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Abstract—In this paper, we investigate the utility maximization
problem for a sensor network with energy replenishment. Each
sensor node consumes energy in its battery to generate and deliver
data to its destination via multihop communications. Although the
battery can be replenished from renewable energy sources, the en-
ergy allocation should be carefully designed in order to maximize
system performance, especially when the replenishment profile is
unknown in advance. In this paper, we address the joint problem
of energy allocation and routing to maximize the total system
utility, without prior knowledge of the replenishment profile.
We first characterize optimal throughput of a single node under
general replenishment profile and extend our idea to the multihop
network case. After characterizing the optimal network utility
with an upper bound, we develop a low-complexity online solution
that achieves asymptotic optimality. Focusing on long-term system
performance, we can greatly simplify computational complexity
while maintaining high performance. We also show that our
solution can be approximated by a distributed algorithm using
standard optimization techniques. In addition, we show that the
required battery size is to constrain the performance
of our scheme within -neighborhood of the optimum. Through
simulations with replenishment profile traces for solar and wind
energy, we numerically evaluate our solution, which outperforms
a state-of-the-art scheme that is developed based on the Lyapunov
optimization technique.

Index Terms—Asymptotically optimal scheme, energy
allocation, rechargeable sensor networks, routing.

I. INTRODUCTION

W IRELESS sensor networks have been shown to be im-
mensely useful for monitoring a wide range of environ-

mental parameters, such as earthquake intensity, glacial move-
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ments, and water flow. Unattended operation of sensor networks
for a long period is highly desirable due to typical remoteness
and harshness of the environment. One of the main obstacles
in developing long-lived networks is limited battery of sensor
nodes. Energy harvesting from various natural sources, such as
solar and vibration [1]–[3], has been shown to be effective in
alleviating this problem by allowing sensor nodes to replenish
their batteries. However, energy management still remains crit-
ical, in particular, when one cannot forecast the amount of en-
ergy replenishment. Keeping a high battery level may result in
low network performance, while maintaining a low battery level
increases risk of energy depletion.
There are several works that address the energy allocation

problem in sensor networks with energy replenishment. In [5],
a solution has been developed to maximize the total utility for
a satellite with energy replenishment, based on the dynamic
programming (DP) technique. In [6], the authors consider a
network where nodes with and without replenishment coexist
and propose two heuristic routing schemes to exploit renewable
energy: One scheme looks for the path with minimum number
of nodes without replenishment, and the other scheme allows
one relaying node to deviate from the shortest path and forward
packets opportunistically to nodes with energy replenishment.
A battery recharging and discharging model has been de-
veloped in [7] for energy replenishment sensor networks. A
threshold-based policy has been proven to guarantee at least
3/4 of the optimal performance. In [8], the authors have devel-
oped an energy-adaptive scheme that achieves order-optimal
performance for a single node with energy replenishment.
Lexicographically maximum rate assignment and routing for
perpetual data collection has been studied in [9]. The au-
thors have proposed a centralized solution, which can obtain
the optimal lexicographic rate assignment, and a distributed
solution, which reaches the optimum only in tree networks
with predetermined routing paths. Task scheduling problem is
considered for a single node with energy replenishment in [10].
The authors have developed two heuristic schemes that smooth
the energy consumption over the running period. In [11], a
power-aware routing policy has been developed. Computing a
path with the least cost, the solution asymptotically achieves
optimal competitive ratio as the network scales. Also, there are
a few works that exploit the Lyapunov optimization technique
to achieve asymptotic optimality [12], [13]. However, they
require the replenishment processes to be i.i.d. or Markovian,
which may not be true in practice due to fluky characteristics
of renewable energy sources.
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In this paper, we are interested in developing low-complexity
solutions that maximize the total user utility for a rechargeable
sensor network, in particular, when future replenishment pro-
file is unknown a priori. The problem can be formulated as a
standard convex optimization problem with energy and routing
constraints as in [4]. However, the solution requires centralized
control and full knowledge of replenishment profiles in the fu-
ture, which are hardly available in practice. In this paper, we
characterize optimal performance and obtain insight into the
asymptotical properties. Based on the time-invariant properties,
we develop a low-complexity solution that is asymptotically op-
timal and can be approximated by a distributed algorithm. We
summarize our main contributions as follows.
1) We characterize an upper bound for the utility performance
of a sensor network with energy replenishment by con-
structing an infeasible scheme that outperforms the optimal
scheme.

2) We develop a low-complexity online solution that jointly
takes into account energy allocation and routing. Without
advance knowledge of the future replenishment profile, our
solution is provably efficient using estimation of replen-
ishment rate and supply–demand mismatch. We show that
the performance gap between our online solution and the
infeasible solution for the upper bound diminishes as time
tends to infinity.

3) We approximate our solution by a distributed algorithm
and evaluate it through simulations based on replenish-
ment profile traces for solar and wind energy. The results
show that the solution performs close to the upper bound
after a short time period and outperforms a state-of-the-art
scheme that is developed based on the Lyapunov optimiza-
tion technique.

Unlike the previous works, we consider a larger class of
replenishment processes, which only require the existence of
a mean value rather than assumptions of i.i.d. or Markovian.
To the best of our knowledge, our solution is the first one that
achieves asymptotic optimality under general replenishment
profiles. Also note that although the solution in [4] achieves
optimal performance by making use of fluctuations of the
energy replenishment process, it requires future knowledge
of the replenishment profile. In contrast, our online solution
here does not require such knowledge and achieves asymptotic
optimality by relying on long-term characteristic of the energy
replenishment process. Through successfully removing time
dependency in decisions, we significantly reduce the computa-
tional complexity.
Our paper is organized as follows: In Section II, we formu-

late our problem as a standard utility maximization problem.
In Section III, we propose a simple solution that maximizes
throughput for a single node. In Section IV, we extend our
results to the network case, develop a low-complexity online
solution that achieves asymptotic optimality, and approximate
it by an even simpler distributed algorithm. After presenting
simulation results in Section V, we conclude our paper in
Section VI.

II. SYSTEM MODEL

We consider a static sensor network, denoted by ,
where is the set of nodes and is the set of links. We assume

a time-slotted system for a period of time-slots. Each node has
a battery whose size is assumed to be infinite. (We will relax the
infinite-battery assumption in Section III-C.) Let denote
the amount of replenishment energy that arrives at node in
time-slot , while denotes the allocated energy of node
in time-slot . Without loss of generality, we assume that the
energy replenishment occurs at the beginning of each slot and
the harvested energy is immediately stored in the battery. Let

denote the battery level of node at the beginning of
time-slot , which is assumed to be initially empty for simplicity
of exposition, i.e., . The energy dynamics can be
depicted as follows:

(1)

We assume that the replenishment process has a finite mean
value , i.e.,

(2)

which is a mild assumption including a larger class of replen-
ishment processes than those used in the prior works [12], [13],
where is assumed to be an i.i.d. process.
There are flows in the network, and each flow is asso-

ciated with a source node and a destination node . Let
denote the set of the source nodes. During a time-slot, the data
transmission of a node is characterized by a continuously non-
decreasing and strictly concave rate-power function , sat-
isfying . Note that represents the amount of data
that can be transmitted using units of energy in a time-slot
under a given physical layer modulation and coding strategy
(see [21] for details).
Let be the amount of data that is delivered from the

source to the destination in time-slot over possibly
multiple hops and multiple paths. Each user is associated
with a utility function , which reflects the “satis-
faction” of user when it transmits at average data rate

. We assume that is a strictly
concave, nondecreasing, and continuously differentiable
function.

A. Problem Formulation

Our objective is to develop a low-complexity online solu-
tion to the joint problem of energy allocation and data routing
to maximize aggregate utility for the rechargeable sensor net-
work. Since the rate of energy replenishment is usually much
slower than the rate of energy consumption, we assume that the
reduction of energy is instantaneous for all the nodes along the
path as in [11]. In our work, we do not explicitly consider wire-
less interference. Thus, our techniques can directly handle cases
when adjacent nodes operate on orthogonal channels. An open
question is whether one can develop a unified strategy that in-
corporates the simplicity of our scheme with the many excellent
works in the literature that have focused on scheduling in the
presence of interference, such as [14], [17], and the references
therein. While this is beyond the scope of this work, it will form
the basis of our future work.
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We start with the definition of rate region for a node under
energy replenishment profile .
Definition 1 (Rate Region): The rate region

of node is defined as the set of all vectors
, such that for any

, there exists some energy allocation that achieves
, i.e., , for all .
It has been shown that the rate region of node

is convex (see [4, Lemma 4]). Let denote the
amount of data on the outgoing link for desti-
nation node in time-slot , and we denote its vector as

. We formu-
late the utility maximization problem as follows:

Problem

subject to

and for all

for all node (3)

where the second constraint means that total amount of data for
destination into node is less than or equal to total amount of
data out of the node. If any node does not have enough data for
a flow to send over all outgoing links, null bits are delivered.
The solution to Problem will determine: 1) the amount of

energy that should be spent for each node in time-
slot ; 2) the amount of data that should be transmitted
by each flow in time-slot ; and 3) routing decisions for
each node , i.e., choosing for each link and each
destination node .
It has been shown in [4] that Problem is a convex optimiza-

tion problem and can be solved using the standard convex du-
ality approach if full knowledge of the replenishment profile in-
cluding for the future is provided. However, such knowledge is
difficult to obtain in practice. Furthermore, even if such knowl-
edge is assumed, this problem is computationally highly com-
plex. The culprit is the “time coupling property,” which is re-
flected in the last constraint . In this paper,
we show an upper bound on optimal performance that can be
obtained by solving Problem . We also provide a low-com-
plexity online solution, the performance of which forms a lower
bound. Moreover, we show that the lower bound can get arbi-
trarily close to the upper bound, when tends to infinity, which
implies that our solution is asymptotically optimal.

III. THROUGHPUT MAXIMIZATION: A SINGLE-NODE CASE

We first investigate throughput performance of optimal en-
ergy allocation scheme for a single node. In this section, we omit
the subscript from all the notations defined in Section II since
all results are for a single node .
Let denote the optimal

energy allocation that maximizes throughput of a single node

under energy replenishment . Let
denote the optimal throughput achieved by , that is

(4)

In the following, we provide an upper and a lower bound for
, whose difference can be arbitrarily small as tends to

infinity.

A. Upper Bound

Let denote the average replenishment rate, defined as
.

Proposition 1: When tends to infinity, is upper-
bounded by .

Proof: From (4) and Jensen’s inequality with the concavity
of , we have that

(5)
where the second inequality holds because the total allocated
energy can be no greater than the total harvested energy. By
taking the limsup on both sides, we can obtain that

(6)

Proposition 1 also implies that for any , we have
. Hence, for any ,

there exists , such that for all , we have

(7)

This equation will be used later in the proof of the network
case.

B. Lower Bound

We consider the following energy allocation scheme, denoted
by Scheme-LBONE:
• In each time-slot , average harvested energy is estimated
as follows:

(8)

• Using the estimation, energy is allocated as

if
otherwise

(9)

where is a system parameter that can be chosen to
be arbitrarily small.

We denote the throughput of Scheme-LBONE by
, where the expectation is taken with re-

spect to the sample space of the replenishment process. We will
obtain a lower bound for by the following proposition.
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Proposition 2: When tends to infinity, is lower-
bounded by .

Proof: From (2), we have , which follows
that for any , there exists , such that
holds for all . Thus, we have that

. It follows that

(10)

From (9), we consider the battery level as a queue, and
Scheme-LBONE as a work-conserving server with service rate

, which is strictly less than the average arrival rate ,
for . Hence, when tends to infinity, the battery level
will increase to infinity almost surely. This implies that the prob-
ability that the available energy is greater than tends to one as
tends to infinity, i.e., . Com-
bining with (10), we can obtain

(11)

From (9), since , together
with (11), together with , we
have that

(12)

Equation (12) implies that the probability that the allocated
energy is great than is one.
Next, we will use epsilon-delta arguments to show that

. According to
(12), it follows that, for any , there exists , such that
for all , .
Let , now , we have

(13)

Therefore, according to epsilon-delta arguments, it follows that

(14)

Now we can obtain the performance bound of Scheme-
LBONE as follows:

(15)

(16)

where (15) holds because of
. By taking liminf on both sides of (16), we can

obtain from (14) that

(17)

Since Scheme-LBONE is a feasible energy allocation scheme,
we have that .
Comment: Note that Scheme-LBONE is an online scheme

and does not require knowledge of the future replenishment pro-
file. Hence, for a single-node case, Propositions 1 and 2 imply
that Scheme-LBONE can achieve the performance arbitrarily
close to the optimum by choosing sufficiently small.

C. Finite Battery Size

In the previous analysis, we assumed that the battery size
is infinite, which is impossible in reality. In this section, we
will first show that as long as the battery size is large enough,
although finite, we can still guarantee that the performance
of Scheme-LBONE is within -neighborhood of the op-
timum. Furthermore, we show that the required battery size is

.
Let denote the battery size. From (16), we can see that the

performance loss occurs when . Also
note that leads to . Thus,
the probability of the energy outage event is given by

where the subscript denotes the sample path, which the prob-
ability is a function of. We will show that holds almost
surely, where is an arbitrary control parameter, when is

.
First, the battery can be viewed as a queue system

with a finite buffer under fluid model, where the energy har-
vesting process acts as the input and Scheme-LBONE
works as a work-conserving server with service rate ,
as shown in the left figure of Fig. 1. Note that the queue
length evolves as

(18)

Since the load intensity , which is inconvenient to ana-
lyze, we will instead consider a “flipped” queue, where
the input is and the service rate is as shown in the
right figure of Fig. 1. Now the flipped queue has a load inten-
sity . We denote the queue length of the flipped queue
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Fig. 1. Sensor node modeled by a G/G/1 queue with finite buffer size.

as , which is initially assumed to be . The queue length
evolution of is given by

(19)

We claim that for any time-slot , we always have
. We now use mathematical deduction to prove it.

• For , we have .
• Assume that holds for time-slot .
• When , we have three cases.
Case 1) If , from (18), we

have . On the
other hand, we have

Case 2) If , we have .

Case 3) If , we have
. Similarly, we have

.
Therefore, we have shown that . As a

result, we have

(20)

Now, the problem has become how to find a bound on bat-
tery size , such that
almost surely.
Next, we will compare the finite-buffer queue with

an infinite-buffer queue as shown in Fig. 2, for both
of which the input process and server are exactly the same.
We denote the queue length for the infinite-buffer queue .
From [15], we know that for any sample path,
which follows:

(21)

Fig. 2. queue with infinite buffer size.

Fig. 3. queue with infinite buffer size.

Thus, if we have ,
it follows that almost
surely.
Next, we compare the infinite-buffer queue with an

infinite-buffer queue, as depicted in Fig. 3, where the
input rate is a deterministic value . We denote
the queue length of the infinite-buffer queue as .
From (10), we know that the is always less than

. This means that the input of the queue is
always less than the input of the queue .
Assuming that is upper-bounded by , , it follows that

, because . Therefore, it can be seen
that after the time , which
implies that always holds after some transient
period.
Note that the load intensity for the queues is less

than 1, and both input and output processes are stationary. Thus,
the stationary distribution of the queue length exists. Hence, we
have the stationary distribution of the queue forms an
upper bound, that is

almost surely (22)

where denotes the stationary proba-
bility of the event .
Now our goal is to find a battery size , such that

.
Note that if the replenishment process is Markovian or i.i.d.,

from [23], we have

(23)

where is a positive constant. It is worth pointing out that
the i.i.d. case coincides with the well-known Kingman’s
Bound. In fact, (23) holds under more general replenishment
processes [24].
By letting , it follows that

(24)
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Hence, from (20)–(24), we have that when
, the probability of the energy outage in the

original queue is less than almost surely. This implies that
with probability greater than .

By taking , we have

(25)

Combining with (24), we can see that the required battery
size under Scheme-LBONE is , i.e.,

, which is better than the bound in [12]
and [13].

IV. UTILITY MAXIMIZATION: A NETWORK CASE

In this section, we investigate the problem of maximizing
utility over the network with energy replenishment. In our for-
mulation Problem , we denote the achievablemaximumutility
by . We first pro-
vide an upper bound on using an infeasible scheme, and
then propose a low-complexity online scheme that does not re-
quire future knowledge of replenishment profile. We show that
the performance of our proposed scheme approaches the upper
bound as time tends to infinity.

A. Upper Bound

We consider a fictitious infeasible scheme, denoted by
Scheme-UB, which not only knows in advance the average
energy harvesting rate for all , but also can allocate
more energy than the harvested energy. Scheme-UB works as
follows.
• Energy allocation: Each node spends a fixed amount of
energy in all time-slots, i.e.,

for all and (26)

Clearly, this is more than the average replenishment rate
and thus infeasible.

• Routing: The routing in each time-slot is determined
by solving the following strictly convex optimization
problem:

subject to

and

(27)

In contrast to Problem , the third constraint in the above
problem is not coupled across time, which implies that routing
decision in each time-slot can be solved independently. We de-
note the unique solution to (27) by . Though
Scheme-UB is an infeasible scheme, we will show that its per-
formance, defined as ,
dominates the optimal performance . Also, since the en-
ergy allocation and routing in Scheme-UB do not change over
time, it follows that is the same in all time-slots, which

we denote as . By denoting , we have
.

Proposition 3: When tends to infinity, is upper-
bounded by , and we have that

.
We refer to Appendix A for the proof.

B. Lower Bound

In this section, we propose a low-complexity online scheme,
denoted by Scheme-LB, and show that its performance ap-
proaches the upper bound obtained in Section IV-A when
tends to infinity. We begin with the algorithm description of
Scheme-LB.
• Energy allocation: As in Scheme-LBONE, in each time-
slot , each node estimates its average harvested energy as

(28)

Then, energy is allocated as

if ,
otherwise.

(29)
• Routing: Routing in each time-slot is determined by
solving the following optimization problem:

subject to

and for

(30)

We denote the solution to (30) by . Note that
the difference from Scheme-UB is the energy allocation, which
is now based on the estimated average replenishment rate. Let

, where the expecta-
tion is taken over the sample space of the replenishment process.
Also, let denote the solution to (30) when

for all and . Then, we can obtain the
following proposition.
Proposition 4: When tends to infinity, is lower-

bounded by , and we have that
.

We refer to Appendix B for the proof.
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Recall that both and are functions of . Next, we show
via the following proposition that the lower bound can be
arbitrarily close to the upper bound by setting sufficiently
small.
Proposition 5: For any , there exists , such that

.
Proof: We define the ratio of two transmission rates

(31)

Since is an increasing concave function, we have from
Jensen’s inequality that

and similarly we have for all .
Hence, from the definition of , it follows that

(32)

Let denote an optimal solution to (27). Clearly,
we have that . Then, we consider another
vector . Since is an optimal solution to
(27), it satisfies all the constraints of (27). From the first and the
second constraints of (27), we can easily show that the constant-
mulitplied vector satisfies the first two constraints
of (30). Also from the third constraint of (27) and the definition
of , we have that

Hence, the vector also satisfies the third constraint
of (30) when for all . Since is the
achievable maximum utility of (30) when for
all , we have that

(33)

(34)

where (33) holds because is an increasing concave func-
tion and , and (34) comes from (32).
Therefore, we have , where the

latter inequality directly comes from Propositions 3 and 4. Thus,
for any , we can find , such that .
Proposition 5 implies that if is chosen to be sufficiently

small, the performance of Scheme-LB approaches the optimal
performance, as tends to infinity. Hence, Scheme-LB is
asymptotically optimal.

C. Distributed Algorithm Based on Duality

Note that Scheme-LB should solve a convex optimization
problem, i.e., (30), in each time-slot in a centralized manner.

In this section, we extend our solution and develop a low-com-
plexity distributed scheme that approximates Scheme-LB using
the standard optimization technique of duality [16], [17].
From the dual counterpart to (30), we can obtain the

following solution, denoted by DualNet, which can be imple-
mented in a distributed manner. Since the technique is quite
standard, we omit details and refer interested readers to our
technical report [21].
• At each time , source generates data at rate by
solving

(35)

where is a constant for the maximum data rate and
is the associated Lagrange multiplier for each second

constraint of (30).
• Routing at each node is determined by solving

(36)
• The Lagrange multipliers are updated as

(37)

where is a small step size.
It is worthwhile pointing out that (36) allocates energy for

node to transmit the data of commodity to node , where
and are chosen for the largest , which is sim-
ilar to the well-known back-pressure scheme without interfer-
ence constraint. Note that using the standard optimization tech-
nique, the performance of the dual solution gets closer to the
optimal by increasing the number of iterations. Hence, the per-
formance of DualNet, which performs a single iteration in each
time-slot, will improve if we embed multiple iterations in each
time-slot. Nevertheless, we show via simulations that DualNet
with a single iteration still achieves good empirical performance
that is close to the upper bound.
In addition, we know from the previous discussion that

with probability one, the allocated energy of each node in
Scheme-LB tends to a static value, i.e., . Therefore, the
convergence of DualNet can be always guaranteed irrespective
of the number of iterations per slot.

D. Finite Battery Size for the Network Case

In Section III-C, we showed that with a finite battery size
of , the performance of Scheme-LBONE is within
-neighborhood of the optimum. In this section, we will extend
this idea to the network case.
i) Proposition 3 still holds, and is an upper bound.
ii) From (47) in the proof of Proposition 4, we have

under
Scheme-LB, which, however, does not hold any longer if
the battery size is finite. Extending the one-node analysis
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Fig. 4. Sensor network with 100 nodes.

in Section III-C, we can find a battery size such that,
for any , ,
for all the nodes. Hence, we have

(38)
where is the number of nodes in the network.

iii) Following the same lines as the proof of Proposition 4,
we can obtain that .
Since is bounded, the lower bound ,
and the bound on the required battery size is given by

(39)

which remains .

V. NUMERICAL EVALUATION

We evaluate our schemes through simulations. We consider
a network with 100 nodes, which are randomly deployed in a
1 1 field, as shown in Fig. 4. We connect each pair of nodes
within distance 0.2 by a link. We set three flows in the network,
where the source and the destination for each flow are marked
with the same color in the figure. We compare the performance
of DualNet to a state-of-the-art scheme called ESA [13], which
achieves asymptotic optimality under i.i.d. energy replenish-
ment profiles. We assume that the rate-power function follows

(bits/s), and the utility function is given
as . We set the parameter to 10 . The
battery sizes are assumed to be infinite.
We simulate the schemes with two different types of renew-

able energy: solar and wind. We adopt raw data collected at the
National Renewable Energy Laboratory [20] for a period of one
month (June 5–July 5, 2011) and set each time-slot to 1 min.
Fig. 5 illustrates the two types of replenishment profiles during
the month. The solar energy data set (Global 40-South LI-200)
measures solar resource for collectors tilted 40 from the hor-
izontal and optimized for year-round performance. From the
data, we can obtain the replenishment profile for the solar en-
ergy, assuming that each node is equipped with a solar panel
of dimension 20 20 mm . For the wind resource, the data is
measured using sensors placed 2 m from the ground. The power

Fig. 5. Measurement for solar and wind energy.

Fig. 6. Utility performance for solar energy.

can be calculated from the measured wind speed as in [22]:
, where denotes the air density

set to kg/m , and is the swept area of the wind
turbine set to mm .
Figs. 6 and 7 show the simulation results for the solar energy

and the wind energy, respectively. The dotted curve represents
the upper bound that is obtained by solving (27) for the
given . It can be considered as the utility achieved by the in-
feasible scheme Scheme-UB. The dashed curve represents the
utility achieved by DualNet. For both energy sources, the per-
formance of DualNet approaches the upper bound as time in-
creases. Also, an interesting observation in both results is that
the performance achieved by DualNet has been once close to
the upper bound when time is fairly small. This phenomenon
occurs because the estimated average harvested energy at that
time is greater than the actual (long-term) average. The results
also show that DualNet outperforms ESA, and the performance
differences are significant even after a long time period. This is
because the Lyapunov optimization technique adopted by ESA
requires an assumption that the replenishment energy in each
time-slot is either i.i.d. or Markovian. In contrast, our solution
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Fig. 7. Utility performance for wind energy.

Fig. 8. Data queue for one-node case.

is developed under a mild assumption requiring only the exis-
tence of mean replenishment rate.

A. Discussion

To better demonstrate the reason for the difference, we con-
sider the simplest network with one source and one destina-
tion. We simulate both schemes assuming that the energy arrival
process is an i.i.d Poisson process with parameter . Fig. 8
illustrates the data queue evolution, and Fig. 9 shows the en-
ergy queue evolution. From Fig. 8, we can see that our scheme
DualNet has a shorter queue length, that is, a better delay per-
formance, than ESA. Also, from Fig. 9, we can observe that
DualNet performs well with much smaller battery size, which
is set to be 100 units compared to 1800 in ESA.
Note that under ESA or other schemes using Lyapunov op-

timization technique, the allocated energy in each time-slot is
a function of its current queue length and current energy level,
i.e., . From our analytical results, we
have seen that the optimal utility can be achieved by a static en-
ergy allocation close to the average harvesting rate . From this,

Fig. 9. Energy queue for one-node case.

we can infer that ESA will start performing well when the en-
ergy allocation becomes static, in other words, when
and increase to some high levels such that their variations
at each time-slot is relatively small. Since it will take long to
reach a large queue length and a high battery level, we can see
a fairly long transient period before it converges in Figs. 8 and
9. Similar phenomena occur in other contexts, such as the poor
delay performance of CSMA-based scheduler [18].
In contrast, in our scheme, the allocated energy con-

verges to in a more straightforward way without causing the
data queues or the energy levels to build up. Therefore, our
scheme has a better delay performance as well as smaller bat-
tery size requirement.

VI. CONCLUSION

In this paper, we study the joint problem of energy allocation
and routing to maximize total user utility in a sensor network
with energy replenishment. Under general replenishment pro-
files with finitemean value, we develop a low-complexity online
solution that is asymptotically optimal. Characterizing the op-
timal performance by an upper bound achieved by an infeasible
solution, we show that the long-term performance of our online
solution approaches the upper bound. To the best knowledge of
the authors, this is the first result that achieves asymptotic opti-
mality in multihop networks with general energy replenishment
profiles. Also, by removing time coupling properties between
controls, our online solution achieves low complexity and can
be approximated by a distributed algorithm.Moreover, we show
that the required battery size is to constrain the per-
formance of our schemewithin -neighborhood of the optimum.
Through simulations based on traces from two different types of
energy source, we evaluate our solutions and show that it outper-
forms a state-of-the-art scheme and achieves the performance
close to the optimal. An important question that remains unan-
swered is whether one can develop such simple asymptotically
optimal schemes for networks with replenishment that also take
into account interference. This is an interesting and important
question that we plan to pursue for future work in this area.
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APPENDIX A
PROOF OF PROPOSITION 3

Proof: From the stationary property of the problem, we
have for all . Thus, we have that

We will prove that by showing
that the achievable maximum utility of (27) is no smaller than
that of a solution to Problem .
We first consider the following problem, where the difference

from Problem is the last constraint:

subject to

and for

(40)

From (7), it is clear that the last constraint in Problem ,
i.e., , is stricter than the last con-
straint of (40), ,

when is sufficiently large. Hence, by letting
denote the achievable max-

imum utility of (40), we have that

(41)

We also consider another strictly convex optimization
problem with the same objective function and show that its
solution is also the solution to (40), which implies that both
optimization problems have the same maximum utility

subject to

and for

(42)

Note that the difference from (40) is the last two constraints,
where now we do not have summation over time. The solution
space of (40) includes the solution space of (42) since it can be
easily shown that if satisfies the constraints of (42),
it also satisfies the constraints of (40). This implies that if the
optimal solution to (40) also satisfies all the constraints of (42),
then it is also the optimal solution to (42).
Let denote the optimal solution to (40). Also,

we define two constants and

. We consider a time-invariant vector
, where and for all

time-slots. We will show that this time-invariant vector is a
common optimal solution to both (40) and (42).
We first show that it is an optimal solution to (40).

Since is a solution to (40), it satisfies the

constraints and we have that

. Dividing
by , we obtain that

(43)

for all , since are equal over time.
Hence, the inequality is also true when summing from
to . Hence, satisfies the second constraint of

(40). Similarly, since we have
, dividing by , we have that

(44)

By taking the summation from to , it yields that
. Therefore,

satisfies all the constraints of (40). Also, we have
that

This means that achieves the same utility value as
the optimal solution , which implies that it is another
optimal solution to (40).
We next show that is also an optimal solution to

(42). Note that from our earlier statement on the solution spaces
of (40) and (42), it suffices to show that satisfies all
the constraints of (42), which has already been obtained from
(43) and (44). Hence, is an optimal solution to (42).
Let denote the achievable optimal utility of (42).

Since both optimization problem (40) and (42) have an identical
objective function and share at least a common maximizer, the
achievable optimal utility should be equal, i.e.,

(45)

Furthermore, from our development of the common solu-
tion, we can always find an optimal solution to (42) that is
time-invariant, and thus we can reduce the solution space to
time-invariant vectors without affecting the achievable max-
imum utility. Next, we will prove that , which is
the achievable maximum utility of the optimal solution to (27).
First, note that the time-invariant solution to (42)

satisfies the constraints of (27) since the constraints of both
equations are the same. This implies that

.
On the other hand, let represent one solution

to (27). Thus, we have . Consider the
time-invariant vector , where and

for all time-slots. Note that satisfies all
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the constraints of (42) and thus leads to a suboptimal value, i.e.,
.

Thus, we have proved that

(46)

Therefore, we have that from (41), (45), and (46)

APPENDIX B
PROOF OF PROPOSITION 4

Proof: Since Scheme-LB is a feasible scheme, we have
by definition.

The energy allocation component of Scheme-LB is exactly
the same as Scheme-LBONE for the single node case, thus all
the results in Section III-B also hold. Let denote the event

. From (12), we have that
for each . Given a finite number of nodes in the network, we
can obtain that

(47)

which immediately implies [as in (13)]

(48)

Then, we can obtain that

for some

for some

(49)

where the first inequality holds due to Jensen’s Inequality as
well as the concavity of , the second inequality holds be-
cause of , and the
last inequality holds since is achieved when

. Taking liminf on the both sides and from (48),
we can obtain that
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