-to-sink connection and adopt the randomized rotation
of CHs to ensure a balanced energy consumption. However,
such assumptions may not guarantee network connectivity.
Younis and Fahmy [19] propose a hybrid energy-efficient
distributed clustering routing (HEED) protocol where the CHs
are probabilistically selected based on their remaining energy
and the sensors join clusters such that the communication cost
is minimized. HEED assumes a multihop connection between
the CHs and to the sink. Liu et al. [20] suggest a distributed
energy-efficient protocol EAP for the general setting in [19].
In EAP, each CH is probabilistically selected based on its ratio
of the remaining energy to the average remaining energy of all
the neighbor sensors within its cluster range. This is in contrast
to HEED that only chooses CHs based on a sensors’ own
remaining energy. To further extend network lifetime, EAP in-
troduces the idea of “intracluster coverage” that allows a partial
set of sensors to be active within clusters while maintaining an
expected coverage. Ademola et al. [37] also aim to promote a
uniform energy usage across the network by minimizing the
communication distance among sensors and selecting the CHs
based on remaining energy at the sensors.
Since sensors generally send data to the sink in a “many-to-

one” (convergecast) fashion, Haenggi [38] points out that some
critical sensors closer to the sink appear on most forwarding
paths in the network. Specifically, in a multihop cluster-based
WSN, the CHs closer to the sink may have quick drainage due
to their heavy load in forwarding data to the sink. We note that
most of the above-mentioned studies do not explicitly take this
factor into account. To ensure a balanced energy consumption,
there are some studies, e.g., [21] and [39], that consider an un-
equal cluster-based routing scheme, i.e., CHs closer to the sink
have smaller cluster sizes than those farther from the sink.
In contrast to the above studies that adopt a localized and/or

protocol-based methods, Al-Karaki et al. [22] present a math-
ematical formulation by jointly considering the cluster-based
routing problem with application-specific data aggregation.

Al-Turjman et al. [23] propose a mixed integer linear pro-
gram (MILP) with the objective of minimizing the total
network energy consumption while including constraints
on fault tolerance simultaneously. In that study, sensors are
assumed to forward their data to the sink through specific relay
nodes that are equipped with higher energy sources. In [24], a
routing problem is considered for networks with flat topologies.
For this, a linear programming approach is suggested to max-
imize the data flow per period. In another study, with similar
assumptions but without considering data aggregation, a mul-
ticommodity flow approach is provided to maximize lifetime
with the use of multiple sinks in a WSN [29]. Wang et al. [26]
also consider a similar setting with mobile CHs thst are special
high-energy sensors and examine the network lifetime under
fixed sink location assumption. Efforts toward that end also
include consideration of placing specific relay nodes with more
energy [25]. Kim et al. [28] illustrate the benefit of employing
multiple sinks and suggest a mixed integer linear program
to determine sink locations. Luo and Hubaux [30] address
a routing problem with sink mobility to improve network
lifetime. Efficient approximation algorithms for generation of
multihop routing trees (single sink) and forests (multiple sinks)
are provided in [27]. However, in these studies, flat-routing
structures without any CHs or aggregation are considered.
Table I summarizes a comparison of the key related works

with both cluster-based and flat topology considerations. In our
specific context of cluster-based approaches, we have the fol-
lowing observations: 1) Most of the studies in the clustered
sensor network adopt a localized method to select and vary
CHs over the periods. Such methods may be biased from the
long-term network lifetime perspective. 2) In the majority of the
literature, topology control and routing problems are handled
separately, thus overlooking the interrelationships among them.
3) The majority of studies on cluster-basedWSNs does not con-
sider the use of multiple sinks with mobility. Therefore, we are
motivated to investigate a generalized and integrated topology
control and routing problem using optimization techniques. In
doing so, we particularly consider a multiobjective optimiza-
tion model that combines energy usage and remaining energy
characteristics and that simultaneously considers cluster-based
topology control and routing decisions in a multiple-sink WSN
having a hierarchical network structure to facilitate data aggre-
gation. For our mathematical model, we develop a solution al-
gorithm based on joint use of Benders decomposition and an
effective heuristic and analyze both algorithmic and network
characteristics in an extensive computational study.

III. SYSTEM MODEL

A. Network Model

In our problem of interest, sensors are deployed in a two-di-
mensional field, and the candidate sinks, which have no energy
limitations, are located around the periphery of the sensor field.
As in [17], each sensor is assumed to communicate its position,
obtained via triangulation [40], [41], to the user in the beginning
of a deployment cycle.
As sensors collect data, they form packages to forward to their

CH based on a schedule. In our model, we assume a fixed sensor
data generation rate that is also the rate of data forwarding from
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TABLE I
RELATED FUNDAMENTAL WORK IN CLUSTER-BASED SENSOR NETWORKS

a sensor to its CH. We consider a multilayer hierarchical set-
ting where data flows from sensors to the sinks either directly
or through other CHs as depicted in Fig. 1. We assume that sen-
sors are equipped with a dynamic transmit power level control
that they utilize to achieve topology control based on the solu-
tions obtained. Required number of CHs and sinks are specified
a priori, and while we consider varying values in our computa-
tional study, we assume that at least one sensor acts as a CH and
at least one of the sink locations is active.
Specific CH and sink locations are chosen from their asso-

ciated candidate sets based on the solution of the mathematical
formulation that also specifies routing of collected data from
sensors to sinks via CHs. CHs are assumed to perform pro-
cessing on their received data for eliminating redundancy and
data aggregation. However, a CH does not further process the
data it receives from another CH for which it serves only as a
relay. Similar to [17] and [42], we employ an average aggrega-
tion ratio so that an overall view of the sensor field can be main-
tained after aggregation. This setting gives a dynamic topology
where, at the end of each period, the energy information at the
sensors is updated and the new CH and sink locations are to be
determined for the next period.

B. Communication Model

We assume that a sensor can communicate with any sensor or
sink within its vicinity that is assumed to be a disk centered at
that sensor. We define the radius of such a disk as the transmis-
sion range. Although this model is widely used in the routing
and topology control literature, we note that it does not rep-
resent actual hardware capabilities in real applications. More
importantly, the model makes the assumption that a sensor can
reliably communicate with any sensor within its transmission
range. In this regard, a few comments are in order.

Since we consider data-gathering WSNs, we make the as-
sumption that data generation and flow occur at a low rate,
thus congestion is assumed not to be a source of unreliability.
However, link reliability can also be due to the characteristics
of the operating environment (e.g., obstacles, interference) or
the hardware (e.g., antenna length). To incorporate these as-
pects, one approach is to estimate link reliability via a log-
normal shadowing model [23], [43]. On the other hand, from an
application perspective, a viable approach to incorporate link
reliability is to conduct a neighborhood discovery in the net-
work [44]–[46]. In this process, link quality indicators (LQIs)
or received signal strength indicator (RSSI) can be utilized as
measures of link reliability.
Then, to handle link reliability issues within our approach,

which relies on mathematical modeling, we argue that a prepro-
cessing can be incorporated to modify the input to optimization.
More specifically, in the optimization model (Fig. 2), the vari-
ables represent the data flow between sensors. If it is determined
in the preprocessing that a pair of sensors cannot communicate
at the least level of desired reliability, the corresponding flow
variable can be set to zero, or it can just be excluded from the
model (this also reduces the problem size and, thus, improves
algorithmic performance as a by-product benefit). An example
of handling such a situation is given in [17].
We further note that an implication of link reliability on

network performance is loss of data and/or delayed transmis-
sion of data, which cause additional energy consumption due
to changes in data transfer schedules and resends. While the
link reliability issues in the context of a data-gathering WSN
can also be addressed via deployment of dense networks with
some level of redundancy built in, this comes at the expense of
increased problem sizes as well as more involved operational
planning due to concerns such as interference, data aggregation,
scheduling, etc.
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Fig. 2. Notation and overall formulation .

C. Energy Consumption Model

We employ a simple energy dissipation model that reflects
the operational network characteristic of interest [18], [47]. To

estimate the energy dissipation for transmitting (bits) of data
from node to node , we use the path-loss model
where J/bit/m is a constant, is the distance (in me-
ters) between and , and . To calculate the power
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requirement at a receiver node , we use the model where
(J/bit) is a constant. Therefore, transmitting (bits) of data

from node to node dissipates , and receiving
the same amount of data dissipates . We assume that the
radio dissipates nJ/bit to run the transmitter or receive
circuitry and pJ/bit/m for the transmit amplifier as
in [18] and several others. In addition, we employ a dissipation
rate of pJ/bit for data aggregation/processing efforts at
a CH. While we note that a higher value is more appropriate
to account for interference in uneven terrain, for computational
purposes, we assume an value of 2 (in our formulation in
Fig. 2), which represents the ideal case in terms of the efficiency
of communications. With higher values, energy consumption
levels are expected to increase due to increased path loss and,
in turn, a reduced network lifetime is expected. We further note
that our modeling and methodology framework presented in the
paper is directly applicable without any modification even for
different values or with any other energy consumption model
(e.g., [48]) since energy consumption model is an input as a
function into our optimization approach [as in constraints (2)
and (3) stated in Fig. 2]. We further note that it is possible to
employ varying values for different pairs of sensors based on
the reliability estimate of their communication that can be de-
termined as described in Section III-B.

D. Network Lifetime Model

In the literature, network lifetime is commonly defined as the
number of periods in a deployment cycle. However, the def-
inition of the end of a deployment cycle is typically applica-
tion-specific. For example, recently, there are studies in which
the end of a deployment cycle is said to be reached when a per-
centage of alive-and-connected relay nodes fall below a spe-
cific threshold level [10], [11], [49]. Since relay nodes are as-
sumed to be special sensors and more expensive than the regular
sensors, these studies assume an objective of maximizing con-
nectivity under constraints on network lifetime and a minimum
number of relay nodes. In our study, we consider cluster-based
sensor networks where CHs are chosen from regular sensors as
in [17]–[19]. The end of a deployment cycle is reached when
some sensors fail to generate readings due to energy depletion
and/or it is not possible to transmit the data generated in the net-
work to the sinks. Thus, the purpose of prolonging network life-
time (via efficient use of network resources) corresponds to ob-
taining a maximum number of successive periods. In this case,
simply minimizing the energy dissipation does not necessarily
prolong the network lifetime as it may leave the sensors in the
network with a wide disparity in energy levels [17], [19]. This
eventually leads to heavy use of some sensors as CHs and their
energy expiration results in the end of network lifetime. The
goal of prolonging network lifetime needs to be achieved via
reducing the energy consumption while ensuring a uniform en-
ergy depletion across the network.

IV. PROBLEM DEFINITION AND FORMULATION

Given a set of sensors deployed and available at the beginning
of a period, our problem is defined as the determination of the
CHs and sinks to be employed and the data flow from sensors
to sinks through CHs in that period. In doing so, the average
energy usage and the variation in remaining energy distribution
in the network is minimized while encouraging the adoption of

high-energy sensors as CHs.We assume that any sensor can take
the role of a CHwhile noting that if there are special high-energy
sensors deployed for this role, our model can be used as is since
its objective is already designed to promote high-energy sensors
for selection as CHs.We also assume that a discrete set of points
around the sensor field is designated as candidate sink locations.
We provide the detailed notation and the overall formulation (P)
for our problem in Fig. 2.
In this formulation, the objective function represents the

weighted sum of three terms with weights , one (taken as base
weight), and for those terms, respectively. The first term is
the average energy consumption that is minimized for better
efficiency in energy usage. The second term gives the range
of remaining energy levels, which is minimized to spread the
energy usage (drainage) more uniformly across the sensors to
promote prolonged operational network lifetime. The last term
represents the fixed cost associated with locating the CHs. The
last term effectively instills in the model the ability to protect
low-energy sensors from being selected as CHs even if they are
well-placed for this role in the network.
Constraint (2) provides the energy consumed by a CH node

, by adding the transmitter and receiver energy consump-
tion implied by its interactions with other CHs, sinks, and sen-
sors. Constraint (3), on the other hand, assigns the values of the
total energy consumed by a sensor transmitter. Specifically,
note that the variable is nonzero if sensor is planned to in-
teract with any other sensor that is acting as a CH. If is not a
CH, then becomes zero and, by (6), is assigned a value of
zero. Also note that would not arbitrarily be assigned a value
of one in the solution as this would unnecessarily increase the
objective value which is minimized. Constraint (4) states the
data flow balance at each CH, and constraint (5) guarantees that
each sensor is assigned to one CH. Constraints (6)–(9) assign the
values of binary variables related to CH and sink location selec-
tions. Constraints (10) and (11) establish the required number
of CHs and sinks, respectively. Constraint sets (12) and (13)
ensure that the total energy consumed at a sensor cannot exceed
the total available energy at the corresponding sensors. Con-
straint sets (14) and (15) give the maximum remaining energy
at a sensor, and constraint sets (16) and (17) give the minimum
remaining energy at a sensor. Finally, (18) and (19) include the
integrality and nonnegativity of the decision variables.

V. SOLUTION APPROACH BASED ON BENDERS DECOMPOSITION

Benders decomposition [50] is a solution approach for mixed
integer linear programming problems such as the one in Fig. 2,
and it has been successfully employed for solving a wide
array of large-scale optimization problems. This technique is
based on the idea of exploiting the special structure of the
problem at hand; it separates the original formulation into two
smaller easier-to-solve problems called a master problem and
a subproblem.
The master problem accounts for all the integer variables and

the associated portion of the objective function and the con-
straints of the original problem. It also embodies the informa-
tion regarding the subproblem portion of the problem via use of
an additional (continuous) auxiliary variable and a set of con-
straints called Benders cuts. On the other hand, the subproblem
includes all continuous variables and the associated constraints
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Fig. 3. Benders dual subproblem.

in the original problem. Solving the dual of the subproblem pro-
vides information about the subproblem portion of the original
objective function, and this information is communicated to the
master problem via Benders cuts.

A. Base Benders Decomposition Approach

In each iteration of Benders algorithm, the master problem is
resolved to optimality with the addition of a Benders cut. This
gives a lower bound for the original problem (P), and values for
the integer variables are then substituted into the subproblem.
The dual subproblem is then solved to produce an upper bound
for (P) and a set of dual variables values that are used to generate
a new Benders cut for the master problem in the next iteration.
This process is repeated until a termination condition, usually
a small optimality gap between the lower bound and the upper
bound, is met. In Benders approach, it is known that if the iter-
ations are allowed to continue long enough, an optimal solution
is obtained as the Benders cuts recover the complete feasible
polyhedron of the overall problem. Although, theoretically, this
is not efficient as the number of Benders cuts is exponential in
problem size, in practice, a very good optimality gap can be ob-
tained if the algorithm is designed carefully with problem-spe-
cific enhancements as we develop for our problem.
Our formulation employs the binary variables and ( for

brevity) associated with CH and sink selection, continuous vari-
ables , and ( for brevity) for routing decisions and
energy related variables , and ( for brevity).
The structure of our problem presents a natural decomposition
scheme for the Benders approach: For fixed values in (P), we
obtain a routing problem that is an efficiently solvable linear
program. The master problem is obtained by excluding routing
related decisions and constraints in (P), and it is an integer pro-
gram that involves much smaller numbers of variables and con-

straints than the problem (P). Therefore, at each iteration, the
solution of the master problem gives a tentative network config-
uration. i.e., the selection of CH and sink locations as specified
by the variable values and the subproblem provides the op-
timal data routing and energy values under that fixed config-
uration. Also, the master problem and the subproblem provide
information to obtain lower and upper bounds on the objective
value of the original problem, respectively. This is in contrast
to the heuristic methods that only give feasible solutions and
cannot guarantee a solution quality. In each iteration of the al-
gorithm, a new Benders cut is added to the master problem by
using the dual subproblem solution; the lower bound is there-
fore nondecreasing.
Next, we describe each component of the BD framework as

well as its algorithmic enhancements in detail. Later, we pro-
vide the overall algorithm and the specifics of its each iteration
completed to solve (P) in Section V-E and Fig. 6.

B. Benders Subproblem and Its Dual

The subproblem, denoted as , can easily be
obtained from the overall formulation (P) as follows: Third
term in the objective function is excluded; constraints (10) and
(11) are excluded; and the values are fixed at in the rest
of the constraints that are in . Intuitively, for given
binary variables associated with fixed CH and sink locations
whose locations are known as dictated by the master problem,
the subproblem is essentially a linear minimization
problem that determines the data routing scheme from sensors
to sinks via CHs and energy usage/status in the network.
In the Benders framework, rather than solving the sub-

problem (primal), we solve its dual, which is denoted as
stated in Fig. 3 for our specific problem. At

optimality, the objective values of the dual and the primal
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subproblems are equivalent due to the duality theorem. To
develop the dual of given in Fig. 3, we define the
dual variables

, and corresponding to the constraints (2)–(9) and
(12)–(17), respectively.
After solving the dual subproblem , following

Benders cuts (BCuts) are generated using ’s objec-
tive function (20), the values of dual variables, and an auxiliary
continuous variable that actually refers to the optimum value
of a subproblem’s objective function

(30)

C. Benders Master Problem

The master problem can be stated as in Fig. 4,
which is obtained from the overall formulation (P) by adopting
its third term in the objective function and the requirements
on the number of CHs and sinks given by constraints (10) and
(11). The real-valued variable is contained in the set of Benders
cuts (34) as given in (30). The master problem is es-
sentially a minimization problem that gives a tentative network
configuration, selection of CH and sink locations, and a lower
bound of the original model.
At each iteration, we obtain a new dual solution of

, substitute it into constraint (30), add it to the
, and then resolve the master problem to obtain a new

set of values of the binary variables and .

D. Approaches for Accelerating the BD Algorithm

We observe that the direct implementation of classical BD
approach in our model often converges slowly. This is due to
the following reasons.
1) In the absence of a set of dual variables, BD approach
starts the iterative procedure by solving the master problem
without any Benders cuts (34). However, the initial selec-
tion of cuts can have a profound effect upon the perfor-
mance of Benders algorithm [51].

2) Due to the degeneracy of the subproblem ,
there exists multiple dual optimal solutions for .
This means that multiple sets of dual values are possible
to provide the same optimum solution to the dual sub-
problem. Thus, it is important to obtain an optimal solution
to so that a stronger cut of the form (30) is
generated.

3) The master problem must be solved each it-
eration a new Benders cut (30) is added in (34). Thus,
as the number of iterations increases, the complexity and
the size of increases dramatically, and, conse-
quently, solving becomes very time-consuming.

Fig. 4. Benders master problem.

Fig. 5. Upper bound heuristic (UBH).

In order to circumvent these difficulties, we explore several
techniques to accelerate the convergence of the BD algorithm
as discussed next.
1) Upper Bound Heuristic Algorithm: We devise an effi-

cient heuristic algorithm, called Upper Bound Heuristic (UBH),
that provides a feasible solution to overall problem (P) without
much computational effort. The aim of our heuristic algorithm
is to find a good upper bound and facilitate the generation of
good initial Benders cuts. We use the solution, specifically CH
and sink selections given by , obtained from the heuristic as
an input and solve the dual subproblem for gener-
ating an initial Benders cut so that it can be added to the master
problem in the following iteration. This is in contrast to ini-
tially solving the without any cuts in a typical BD
implementation.
We design the heuristic in a way to avoid well-positioned

sensors being selected as CHs repeatedly in successive periods
and to protect low-energy sensors from being selected as CHs.
For this purpose, we consider only a subset of sensors, ,
with high energy as the set of candidate CHs . In particular, to
determine the set, we use a threshold value calculated
as % of the average initial energy level at the sensors, i.e.,

and
.

In the UBH, given in Fig. 5, we proceed as follows. First, we
note that its core algorithm (lines 3–10) works in an iterative
fashion. At each iteration, we determine the set based on
a threshold value (line 3); solve the model (P) assuming

(line 4). Thus, we obtain the current solution rep-
resented by the CH and sink selections
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Fig. 6. -optimal BD algorithm.

and , respectively, along with the ob-
jective value (line 4). While solving the model , we
employ a stopping criterion given by a TiLim (CPLEX param-
eter) time limit to alleviate the problem of excessive runtimes.
If an improvement (line 5) over the best solution is ob-
tained, then becomes the new (lines 6–8). We decrease
by a parameter value (line 9), update the set , and then

resolve the problem (P). The algorithm terminates when no im-
proving solution is found or it reaches the maximum iteration
Maxiter.
This procedure is very effective in terms of solution quality

and serves the purpose of generating the initial Benders cut
with inexpensive computational times. As illustrated later
in Section VI, combining the upper bound heuristic and BD
framework promotes faster convergence, especially for larger
instances.
2) Strengthening the Benders Cuts: Due to the degeneracy of

the subproblem , there exist multiple dual optimal
solutions for , each defining a different Benders cut;
some cuts are stronger (reduce the solution space more effec-
tively) than the others. Hence, it is important to identify the op-
timal dual solution corresponding to a stronger Benders cut of
the from (30). Magnanti and Wong [51] define the strongness
of a Benders cut for a general optimization problem given by

as follows: The
cut dominates or is stronger than the cut

if
with a strict inequality for at least one point . The

use of the strengthened Benders cuts can facilitate better lower
bounds and increase the algorithm efficiency, as shown for var-
ious problem settings in [51]–[54].
For our problem, we adopt a two-phase approach to

strengthen the Benders cuts [52], [54]. This is based on the
observation that, in the DSP objective (20), if , one

can modify its associated dual variable values (e.g., in the
second term) without changing the optimal objective func-
tion value , provided that the feasibility with respect to
(21)–(28) is maintained. Recall that the DSP’s objective is
directly employed to devise a Benders cut (30).
Specifically, in the first phase, by solving , we only

obtain the values of the dual variables for which the associated
binary variables and have values equal to 1. Hence, the
elimination of the remaining dual variables (whose associated
values are zero) in the first phase cannot affect the objective

function value (20), and we obtain a partial optimal solution. In
the second phase, we fix the values of the dual variables obtained
from the first phase and solve for other dual variables using
a modified version of given in (36). The detailed
description of two-phase approach is given as follows.
In Phase I, we only obtain the values of the dual variables

for which the associated binary variables and have values
equal to 1. We denote the reduced set and the reduced
set . i.e., and

.We also consider a similarly defined set in (25) and
denote as a set of sensors not being selected as CHs, i.e.,

. We solve the dual subproblem after
this reduction with sets , and in (25). By doing so,
we can solve a reduced version of without changing
the objective function value.
In Phase II, we focus on computing the dual variables for

which the associated binary variables and have values
equal to 0. To this end, we solve the following linear program-
ming problem:

subject to (21)–(29) (36)

Note that, in problem (36), the objective function represents
the sum of all the coefficient associated with given in the
Bender cut (30) and the constraints are the same as .
By doing so, we aim to obtain the values of the remaining vari-
ables in (21)–(27) so as to generate a stronger cut. Also, in
order not to affect the objective function value in , the
values of the dual variables associated with in Phase II
need to remain the same as in Phase I. Specifically, the values
of the dual variables found in Phase I are substituted in the
problem (36). Then, we solve the problem (36) to obtain the
values of the dual variables for which the associated binary vari-
able values and are zero.
The complete set of dual variable values obtained after the

application of two phases in this way are then utilized to gen-
erate a Benders cut (30).
3) -Optimal Approach: As mentioned before, in the basic

BD algorithm, we add a new Benders cut into the master
problem at each iteration. Thus, as the number of
iterations increases, the complexity and the size of
increase dramatically, and, consequently, becomes
more difficult to solve. In order to decrease the solution time
of , we utilize the -optimal approach introduced
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in [55]. Specifically, we add one additional constraint to the
given as

(37)

where and denote the best upper bound and the acceptable
optimality gap in solving (P), respectively. Then, while solving
the in an iteration of the -optimal BD algorithm, we
seek for a feasible solution rather than an optimum solution.
By doing so, the runtime for the can be substantially
reduced at each iteration. Using the values of the variables
given by this feasible solution, we then solve and
generate a new Benders cut.
Note that the feasible solution obtained from is no

longer a valid lower bound for the problem. The -optimal Ben-
ders algorithm terminates when cannot produce a fea-
sible solution, thus verifying that the best upper bound is within
from optimality.

E. Overall -Optimal BD Framework

In order to improve the computational efficiency, our al-
gorithm brings together the above components including the
UBH and strengthening of the Benders cuts in an -optimal
BD framework presented in Fig. 6. Note that Iterno, UB, LB,
and denote the number of iterations, the
best upper bound, the best lower bound, and the best feasible
solution, respectively.
In particular, we first apply the UBH to obtain a feasible

solution (an upper bound) and solve the dual subproblem
for generating an initial strengthened Benders cut

so that it can be added to the master problem in the
beginning (lines 1–6).
Then, the while loop, lines 7–17, implements the -optimal

approach. Specifically, using the values of the variables given
in the current feasible MP solution, we solve to ob-
tain a feasible (upper bound) solution (lines 8–12). Notice that

includes the auxiliary variable value, thus we calcu-
late an upper bound by first adjusting the master objective so-
lution so that it represents only the last term of the (P)’s objec-
tive and then add to it the objective of the dual solution repre-
senting the first two terms of the (P)’s objective. The best upper
bound and the best solution are updated if improved
by the current solution (line 13), and a new iteration is started.
Then, we generate a new strengthened Benders cut (line 15),
add it to MP, and solve to obtain a feasible solution
so that a new iteration can be started in line 8. The algorithm
terminates when the cannot find a feasible solution,
which verifies the best upper bound is within from the op-
timal solution. Once the iterations are completed, we solve the
subproblem to obtain the values of continuous
variables (line 18). Upon the completion of the algorithm, we re-
port the best feasible solution along with the best upper bound
(line 19).

VI. COMPUTATIONAL STUDY

In this section, we first conduct a computational study to es-
tablish the performance of Benders decomposition algorithm
in a single-period setting by generating several test instances

TABLE II
PROBLEM SETTINGS USED IN COMPUTATIONAL TESTING

of varying problem sizes. The results also illustrate the ben-
efit of utilizing the upper bound heuristic, strengthened Ben-
ders cuts, and -optimal framework for Benders decomposi-
tion. Second, using a sample network generated in a similar
fashion, we analyze the effects of the modeling and algorithmic
approaches on the network energy profile, configuration, and
routing aspects. The computational experiments are performed
on a machine with two 2.66-GHz Intel XEON processors and
12.0 GB RAM, and the algorithms are implemented in C++
utilizing Standard Template Library (STL) and Concert Tech-
nology when CPLEX 11 was used.

A. Settings for Computational Study

For computational testing, we consider our test instances with
a wide range of input data values for the problem parameters. As
shown in Table II, we generate a total of 48 problem classes in
two settings, Setting I—Small instances and Setting II—Large
instances, by varying the number of sensors , the number
of candidate sinks , the number of required CHs , and
the number of required sinks . For Setting I, we consider
values of 50, 75, and 100. For Setting II, we consider values
of 150, 200, and 250. Similar to the settings in [17], for each
value of , we consider two levels for as 8 and 16; two
levels for as 6% and 12% of ; and two levels for as 1
and 2.
For each of the 48 problem classes, we generate 10 random

instances. Sensor locations are generated randomly based on
uniform distribution in a square of size (meters) sensor field.
Coordinates of potential sink location are also randomly
generated based on uniform distribution along the periphery of
the sensor field. We consider values of 100 for Setting I and
200 for Setting II. Note that all of the input and algorithmic
parameter values are set as mentioned previously unless stated
otherwise.
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Similar to the settings in [17] and [19], we assume that the
initial energy levels at the sensors are uniformly distributed
in the range [0.1, 0.5] J in all of the instances. We note that the
energy levels at the sensors change differently at each period
within a deployment cycle. Thus, although sensor energy levels
are expected to be very similar at the first period of a deploy-
ment cycle, typically in the following periods within the same
cycle, initial energy levels are expected to be varied. It must
also be noted that measuring or estimating at the beginning
of a period is very difficult in practice, thus we assume that it is
simply calculated based on initial energy and energy consump-
tion at the sensor in that period.
Other parameters are set as in [17], specifically, we set the

period length as 4000 time-units; the average aggregation
ratio as 0.3; data generation rate as 10 bits/time-unit; and
the weight as 5. In order to determine a reasonable value of
CH fixed cost coefficient (weight) , we solve a set of small
size instances to optimality using varying values of . After ob-
serving the effects of changing values on the algorithmic per-
formance and the network topology—specifically, by seeking
faster runtimes to reach a relatively robust set of CH and sink
selections—we set as 0.01.
Finally, for algorithmic parameters , and Maxiter, intro-

duced in Section V-D, we note the following. Since the upper
bound heuristic works in an iterative fashion, we set the max-
imum iteration to 30 so as to save the computational time. Also,
we consider only a subset of sensors with higher energy as
the set of candidate CHs. At the beginning, we assume ini-
tial , i.e., only the sensors with the remaining energy
greater or equal to 140% of the average remaining energy of all
the sensors can be selected as CHs. For next iteration, we de-
crease by % for enlarging the search space with the
attempt to find a better solution in a relatively short time. We
conduct an empirical study by varying values ofMaxiter, initial
, and and observe that the above values work fine in terms

of faster runtime and good CH selections.

B. Results on Algorithmic Performance

We evaluate the performance of Benders decomposition al-
gorithm (Fig. 6) on the basis of solution quality and time under
an optimality gap of 2% in single-period settings. In addi-
tion, we evaluate the performance of our upper bound heuristic
(Fig. 5) via utilizing two different benchmarks.
1) For Setting I, we utilize the exact solutions for bench-
marking. We obtain the optimal solution for model (P) by
using the exact branch-and-cut implementation in CPLEX.

2) For Setting II, we obtain the lower bound from the BD
approach as another benchmark solution to evaluate the
effectiveness of the heuristic algorithm.

Main results for Setting I (small instances, S1–S24) are sum-
marized in Fig. 7, which shows the average solution times (over
10 instances, in seconds) for three alternative approaches to
solve the problem (P). For each instance, the lower part of the
corresponding bar gives the solution time when branch-and-cut
(via CPLEX) is used to solve (P) to 2% optimality gap. The mid
part reports the same for the heuristic approach (Fig. 5), and the
top part is for the -optimal Benders algorithm (Fig. 6). We note
that the optimal solution times for solving (P) using CPLEX are
not reported as they are significantly longer than the runtimes
for obtaining solutions with CPLEX with 2% optimality gap.

Fig. 7. Solution times for Setting I: small instances S1 to S24.

For fair comparison purposes between CPLEX and the BD ap-
proach, we report each approach’s runtimes for a termination
criterion of 2% optimality gap.
It is clear that the runtimes with the heuristic approach are

significantly lower than runtimes with the other approaches (for
classes S1–S16, the corresponding band in the bars are very
narrow). In addition, the BD approach provides significantly
lower runtimes when compared to CPLEX runtimes. In terms of
solution quality of the heuristic approach, we calculate the opti-
mality gaps as for each instance,
where and represent the optimal (more specifically,

%-optimal) objective function value and heuristic value for
an instance, respectively. The mean and the range of the average
optimality gaps over 24 small instances are extremely low, given
as 0.19% and 0.46 (with a maximum of 0.51% and a minimum
of 0.04%), respectively. This illustrates that the upper bound
heuristic approach provides near-optimal solutions.
In Fig. 8, we summarize the computational results for

Setting II (large instances, L1–L24). As the problem size
increases, CPLEX runtime increases drastically. Even for 2%
optimality gap, large instances cannot be solved with CPLEX
within reasonable times. Thus, in Fig. 8, we only report results
for the -optimal BD approach and the heuristic algorithm.
While the solution times with the heuristic approach are sig-
nificantly lower, the BD approach provides solutions with
guaranteed 2% optimality in very reasonable times, even for
these large instances, indicating good scalability. In order to
assess the solution quality of the heuristic approach, we calcu-
late the optimality gap as , where
represents the lower bound from the base Benders approach
(executed with a termination criterion of 2% optimality gap)
and represents the heuristic solution value. The mean of the
average values of gaps thus obtained is 2.08% over 24 classes,
with a maximum of 2.27% and a minimum of 1.98%. Noting
that the lower bound solution already corresponds to a known
2% optimality gap, these results demonstrate that the upper
bound heuristic provides consistently good-quality solutions
within short runtimes.
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Fig. 8. Solution times for Setting II: large instances L1 to L24.

Fig. 9. Network remaining energy statistics in progression.

In general, we can conclude that: 1) our upper bound
heuristic approach provides high-quality solutions with much
less runtime than CPLEX; 2) -optimal Benders decomposition
method, which amalgamates various problem and solution
characteristics, is very effective in addressing a rather complex
problem; and 3) combining the heuristics and -optimal BD
approach promotes faster convergence, especially for larger
instances, and provides a lower bound for which the quality of
any solution can be precisely quantified via calculation of an
optimality gap.

C. Results on a Sample WSN

We next study the effects of the modeling and algorithmic ap-
proaches on the energy profile and network configuration using
a sample network generated as described above. In order to ob-
serve energy usage, as suggested in [17], we construct the graph
in Fig. 9, which shows the minimum, average, and maximum
energy levels in the whole network for each period during its
lifetime. Clearly, the variation in sensor energy levels is con-
trolled firmly by the suggested approach; We do not observe a

Fig. 10. Sensor energy levels and CHs in selected periods.

situation where some sensors are exploited significantly as CHs
to cause them substantial energy drainage while others being
lightly used due to not being strategically well positioned to par-
ticipate in data transfer to sinks.
In this particular sample network, the network lifetime cor-

responds to a total of 49 periods. In Fig. 10, we plot the indi-
vidual sensor energy levels for six selected periods (for easy
discernibility in the scatter plot). We observe that mostly the
sensors with high energy levels are selected as CHs. However,
a closer inspection in Fig. 10 reveals that, in a given period,
although there are several sensors with high energy levels, the
optimization approach selects as CHs the ones that are the most
energy-efficient from the network performance perspective.
To gain further insights into our suggested approach, we pro-

vide network configurations for four sample periods in Fig. 11.
Given the sensor energy distribution at each period, we charac-
terize five break points as follows:

the minimum energy value;

the average energy value;

the maximum energy value;

the energy value is equal to ;

the energy value is equal to ;

and define six different energy levels via six colors as follows:

gray the node with minimum energy value ;

pink nodes whose energy value is in ;

green nodes whose energy is in ;

purple nodes whose energy is in ;
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Fig. 11. Sample network configurations.

maroon nodes whose energy is in ;

red the node with maximum energy value .

In addition, we employ different shapes for node types. Specif-
ically, star represents a regular sensor, circle represents a node
selected as a CH, square represents a selected sink, and hexagon
represents a candidate sink. In Fig. 11, we observe that an op-
timum network is not always obtained by selecting higher-en-
ergy sensors as CHs. For example, in periods 10 and 36, sen-
sors with a mix of energy levels are selected as CHs. Even the
highest energy sensor may not be picked as a CH in an optimal
configuration, e.g., as in period 5. Furthermore, the locations of
good CHs are not necessarily close to sinks, whose locations
also change, but can be more central as in periods 5 and 17. In
summary, both the position and the energy level of sensors need
to be taken into account in an integrated fashion in designing the
networks, and this is effectively facilitated by an optimization
approach.

VII. CONCLUDING REMARKS

In this paper, we study an integrated topology control and
routing problem in cluster-based WSNs. We develop an MILP
model to determine themultiple sink and CH locations as well as
the data routing scheme over a time horizon. We propose a new
objective as the minimization of a weighted sum of the average
energy usage, the range of remaining energy distribution, and
the energy-based fixed cost for selecting the CHs. By doing so,
our model avoids some well-positioned sensors being selected
as CHs repeatedly in successive periods to protect low-energy
sensors from quick energy depletion while facilitating a uni-
form energy consumption profile in the network. Furthermore,
the integrated approach effectively combines the location and
energy-level aspects of the sensors while determining the CHs
in conjunction with the locations of the sinks to design the un-
derlying network.
On the methodology side, we develop an effective -optimal

BD approach that incorporates an upper bound heuristic algo-
rithm and strengthened cuts. Specifically, we devise a heuristic

algorithm that provides a good feasible solution so as to fa-
cilitate the generation of an initial Benders cut. We adopt a
two-phase approach to strengthen the Benders cuts and utilize
the -optimal approach to decrease the master problem solution
times.
Computational evidence demonstrates the performance of the

approach in terms of solution quality and time. In particular, the
optimal solutions obtained by CPLEX and the lower bounds ob-
tained by the BD verify the high quality of the heuristic solutions
for small and large instances, respectively. The availability of
good lower bounds is facilitated by the good initial Benders cut
and the strengthened Benders cuts.
This study can be extended in several directions. One exten-

sion of our work is to incorporate the coverage problem into the
integrated topology control and routing problems, i.e., we ex-
ploit the high spatial redundancy of sensors by only allowing a
subset of sensors active for a given period of time, whereas all
other sensors save energy being in inactive state. Since we cur-
rently focus on time-driven sensor networks applications per-
taining to continuously monitoring ecological habitats (animals,
plants, micro-organisms), another interesting extension in the
future is to reformulate the models to suit for the time-critical
applications.
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