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Abstract—This paper investigates the benefits of cooperation
and proposes a relay activation strategy for a large wireless
network with multiple transmitters. In this framework, some
nodes cooperate with a nearby node that acts as a relay, using the
decode-and-forward protocol, and others use direct transmission.
The network is modeled as an independently marked Poisson
point process, and the source nodes may choose their relays from
the set of inactive nodes. Although cooperation can potentially
lead to significant improvements in the performance of a com-
munication pair, relaying causes additional interference in the
network, increasing the average noise that other nodes see. We
investigate how source nodes should balance cooperation versus
interference to obtain reliable transmissions, and for this purpose,
we study and optimize a relay activation strategy with respect to
the outage probability. Surprisingly, in the high reliability regime,
the optimized strategy consists on the activation of all the relays
or none at all, depending on network parameters. We provide
a simple closed-form expression that indicates when the relays
should be active, and we introduce closed-form expressions that
quantify the performance gains of this scheme with respect to a
network that only uses direct transmission.

Index Terms—Cooperative communication, decode and forward
(DF), interference, networkmanagement, outage probability (OP),
Poisson point process (PPP), stochastic geometry.

I. INTRODUCTION

C OOPERATIVE wireless networks in which relay nodes
can be used to increase throughput and reliability have

been studied in the past [1]. Although the capacity of the
single-relay channel [2] remains unsolved and its optimal
coding scheme unknown, there have been significant advances
in quantifying the performance gain obtained through coop-
eration. However, finding capacity regions or analyzing the
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performance of large random wireless networks may be, if
feasible, very hard. As an alternative, spatial models employing
tools from stochastic geometry and graph theory provide a
comprehensive framework for the analysis of large wireless
networks with little interference management [3], [4].
The outage probability (OP) and its complement, the success

probability, are useful metrics in decentralized networks [3]–[5]
in which the users are assumed to be unaware of the instan-
taneous parameters of the network and cannot optimize their
behavior to attain successful transmissions. Among other rea-
sons, the relevance of the OP comes from the fact that, in an
outage event, sent messages cannot be successfully transmitted,
and hence the overall delay of the network is increased due to
retransmissions. In this paper, we investigate the performance,
in terms of OP, of a large decentralized wireless network in
which transmitters may be aided by nearby relays. More pre-
cisely, we consider a network formed by two types of clus-
ters: source–relay–destination clusters, which use the full-du-
plex decode-and-forward (DF) [2] scheme, and clusters with
source–destination pairs that employ simple direct transmis-
sion (DT). These clusters could be interpreted as a single hop in
a multihop transmission scheme or by themselves as single-hop
communications. One of the central motivations behind this
analysis is to provide an understanding of the limitations and
benefits of cooperation in such decentralized scenarios. In fact,
the advantage of cooperation among nodes for an individual
source–destination link was widely studied in the past years,
addressing both theoretical and practical issues [1], [6], [7]. In
this paper, we analyze a scenario in which the communication
impairments are caused by a network of users that are also at-
tempting to achieve successful transmissions through cooper-
ation and cause interference to each other. It is clear that re-
lays can significantly improve the rate and reliability of a single
source–destination pair. However, in a large wireless network,
the nodes will observe an increase in their interference levels
as more relays are activated. This means that while cooperation
may be beneficial locally, globally its benefits may be reduced.
In this paper, the network is modeled as an independently

marked homogeneous Poisson point process (PPP) [8], limited
by the signal-to-interference ratio (SIR), where signal attenu-
ation occurs both through path loss and slow fading [9]. The
random distribution of the sources and their relays implies that,
in addition to the random fading, averaging over all spatial po-
sitions is needed to derive the OP. We focus on the high relia-
bility regime as defined in [5]. In that work, the authors study
the outage behavior of general motion-invariant networks em-
ploying DT by resorting to an asymptotic analysis in which
the density of interfering nodes goes to zero. In particular, they
show that the OP using an arbitrary medium access scheme ap-
proaches as the density of interferers , where
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Fig. 1. The network is formed of clusters employing decode-and-forward or
direct transmission.

Fig. 2. The relay is chosen as the nearest neighbor of the source on a cone of
aperture with its axis aligned with the destination. Also, the power fading
within the cluster at the origin and for the interference from other clusters are
shown.

is the spatial contention parameter and is the interference
scaling exponent. For the case of networks using the ALOHA
access scheme, we have that . The high reliability regime
as defined in [5] refers to the operating regime in which the OP
is small enough (close to zero) to guarantee that the asymptotic
first-order approximation is a good representation of the net-
work performance. This regime covers OP values of the order
of 0.01, which are typical in wireless system designs [9]. An
outage event is declared whenever the distribution of nodes
and/or fading cause the chosen rate to be higher than the achiev-
able rate of the transmission protocol of choice. Hence, the prob-
ability of these events (OP) is an upper bound on the asymptotic
packet error probability of every pair of communicating nodes,
which is a key metric of interest [11].
The transmission scheme of the network is a mixed one since

some clusters will be using the DF scheme while others will em-
ploy DT (see Fig. 1). It is assumed that almost no channel-state
information (CSI) is available at the transmitting nodes, which is
often the case in decentralized wireless networks without feed-
back. Only a rough estimation of the position of nearby potential
relays may be available, and hence it can be used for the relay
selection.We assume that each source chooses its potential relay
among the nodes that are not transmitting as its nearest neighbor
(NN) on a cone with aperture angle , centered toward its des-
tination (see Fig. 2). This scheme will increase the likelihood
of finding a relay which is close to the source and at the same

time reduces the effect of the path loss on the relay–destina-
tion link. Notice that this effect is minimized if the relay, source
and destination are aligned. As a special case of this scenario,
the relay can be chosen as the NN of the source on the whole
plane, requiring the least amount of CSI. The motivation be-
hind choosing the NN as a relay comes from the fact that de-
code-and-forward is nearly optimal from an information theo-
retic point of view [1], [2], [12] when the relay is not far from the
source. In this case, the probability of the relay not being able to
decode the sourcemessage isminimized. A simple random relay
activation scheme is introduced in which each candidate relay
node decides whether to be active or not in a random manner,
independently of each other, and of all network parameters. This
simple activation scheme will act as a means of controlling the
relay density in the network while still retaining a balance be-
tween interference generation and cooperation.

A. Related Work

Over the past years, the performance gains of cooperative
communications in relay networks were widely studied from
an information-theoretic perspective. Since the seminal work of
Cover and El Gamal [2], several contributions have been pub-
lished on the subject. More recently, the emphasis has been put
on studying the performance of wireless relay channels where
outage performance and ergodic rates of fading channels with
Gaussian noise have been derived (see [1], [6], [7], [13], and the
references therein). Among these valuable studies, the only im-
pairments to the communication were due to additive Gaussian
noise and fading, and very little attention was paid to the effect
of the interference generated (or suffered) by other users. How-
ever, interference is probably the major impairment in wireless
networks, especially in networks with little control and high
mobility.
The study of the capacity of general wireless networks taking

into account the interference generated by the different users
was pioneered by the seminal work of Gupta and Kumar [14],
where the concept of transport capacity and fundamental scaling
laws on the network throughput were obtained considering only
point-to-point coding. In [15], multiuser achievability regions
were obtained, and it was shown that for some special wire-
less networks, significantly better scaling laws on the network
throughput, with respect to the case in [14], are possible. Fur-
ther progress was done in [16], where new scaling laws were de-
rived using coherent multistage relaying with interference sub-
traction, and in [17], where extensions to fading channels were
obtained.
Stochastic geometry and point processes [18], [19] are not

only elegant mathematical frameworks, but also useful tools to
deal with more realistic network models, where the spatial posi-
tion of nodes and the effect of interference can be incorporated
in a probabilistic manner [3]. Although several types of point
processes can be used to model different kind of networks, it
is the homogeneous PPP that has received the most attention.
Although other types of point processes could provide more re-
alistic models [20], the extended use of the homogeneous PPP
comes from the possibility to obtain simple closed-form results
in several cases of interest. The quantity called transmission ca-
pacity (TC) was introduced in [21] in order to include outage
probability constraints in the scaling behavior. Several results
have been obtained, through the use of the TC, for several prac-
tical situations, as multiple-input–multiple-output capable users
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in wireless networks [22], decentralized power control [23], etc.
(for a review of several other important results, please see [4]
and the references therein).

B. Main Contributions

The main contribution of this paper is studying and opti-
mizing the network management strategy for activating the re-
lays in the proposed transmission scheme. The main conclusion
is that in the high reliability regime, this optimized scheme con-
sists on turning all the relays on or off simultaneously—that
is, the optimal relay activation probability is either 0 or 1. To
do this, we develop closed-form approximations for the OP of
the network and study the interference–cooperation balance by
finding the relay activation probability that minimizes the av-
erage OP.Moreover, the network parameter regions in which all
the relays should be on are identified, and a simple relay activa-
tion scheme that is close to the optimal behavior is introduced.
Finally, we provide simple expressions that quantify the perfor-
mance gains in terms of OP for the scheme with the optimal
relay activation scheme with respect to a network in which all
users employ DT.
The paper is organized as follows. In Section II, a general

and a mathematical description of the network model are pre-
sented. We also discuss the DF scheme and its achievable rate
in the assumed network model. In Section III, we introduce an
expression for the OP for this network, deriving closed-form
approximations to it. In Section IV, we study the performance
of the network, finding the optimal relay activation probability,
identifying the network parameters for which all the relays
should be on or off, introducing the relay activation policy
and comparing the performance of this scheme against DT.
In Section V, we present some numerical simulations, and
in Section VI, we provide some concluding remarks. Finally,
long mathematical proofs are grouped together by section and
deferred to the appendixes.

C. Notation

, , , and denote the real and complex numbers,
the real plane, and the canonical euclidean norm, respectively.

and denote complex conjugation and the real part
of complex number. denotes expectation with respect
to the random variable . We shall use the big notation:

as if there exists and such
that is some neighborhood of . Finally,

denotes the indicator function, which is 1 if ,
and 0 otherwise.

II. GENERAL CONSIDERATIONS AND NETWORK MODEL

A. Model

We consider a spatial network model in in which source
nodes generate messages and attempt to transmit them to in-
tended destinations, either through a direct link, in which case
the destinations receive symbols from their sources only, or by
using others nodes as relays. Every relay aids a single source
node, acting as a secondary full-duplex transmitter sharing the
same time-slots and frequency band. This setup allows the nodes
to be grouped into clusters formed by a source–destination pair
or by a source–relay–destination triplet, if the source has an as-
sociated relay, as shown in Fig. 1.

We start from a set of nodes that we assume forms a
homogeneous PPP of density . Some nodes from this set
choose to access the network and become sources using slotted
ALOHA [3] with transmit probability . This splits the
set into two new independent homogeneous PPPs:
• of sources of density ;
• of potential relay nodes of density ;

such that . Notice that the proportion of sources
and potential relays can be adjusted by the medium access
probability.
Inactive nodes should then be assigned in a one-to-one

fashion to each source such that cooperation is beneficial. To
simplify the relay assignment strategy, we shall assume that
the spatial density of the sources is much smaller than that
of potential relays, i.e., . Under this hypothesis, we
will neglect the probability of two sources choosing the same
inactive node as a relay since each source will have a rich
selection of relay candidates in its vicinity ([23, Ex. 3]). Thus,
we can simplify our model by including the position of the
potential relay and its activation scheme as an independent
mark to each source, obtaining the spatial distribution of the
relay from the original homogeneous PPP of intensity
to which the relays are assumed to belong.
We consider the usual and realistic assumption that only little

or no CSI is available, while nodes may have some estimation of
the spatial position of neighboring nodes. For this reason, nodes
cannot adjust their rates to achieve a reliable communication
according to instantaneous conditions, but may use this spatial
knowledge to select a relay.
Based on these considerations, the network is modeled as an

independently marked PPP

(1)

such that we have the following.
• The positions of the sources form the homogeneous PPP

of intensity .
• The triplet models the relay position and its
state. The random variable (RV) , uniform in ,
models the direction of each destination relative to its
source, with meaning that the destination is in the
direction of the canonical vector with respect to
its source. indicates the position of the potential relay
relative to its source—that is, the potential relay for source
is located at . According to what we mentioned

earlier, the relay will be chosen as the NN of the source
on a cone of aperture with the destination on its axis.
This means that the distribution of the potential relay
for a source at the origin conditioned on the direction of
the destination will be (in polar coordinates) [24]

(2)

Using means choosing the relay as the NN on
the whole plane instead of a cone, independently of the
direction of the destination and using the least CSI. Notice
that in this case the distribution of the NN (2) becomes a
bidimensional Gaussian RV of variance

(3)
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Notice that we can parameterize the NN distribution (2) in
terms of and for any cone aperture as

(4)

This implies that the effect of considering the nearest
neighbor on a cone is simply restricting the NN on the
plane distribution (Gaussian) to the cone and increasing
the variance (by means of the in the exponent). Thus,
we can study the relay activation strategy in terms of the
variance of the nearest neighbor on the whole plane
and cone aperture that the source uses. Additionally,
notice that reducing the cone aperture allows the relay to
be located toward the destination, but at the same time,
the increased variance implies that the relay will be, on
average, farther from the source than if we take .
The RV indicates if the corresponding source uses a
relay or not. In our case, we take it to be a Bernoulli RV
with success probability , independent of everything
else. Notice that the parameter allows the adjustment of
the relay density and hence allows to control the additional
interference introduced in the network, weighing the local
and global effects of cooperation. In addition to a MAC
access scheme, this parameter can also be used to model
the unavailability of a relay for reasons that are out of
the control of the relay itself (such as a malfunction or
a depleted battery). In such a case, the independent oc-
currence of these events among the relays is a reasonable
assumption.

• All nodes transmit with unit power, while the power re-
ceived at by a transmitter located at is , where

is the usual path loss function
and is the power gain of Rayleigh fading with unit
mean. This is equivalent to saying that are complex,
circular [25], zero-mean Gaussian RVs.

• An additional source with the same marks as the others,
independent of the point process and with its desti-
nation at , is added at the origin. The po-
sition of the relay for this source node will be (with
the same distribution as the RVs). The coefficients

, and model the source–relay, relay–des-
tination, and source–destination fading coefficients of this
cluster, respectively.
Slyvniak’s Theorem [17], [18] guarantees that the study
of this cluster’s behavior will be representative of the be-
havior of any other similar cluster in the network, and
hence it can be considered as a “typical cluster.”

• and model the fading gains from each source and
its relay to the relay of the source at the origin, while ,

model the gains from each source and its relay to the
destination of the source at the origin.

Please see Fig. 2 for a graphical representation of the key
parameters in the model.
Remark 2.1: Notice that other schemes for activating and se-

lecting the relays based on position can be studied by appropri-
ately selecting the triplet . For example, we could
study the performance of choosing the nearest or the farthest
neighbor on a cone of finite radius as a relay. The probability
of activating a relay will be that of finding at least one potential

relay in the cone and the conditional distributions of the selected
relay, given that the cone is not empty, can be found in [26].
It is assumed that during the transmission time all the posi-

tions of the nodes, fading coefficients and other network param-
eters encompassed in the marked PPP remain constant—that
is, there is no node mobility and a slow fading scenario is con-
sidered. Within a cluster, each source and its relay (if it is ac-
tive) use Gaussian signaling, and their codebooks have correla-
tion coefficient . In addition, the codebooks between different
clusters are independent. Destination and relay nodes in each
cluster attempt to decode their messages while treating the in-
terference from other clusters as noise. With these hypotheses,
the following lemma can be proved.
Lemma 2.1: If , then for almost all realizations of

the point process , the aggregate interferences at the relay
and destination of the typical cluster are zero-mean complex
circular Gaussian variables whose variances conditioned on
are given by

(5)

(6)

Proof: See Appendix B.

B. Achievable Rates

The main coding strategies for relay networks were intro-
duced in the seminal work by Cover and El Gamal [2]. There
have been three dominant relaying paradigms: DF, compress-
and-forward (CF), and amplify-and-forward (AF). In AF, the
relay simply repeats an amplified version of what it received
without decoding the message. In CF, the relay chooses an ap-
propriate sequence from a set that acts as a compressed version
of what it received. In DF, the relay decodes the messages sent
by the source, reencodes it, and forwards it to the destination,
which decodes the message by using both the transmission from
the source and from the relay. In general, DF will work best
when the source–relay channel is good enough to avoid a bot-
tleneck in the information flow with respect to a source–desti-
nation transmission. In a scenario in which the spatial distribu-
tion of nodes is considered, the quality of the source–destination
and source–relay channels will be heavily influenced, through
the path loss, by the distances between the nodes. This means
that in order to avoid this bottleneck, the relay should be chosen
so that on average the source–relay distance is smaller than
the source–destination distance. Other variations of DF such as
partial-decode-and-forward [2] relax the imposition of full-de-
coding at the relay. However, they require a careful optimization
of the code at the encoder, which cannot be done in our setting
due to the lack of CSI at the source.
There are several encoding and decoding techniques that im-

plement the DF scheme, all of which are based on block-Markov
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encoding. For our analysis of the error events, we consider either
regular encoding and sliding-window decoding [28] at the des-
tination orregular encoding and backward decoding [29], [30].1

With any of these two schemes, conditioned on a particular real-
ization of , the relay channel associated to the source located
at the origin can achieve a rate [2]

(7)

where . The maximization with respect to
is considered because the correlation of the codebooks within
a cluster affects the interference seen by other nodes and also
the achievable rates for each cluster. This means that in general
the value of that maximizes the achievable rate could be se-
lected [1], [2]. In this work, we shall consider the case ,
which simplifies the implementation of DF, as pointed out in
[1, Remark 42] and [7], because symbol synchronization be-
tween the source and its corresponding relay is not strictly re-
quired. Although other choices of could improve the outage
behavior of the network, is known to be the optimal value
in the high reliability regime for a network in which only one
source is allowed to use a relay [12]. Therefore, when the relay
is present, we can define the outage event as

where is the attempted rate by the source and .
The event means that the relay is in outage, while
means that the destination is in outage while source and relay
cooperate.
The DF scheme with backward or sliding-window decoding

at the destination are oblivious [13] to the presence of the
relay—that is, the source can use the same coding scheme for
DF or DT without considering if the relay is present or not. This
is very important since the relay can decide to activate itself
(achieving the DF rate) or not (achieving the DT rate) without
taking into account the source, which in both cases employs
the same coding scheme. Only the destination knows if the
relay is present and can adapt its decoding strategy suitably
according to each case. Also, the rate does not depend on
the correlation between the noises or interferences at the relay
and the destination. This is true because the correlation between
received signals at the relay and the destination becomes irrel-
evant when full decoding at the relay is imposed. As a matter
of fact, this is not the case for the CF and AF schemes where
the correlation between the noises can increase or decrease the
corresponding achievable rate [31].
Finally, we also define the outage event for the case in which

there is no relay, and thus the source simply uses DT [3]

(8)

1Another alternative usingirregular encoding, random binning, and succes-
sive decoding at the destination was introduced in [2], but it is not suited for our
analysis since additional error events have to be considered.

The probability of this event is known to be [3]
, where

(9)

(10)

and is the Gamma function. Using the
asymptotic expansion of the OP, we can write

as . In the high reliability
regime, when the success probability of the network is close to
one, a reasonable approximation is to neglect the higher-order

term and write , meaning that the
approximation will be good and that will be small. In this
expansion, we see that is the contention parameter of
the network, as defined in Section I.

III. OUTAGE PROBABILITY OF THE NETWORK

In this section, we study the OP of the network as introduced
in Section II. By conditioning on the fact that the cluster at the
origin uses a relay or not, and on this relay position, we can see
that the OP of the cluster at the origin (and hence of any other
cluster) can be written as

(11)

This expression can be evaluated in terms of the Laplace trans-
form of the interference random variables and , as the fol-
lowing theorem states.
Theorem 3.1: The outage probability of the network

given by (11) can be written as.

(12)
where

(13)

with is the joint Laplace transform of the
interference at the relay and at the destination. Additionally, set-
ting in (13), we obtain , the Laplace transform
of the interference at the destination.

Proof: See Appendix C.
The Laplace transforms of interference RVs are known in

closed form in some special cases only, and in general they can
only be expressed in terms of integrals in several dimensions
(see [32] and the references therein). A brief review on them
can be found in Appendix A. Now, using (35) the two-dimen-
sional Laplace transform, can be evaluated as

(14)
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where

and comes from (10). The expectation is with respect to the
distribution of the relay and is given by

(15)

For , a similar expression holds interchanging
with . The complexity of these expressions is due mainly to
the interferences (5) and (6), and it precludes closed-form com-
putations. For this reason, we introduce the following far-field
approximation for the path loss of the interfering clusters: The
users within a cluster see the interference from other clusters as
a point source of interference, meaning that

(16)

(17)

The parameter allows to establish the far-field approximation
using any point between each source and its relay. As we shall
see, the results obtained are the same independently of its value.
With this assumption, a single path loss will appear in the inter-
ferences, so (5) and (6) can be simplified as

(18)

(19)

This approximation will be very good in the high reliability
regime because the independent fading coefficients are con-
served and the large-scale effect of path loss is still taken into
account.
With these new interference expressions, we upper-bound the

OP of the network by introducing the union bound on the outage
events of DF

(20)

This will be a good approximation when the relay is not too far
away from the source since, in that case, the event will be
dominant and will have a relatively small probability of
occurrence. Using the simplified interferences, we can evaluate
this upper bound in closed form.
Theorem 3.2: The OP upper bound (20) for this network can

be evaluated as

(21)

as , with

(22)

When , we have a closed-form expression for the
expectation

(23)

where is the Nuttall -function [33]

where and are the modified Bessel functions of the first
kind of orders 0 and 1. In the general case, we have to find
the expectation numerically, or we may use the following upper
bound:

(24)

with and

Proof: See Appendix D.

IV. OPTIMAL RELAY ACTIVATION PROBABILITY

In Section III, we established an upper bound on the OP of the
network choosing the relay as the NN in a cone, as a function of
the relay activation probability and the cone aperture . For
a given network setup , different values of and
will yield different values of the OP: Increasing will in-

troduce additional interference in the network, while decreasing
the cone aperture will increase the average source–relay dis-
tance. If there is a high density of potential relays, the cone
aperture can be used to balance the average source–relay and
source–destination distances to optimize the performance of the
network. For this reason, we should find the optimal values of
and , those which result in the smallest OP for each setup.

In this section, we study the optimal value of in terms of the
OP and determine the gains that can be achieved in terms of OP
by optimizing this parameter.
Optimization of the relay activation probability using stan-

dard methods is very involved due to the nonlinear nature of
the expression of the OP. It would be expected that an optimal
relay activation probability would exist, which would opti-
mally balance the effect of the added interference and the gains
of activating additional relays.
Theorem 4.1 (Concavity of the OP): Neglecting the term

in (21), for each network setup ( , , ,
, ) such that , there is an interval of

(25)

such that the OP upper bound is a concave function of .
Proof: See Appendix E.
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Lemma 4.1: Given a concave function in a bounded and
closed interval , its minimum is attained at or .

Proof: See [34, Theorem 32.1].
Using Lemma 4.1 together with Theorem 4.1, we conclude

that the best OP performance for any cluster in the network can
be attained when all or none of the sources
decide to use their associated relays. In one case, all the clus-
ters will be using DF, and in the other case, all of them will be
using DT. This is a somewhat surprising result in the sense that,
in terms of the OP, the best performance can be obtained either
by full cooperation or by not cooperating at all. There is no “op-
timal” density of used relays in the network or optimal mixed
behavior in the sense that some clusters would enjoy the advan-
tages of cooperation while others use DT in order to balance the
generated interference. This interval clearly depends on the net-
work setup parameters. However, working in the realistic high
reliability regime, we can obtain a simple approximation of this
condition that depends only on basic network parameters.
Corollary 4.1: In the high reliability regime, we approximate

the concavity interval of Theorem 4.1 by finding the smallest
positive solution to the following equation:

(26)

Notice that the expectation also depends on , so the equation
cannot be solved in closed form. By using (24) to upper-bound
the expectation, the following sufficient condition for a concave
OP concave is obtained:

(27)

where

(28)

Proof: See Appendix E.
So far, we have established that there is a regime in which

either or are the values that minimize the OP for
a given network setup ( , , , , ), and in Corollary 4.1, we
have determined conditions to find that interval. Now we wish
to establish conditions under which we should activate all the
relays, that is, when will be the optimal choice.
Theorem 4.2 (Optimality Region of ): Neglecting the

term in (21), for each network setup ( , ,
, , ) such that there is an interval of

(29)

such that the OP upper bound is minimized by activating all the
relays.
For the high reliability regime, an approximation for is ob-

tained by finding the smallest positive solution of the following
equation:

(30)

Notice that the expectation also depends on so the equation is
coupled. By using (24) to upper-bound the expectation, the fol-
lowing sufficient condition for to be optimal is obtained:

(31)

where

(32)

Proof: See Appendix F.
Using the previous theorems, we are able to state a relay ac-

tivation scheme that optimizes the OP in a network operating
in the high reliability regime: For a given value of , if
is less than the solution of (30), then all the relays should be
on. Otherwise, the relays should be turned off and DT should
be employed. A computationally simpler alternative for turning
the relays on would be using condition (31) instead. The value
of could additionally be chosen within this scheme to min-
imize the OP. Notice that is a function of . If
for a network setup ( , , , ) there is a value of such that

is optimal, i.e., holds, then there will be
a range of values of for which this condition will hold. We
should therefore choose the value of for which
holds and the OP is minimized. On the other hand, if there is no
value of such that , we have that is optimal,
and hence DT should be employed.
As we shall observe in Section V, there will be scenarios in

which setting will yield approximately the same per-
formance as optimizing the value of in terms of the OP ac-
cording to the previous observation. This means that in practical
scenarios, this optimization may not always be of importance
and the value of can be obtained by setting in (30).
Finally, we want to compare the OP that can be achieved with

the scheme defined in Theorem 4.2 to the one obtained using
only DT. For each value of , if minimizes the OP, then
the scheme will exhibit gains with respect to DT, while if
is the optimum, the scheme reverts to DT, and no gains will be
seen. The following theorem finds the approximate reduction of
the OP of the scheme with respect to DT.
Theorem 4.3: In the high reliability regime, the relative de-

crease in OP of the activation scheme obtained by using (30) is

otherwise.
(33)

In addition, can be lower-bounded by (31).
Proof: See Appendix E.

As we mentioned before, both and the actual reduction in
OP are a function of . If can be optimized, then for each
network setup ( , , , ), we have to determine (if they exist)
the values of such that (which ensure a gain with
respect to DT) and from those values, the one that minimizes
the OP.
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Fig. 3. Outage probability as a function of for values of
showing optimality of or . , ,

, . Monte Carlo simulations are obtained by averaging
realizations of the PPP using (5) and (6). Approximations come from using (23)
in (21).

Finally, it is interesting to mention that under certain condi-
tions the OP is not a concave function of —that is, the OP
is minimized by choosing a value of that is different from

or . However, in such scenarios, the network
is well outside the high reliability regime and typical operating
conditions.

V. NUMERICAL RESULTS

In this section, we present some simulations to study the be-
havior of the expressions we have introduced previously. In
Fig. 3, the OP with respect to is plotted for two different
values of , one in which is optimal and another one
for which is the optimal point, when the relay is se-
lected as the nearest neighbor on the whole plane .
The theoretical expressions come from the upper bound (21)
using (23), and they are compared to Monte Carlo simulations
obtained by averaging realizations of the PPP using the
true interferences (5) and (6), taking , ,

b/use, and . We see that the approximations
derived with the simplified interferences (18) and (19) are in
excellent agreement with the actual OP derived with the more
complex interferences.
In Fig. 4, we plot the optimal cone aperture as a function

of for different values of the path loss exponent and
for . To do this, we numerically find the value of
that maximizes the OP gain of the mixed protocol with respect
to DT in (33) for each value of . It is interesting to note
that as the path loss exponent decreases, the optimal cone aper-
ture becomes for a large range of values of .
Only when the network of potential relays is very dense (small

), a value of should be chosen. This is because
when the exponent diminishes, both the source–relay and the in-
terference paths become stronger, but the effect of the increased
interference is dominant. Thus, the diminished exponent creates
an effect equivalent to increasing the average source–relay dis-
tance. The value of must therefore become larger in order to
decrease the average source–relay distance and compensate for
this effect.
In Fig. 5, we study the maximum rate attainable for the on/off

relaying strategy relative to the same rate of DT in percentage

Fig. 4. Optimal cone aperture as a function of obtained using (33)
for different values of . . .

Fig. 5. Maximum rate attainable for the on/off relaying strategy relative to the
same rate of DT for a given OP constraint. The mixed scheme rates are obtained
by using (21) and the on/off condition from solving (30). We also plot the on/off
condition (31). The optimal aperture angles come from Fig. 4 .

.

for a desired OP value of 0.03. The maximum rates are obtained
by using (21). For the plots with , the rates are obtained
by using (23), while in the other case, the expectations are com-
puted numerically. For the plots with optimized cone aperture,
we use the values of from Fig. 4, taking and

. The on/off condition (which predicts when the rate
of the mixed scheme reaches that of DT) is obtained by solving
(30). We have also plotted as vertical lines the simpler on/off
condition (31), which is in excellent agreement with the other
one.We observe that optimizing the cone aperture can be helpful
when the path loss exponent or the density of potential relays
are large. In addition, as the path loss exponent decreases, we
can achieve a lower maximum rate with DT for a given outage
constraint; this implies that the benefits of a reduced exponent
within the cluster are outmatched by the simultaneous increase
in interference due also to the reduced exponent. The plot also
shows that although the maximum rate for DT is smaller, the rel-
ative gains of the mixed scheme become larger. This means that
the maximum achievable rate decreases slower for the mixed
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Fig. 6. Relative improvement in OP with respect to DT for the on/off scheme
as a function of as predicted by Theorem 4.3. We have also plotted as
vertical lines the on/off condition (31). .

Fig. 7. Comparison between the OP attainable through independent relay ac-
tivation and through the use of a threshold on the source–relay or source–des-
tination channel. , b/use, , . The
independent relay curve comes from (21), and the rest from Monte Carlo simu-
lations of the PPP. Thresholds are optimized numerically for best performance.

scheme than for DT as the path loss exponent decreases, which
suggests that the increased interference is less damaging for the
mixed scheme than for DT.
In Fig. 6, we plot the relative gain in OP with respect to DT

as a function of using and the optimal cone
apertures from Fig. 4. The OP gains are obtained from Theorem
4.3. We also plotted as vertical lines the simpler condition (31),
which is in excellent agreement with the other one.
Finally, in Fig. 7, we compare the performance of the

proposed on/off strategy against two other simple relay ac-
tivation schemes: one in which the relay is activated if the
source–relay channel exceeds a threshold, and another one in
which a threshold on the relay–destination channel is used.
Both schemes make use of the available CSI. In the first case,
the relay can determine if the threshold is exceeded, and in the
second one, the destination, who has CSI on the relay–desti-
nation link, can send a bit (at negligible cost) indicating if the
relay should transmit or not. In both cases, the path loss and

the corresponding fading coefficients are considered. The OP
curves for these schemes are determined through Monte Carlo
simulations of the point process, and for each point, the value
of the threshold is numerically optimized to obtain the smallest
OP possible. These curves are compared to the OP from the
upper bound (21) and the on/off strategy. For these simulations,
we use , b/use, , . We ob-
serve that although these schemes employ available CSI that is
not taken into account by the independent activation schemes,
the performance is similar between the three strategies.

VI. SUMMARY AND FINAL REMARKS

In this paper, we analyzed the performance of a large wire-
less network under a mixed cooperative randomized scheme
that employs either DF or DT and obtained the optimal relay
activation strategy for this network. When DF is used, the re-
lays are chosen as the nearest neighbor within a cone, with its
axis toward the destination. This is a natural assumption since
DF is known to be near optimal when the relay is not too far
from the source. At the same time, the effect of the path loss
on the relay–destination link, which is very detrimental to the
performance of the scheme, is reduced. The choice between
DT and DF is done by the corresponding relay associated with
each source via a randomized decision with probability and
without taking into account any additional knowledge the re-
lays might have. This simple procedure, which is mathemati-
cally tractable, can be thought of as a MAC layer at the relays
(in a similar fashion as the popular ALOHA protocol), with the
objective of limiting the interference generation in the network.
On the other hand, it could also model a situation in which the
relays are unavailable due to conditions out of control of the
source or the relay itself, such as, for example, a depleted bat-
tery.With this simple model, a balance between cooperation and
interference generation can be established in the network. Sur-
prisingly, for typical operating conditions, the optimal values of
are 0 or 1, revealing a binary behavior: All nodes in the net-

work should use their relay or none at all. Following this con-
clusion, a relay activation strategy was introduced to achieve
the optimal behavior. Even when cooperation is beneficial to
all, the performance improvements may not be as large as in the
typical fading relay channel with Gaussian noise. The reason
for this comes from the fact that, in addition to fading, we have
averaged over all possible node configurations, including many
cases in which interference is very damaging.
It is interesting to mention that the model introduced and sev-

eral results, such as Theorem 3.2, can be used to study other
relay selection and activation algorithms based on position, such
as choosing the relay as the nearest or farthest neighbor on
a finite cone, and, with minor modifications, extend them to
other cases involving additional CSI. Other protocols assuming
higher degrees of CSI may yield better gains, but this may not
be a realistic assumption in this context. A potential improve-
ment could be obtained using more sophisticated cooperative
transmission schemes that could take into account the impair-
ments generated by the nearby interferers [35] (which introduce
by far the most harmful interference). Basically, this could con-
sist on decoding the messages sent by strong nearby interferers
first, then subtracting them from the received signal, and finally
attempting to decode the desired message. In such a situation,
besides the intrinsic benefits of cooperation, the smart use of
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the aggregate interference introduced in part by the cooperating
nodes could ameliorate its harmful effect on the overall net-
work. Another improvement could be obtained by using more
advanced MAC schemes for the relays and the sources, such
as CSMA, to avoid simultaneous nearby transmissions. In this
context, a metric such as the transmission capacity [4] may be
more appropriate for the analysis. Finally, the study of other co-
operative schemes as AF and CF deserves full consideration.
All these issues, as well as the effect of using several potential
relays instead of only one, constitute important and interesting
future work directions.

APPENDIX A
INTERFERENCE RVS AND THEIR LAPLACE TRANSFORMS

This Appendix is a simple review of the basic properties of
the LT used in this work. For details, see [18] and [19]. Let

be an independently marked homogeneous PPP
with the homogeneous PPP in , and a vector of
marks on a subset of , . Define the interference RVs

(34)

where and are real-valued nonnegative functions. The
joint LT of the interference RVs at is [8], [18]

(35)

Taking or , the single LT are obtained.
Lemma A.1: Suppose the marks of the HPPP are

, with and unit mean independent
exponential RVs, a Bernoulli RV with success probability ,
and an RV on . Let

with the path loss function and
. Then, the LT is

(36)

Proof: Taking in (35), writing the expectation with
respect to the marks, and interchanging the integration order, we
find that

(37)

When the integrals with respect to are computed, the result
does not depend on , so the distribution of does not affect
the final result. For the first integral, we have

(38)

For the last step, we integrate by parts, and is defined in (10).
The second integral is known from the DT case [3]

(39)

APPENDIX B
PROOF OF LEMMA 2.1

The interference signals at the relay and the destination are

(40)

(41)

where are the complex, circular, and zero-mean
Gaussian signals with correlation coefficient of each source
and its relay (if it is active) [1]. The proof of the lemma follows
from the fact that when , and are finite for almost
every realization of . This can be shown using the Laplace
functional of [18], [36], and the following functions:

(42)

and defined in a similar form. Since
signaling between clusters is correlated with correlation coef-
ficient within the cluster and independent between clusters, it
can be shown that the partial sums (through a proper enumera-
tion of the points of the particular realization of ) in and
are Gaussian with variances given by the corresponding partial
sums in and . Thanks to the finiteness of and , and the
tightness property ([36, Theorem 25.10]), we have the desired
result.

APPENDIX C
PROOF OF THEOREM 3.1

Define and write

(43)

where and are the complementary cumu-
lative distribution function (CCDF) of and , respectively,
and we used that and are independent of each other and
of . Since , when , is distributed as the
sum of two independent exponential RVs with different means.
In that case, its CCDF is

(44)
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When , the means of the exponential RVs are
the same, so follows a Gamma distribution with 2 degrees
of freedom. However this does not affect the average with re-
spect to that we need to carry out. Replacing both CCDFs
in (43), we obtain from (11). The
term is obtained in a similar fashion.

APPENDIX D
PROOF OF THEOREM 3.2

Analogously to the proof of Theorem 3.1, we can show that

(45)

(46)

(47)

Using (36) from Lemma A.1, we can evaluate all the LTs.
Taking expectation with respect to the relay position , we
obtain the general expression. To simplify the expectation of

, we use (36) to evaluate the LT, and setting
, we write

(48)

Using that as , we have
, that for

(49)

and taking expectation with respect to , we conclude that

(50)

To find (23), start by writing

(51)

Now take , change to polar coordinates to obtain

(52)

(53)

In the first step, we used the definition of the modified Bessel
function. For the actual value of , we use (91) and
(60), both from [33].
To find (24), we first prove that

(54)

where is the angle between and . We decompose as
with

(55)

Then, we use that ,
, and , and the

triangle inequality on both decompositions. By taking the
expectation on both sides of (54) and solving the integrals, we
finish the proof.

APPENDIX E
PROOFS REGARDING THE CONCAVITY OF THE OP

Proof of Theorem 4.1: We rewrite (21) in terms of
to obtain

(56)

Since is linear in , we can analyze the concavity of the
OP with respect to instead of . We do this by studying
when the second derivative of the OP upper bound (56) with
respect to is negative. After differentiating twice with respect
to and rearranging the terms, we obtain

(57)

with

(58)

We study the derivative in the interval , which maps
to the interval .
Using standard arguments, it is straightforward to show that for

, we have in this interval whenever

(59)

In addition, using that , we bound

(60)

in (57) to obtain

(61)
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where we have used also that . It is clear that
the first term in (57) is positive, and that under (59), the second
term also is, and the third one is negative. Notice also that for
each , , as , the first term goes to zero and

. Now using standard continuity arguments,
it is straightforward to show that for each , , , and

satisfying (59), if is small enough, then the
third negative term will be greater that the other two, and hence
the second derivative will become negative.

Proof of Corollary 4.1: In order to find the value of ,
we should find the smallest root of the second derivative of

. Since this cannot be done in closed form, we can find
an approximate condition for concavity by finding the smallest
root in of the upper bound (61) of the second derivative of

. For the high reliability regime, we can further approx-
imate , which leads to (26). To obtain con-
dition (27), we upper-bound using (24) in (26), to
obtain

(62)

This equation cannot be solved in closed form either due to
the presence of the function , but it can be shown that an ab-
solute upper bound of the smallest root is obtained from setting

in the equation. In that case, the equation is independent
of and can be solved in closed form to obtain the condition

. It can be shown that setting in
and solving (62) yields a lower bound on the smallest root for
each value of . Thus, (62) becomes a second degree polyno-
mial in which can be solved in closed form to obtain (27).

APPENDIX F
PROOF OF THEOREM 4.2

In Theorem 4.1, we showed that for each network setup such
that (59) holds, there is an interval in which the OP
upper bound is concave in . Now we show that under this
condition, there is an interval in which is optimal by
finding conditions such that

. Setting and , we can write

(63)

where we take . Now we upper-bound

(64)

and

(65)

which is valid when (59) is met since then
. With this, we obtain

(66)

Continuity arguments similar to those of Theorem 4.1 prove
that if is small enough, then the right side of (66) will be
negative and will be optimal. To find and estimate for
the maximum value of , we can find the roots of the right
side of this expression, focusing on the terms between brackets.
In the high reliability regime, the term will be small (as
shown at the end of Section II) so an approximate condition for
concavity can be obtained by letting , which leads
to (30). The proof of the simpler condition (31) is obtained fol-
lowing the same arguments as in the proof of Corollary 4.1, ex-
cept that in this case we can establish the condition .

APPENDIX G
PROOF OF THEOREM 4.3

When is optimal, we can compute the gains starting
from (66), valid under (59), and noting that

. Rearranging the terms, we obtain

(67)

By noting that when is optimal, the term between
brackets in the previous expression will be negative, we can
upper-bound this by removing the term
outside the brackets. To simplify the expression for the high
reliability regime, we can take the approximation .
Finally, when , the performance will be the same as DT,
so the gain will be one.
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