
1218 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

DFL: Secure and Practical Fault Localization for
Datacenter Networks

Xin Zhang, Fanfu Zhou, Xinyu Zhu, Haiyang Sun, Adrian Perrig, Senior Member, IEEE,
Athanasios V. Vasilakos, Senior Member, IEEE, and Haibing Guan, Member, IEEE

Abstract—Datacenter networking has gained increasing popu-
larity in the past few years. While researchers paid considerable
efforts to enhance the performance and scalability of datacenter
networks, achieving reliable data delivery in these emerging
networks with misbehaving routers and switches received far
less attention. Unfortunately, documented incidents of router
compromise underscore that the capability to identify adversarial
routers and switches is an imperative and practical need rather
than merely a theoretical exercise. To this end, data-plane fault
localization (FL) aims to identify faulty links and is an effective
means of achieving high network availability. However, existing
secure FL protocols assume that the source node knows the entire
outgoing path that delivers the source node’s packets and that the
path is static and long-lived. These assumptions are invalidated by
the dynamic traffic patterns and agile load balancing commonly
seen in modern datacenter networks. We propose the first secure
FL protocol, DFL, with no requirements on path durability or
the source node knowing the outgoing paths. Through a core
technique we named delayed function disclosure, DFL incurs
little communication overhead and a small, constant router state
independent of the network size or the number of flows traversing
a router.

Index Terms—Datacenter network, delayed function disclosure,
fault localization.

I. INTRODUCTION

A S THE infrastructure support for cloud computing, data-
center networks (DCNs) have sparked tremendous inter-

ests in the research community, focusing on improving network
performance and scalability in benign environments with nat-

Manuscript received November 25, 2012; revised May 10, 2013; accepted
June 24, 2013; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor J. Wang. Date of publication August 28, 2013; date of current version
August 14, 2014. This work was supported by CyLab at Carnegie Mellon
University, the NSF under Award CNS-1040801, the NSFC under Grant No.
61272101, the Singapore NRF under the CREATE E2S2 Program, and the
MOE under Grant No. 313025. This work extends previous work published
in the Proceedings of the IEEE Symposium in Security and Privacy, San
Francisco, CA, USA, May 20–23, 2012.
X. Zhang is with Datacenter Cluster Management, Google, Pittsburgh, PA

15206 USA (e-mail: xinzhang1228@gmail.com).
F. Zhou, X. Zhu, H. Sun, and H. Guan are with the Shanghai Key Labo-

ratory of Scalable Computing and Systems, Shanghai Jiao Tong University,
Shanghai 200240, China (e-mail: zhoufanfu@sjtu.edu.cn; zxykobezxy@sjtu.
edu.cn; jysunhy@sjtu.edu.cn; hbguan@sjtu.edu.cn).
A. Perrig is with ETH Zurich, Zurich 8092, Switzerland (e-mail: aperrig@inf.

ethz.ch).
A. V. Vasilakos is with the University of Western Macedonia, Kozani 50100,

Greece (e-mail: vasilako@ath.forthnet.gr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2013.2274662

ural failures [17]. However, such a generous assumption that
switches and routers are trustworthy has proven risky by real-
world incidents [1], [2], [6], [27], [38], where routers can be
compromised due to dishonest employees or social engineering
in operational networks and can surreptitiously sabotage net-
work data delivery. These misbehaving routers or switches (or
routers in general hereinafter) can easily drop, modify, delay,
or inject packets in the data plane to mount denial-of-service,
surveillance, man-in-the-middle attacks, etc. [32].
Regrettably, current DCNs lack a secure way to identify mis-

behaving routers that jeopardize packet delivery. Existing fault
diagnosis approaches in DCNs [26] were designed for nonad-
versarial settings and are thus vulnerable to attacks. For ex-
ample, a malicious router can “correctly” respond to or

probes while corrupting other data packets, thus
cloaking the attacks from or . Hence, the in-
creasing demand for high network availability warrants the pur-
suit of a secure mechanism for identifying malicious routers,
referred to as fault localization (FL). FL enables the subsequent
investigation, repair, and removal of misbehaving devices, thus
benefiting network availability.
Researchers have proposed a wide array of FL protocols for

the Internet capable of identifying routers that drop, fabricate,
delay, and/or inject packets [8], [9], [12], [40]. However, these
protocols were not tailored for DCNs; they require the packet
sender to know the entire packet path and mandate the path to
be long-lived (e.g., stable over transmitting 10 packets [12]).
Recent measurement studies [18], [22] show that a considerable
fraction of current DCN flows are short-lived and routing paths
are highly dynamic. Furthermore, emerging DCNs call for more
agile load balancing and dynamic routing paths. The conflict
between the “static-path” assumption and the “dynamic-path”
reality renders existing FL protocols inapplicable to DCNs
with dynamic traffic patterns and short-lived flows. In addition,
existing FL protocols require a router to share cryptographic
keys with each source node sending traffic traversing that
router, swelling a single router’s key storage overhead linear
in the number of end nodes; moreover, a router also needs to
maintain per-path state for each path traversing that router,
making the FL unscalable for today’s DCNs that may comprise
hundreds of thousands of machines.
We aim to bridge the current gap between the security of FL

and the ability to support dynamic traffic patterns in modern
DCNs. More specifically, a desired FL protocol should be se-
cure against sophisticated packet dropping, modification, fabri-
cation, and delaying attacks by colluding routers while retaining
the following properties.

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1219

Path obliviousness: A source node or a router does not need
to know the outgoing/downstream path.
Volatile path support: The FL protocol requires no min-
imum duration time for a forwarding path.
Constant router state: A router does not need to maintain
per-path, per-flow, or per-source state.
O(1) key storage: A router only manages a small number
of keys regardless of the network size.

Path obliviousness and volatile path support together enable
agile load balancing and dynamic routing paths (e.g., valiant
load-balanced paths). These two properties also decouple the
data-plane FL from routing, thus enabling it to support a wide
array of routing protocols. Finally, constant router state provides
scalability in large-scale networks, andO(1) key storage reduces
the security risk due to key compromise.
We observe that the “static-path” assumption in existing se-

cure FL protocols stems from the fact that they operate on entire
end-to-end paths (path-based) to localize the fault to one spe-
cific link. Specifically, each router maintains a certain “traffic
summary” (e.g., a counter, packet hashes, etc.) for each path that
traverses the router (thus requiring per-path state), and sends
the traffic summary to the source node of each path. can
then detect a link as malicious if the traffic summaries from
’s two adjacent nodes deviate greatly. Hence, needs to know
the entire path topology to compare traffic summaries of adja-
cent nodes, and needs to send a large number of packets over
the same path so that the deviation in traffic summaries can re-
flect a statistically accurate estimation of link quality. Finally,
to authenticate the communication between the source and each
router in the path, a router needs to share a secret key with each
source that sends traffic through that router.
In this paper, we explore neighborhood-based FL ap-

proaches, where a router ’s data-plane faults (if any) can
be detected by checking the consistency (or conservation) of
the traffic summaries generated by the 1-hop neighbors of
(denoted by). That is, in benign cases, the packets sent
to will be consistent with the packets received from by all
of ’s neighbors as reflected in their traffic summaries. In this
way, the FL is independent of routing paths and only depends
on 1-hop neighborhoods, thus supporting arbitrary routing pro-
tocols and dynamic load balancing. Additionally, each router
in a neighborhood-based approach only needs to maintain state
for each neighbor.

Contributions: This paper leverages the neighborhood
monitoring approach and delayed function disclosure mecha-
nism to achieve path obliviousness and volatile path support
that have not been achieved in other work. Moreover, a router in
neighborhood-based FL requires only about 4 MB per-neighbor
state, which is 100–10 000 times less than that in path-based FL
protocols. Furthermore, this paper emphasizes the importance
of secure FL specifically for modern DCNs with dynamic
traffic patterns. To the best of our knowledge, DFL is the
first approach for achieving secure data delivery in DCNs. In
addition, we explore the characteristics of DCN topologies and
identify the unique opportunities to optimize the secure fault
localization algorithm. More specifically, we devise algorithms
for nodes to aggregate local logs in the monitoring protocol to
a controller node with negligible communication overhead. We
present both theoretical analysis and experimental results of the

proposed algorithms and demonstrate the resulting communica-
tion overhead is 10 times lower than that in DynaFL [41], thus
making the neighborhood-based FL truly secure and practical.
We anticipate that work will spark future research endeavors
in tackling network-level security challenges in datacenter
networks and the neighborhood-based FL to serve as a building
block to achieve high availability for other networked systems.

II. PROBLEM STATEMENT

A. Assumptions

We consider a network with dynamic traffic patterns and a
relatively static network topology, which is best exemplified by
today’s datacenter networks. To provide maximum flexibility to
support various routing protocols, and even packet-level load
balancing, we pose no restriction on the routing protocols and
load balancing mechanisms used in the network. We do not
make any assumption on the network topology (e.g., tree-based,
etc.) for the sake of wide applicability of the FL protocol, though
for a particular type of topology, potential optimizations may
exist. We assume a trusted administrative controller (AC) in
the network, which shares a pairwise secret key with each node
in the network. As we will show later, the AC is mainly in
charge of analyzing the traffic summaries gathered from dif-
ferent nodes and localizing any neighborhood with data-plane
faults. We argue it is feasible to deploy an AC for a datacenter
network (as in 4D [21], SANE [15], OpenFlow [31], etc.), which
is usually under a single administrative domain. The AC is a log-
ically single entity, but can be implemented in a distributed way.
Finally, we require nodes in the network to be loosely time-syn-
chronized, e.g., the order of milliseconds.

B. Adversary Model

We consider a sophisticated adversary controlling multiple
malicious nodes. Specifically, a malicious node corrupts data-
plane packets by unexpectedly dropping, modifying, and de-
laying legitimate packets sent by the source and fabricating
bogus packets that are not sent by the source. A malicious node
can corrupt both the data packets and control packets, such as
traffic summaries sent from each node to the AC and certain
administrative messages sent from the AC to other nodes. Fur-
thermore, a sophisticated adversary has knowledge of and tries
to game the FL protocol to evade detection. Multiple colluding
nodes can collectively perform the above data-plane attacks,
conspiring to evade detection or frame benign nodes. The col-
luding nodes know each other’s security credentials (e.g., secret
keys used in the FL protocol).

C. Problem Formulation

Our goal is to design a practical and secure neighborhood-
based FL protocol to identify a suspicious neighborhood (if any)
that contains at least one malicious node. Recall that practicality
translates to path obliviousness, volatile path support, and con-
stant router state as stated in Section I. We further adopt the

-accuracy [20] to formalize the security requirements
as follows.
• If more than fraction of the packets are corrupted by a
malicious node , the FL protocol will raise a neighbor-
hood containing or one of its colluding nodes as suspi-
cious with probability at least .

1220 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

• In benign cases, if no more than fraction of the
packets are spontaneously corrupted (e.g., dropped)
in a neighborhood, the FL protocol will raise the neigh-
borhood as suspicious with probability at most .

The thresholds and are introduced to tolerate spontaneous
failures (e.g., natural packet loss) and are set by the network
administrator based on her experience and expectation of net-
work performance. Although false positives (claiming a benign
neighborhood as malicious) caused by such failures and dif-
ferent thresholds will waste some dedicated overhead for inves-
tigation, they are not a big concern as long as the false positive
rate is low. Additionally, the false negative rate remains low if
the thresholds are set properly (in Section VIII). Moreover, the
upper-layer protocol such as TCP can retransmit these packet
losses.
Neighborhood-based FL enables the network administrator to

scope further investigation to a 1-hop neighborhood to find out
which router is compromised. It is also possible to further em-
ploy dedicated monitoring protocols, which only need to mon-
itor a small region (the identified neighborhood) of the network
to find the specific misbehaving router.

III. CHALLENGES AND OVERVIEW

In this section, we sketch a general neighborhood-based FL
protocol and highlight the security and scalability challenges.
We then present the key ideas in DFL that answer these chal-
lenges. We start with the notations used throughout the paper.

Notation: We use the terms node and router interchange-
ably to generally refer to devices that either perform layer-2
switching or layer-3 routing.We denote the 1-hop neighborhood
of a node as . For a particular packet traversing a neigh-
borhood , the neighbor sending that packet to node is
called an ingress node in for that packet, and the node re-
ceiving that packet from is called an egress node. We term a
sequence of packets as a packet stream . Particularly, we de-
note the packet stream sent from node to node as , and
this packet stream is seen by nodes and as and ,
respectively. The difference of two packet streams and , de-
noted by , refers to the number of packets in one packet
stream but not in the other, without considering the variant IP
header fields such as the time to live (TTL) and checksum.

A. High-Level Steps

The general steps in neighborhood-based FL are: 1) recording
local traffic summaries; 2) reporting the traffic summaries to the
AC; and 3) detecting suspicious neighborhoods by the AC based
on the received traffic summaries, as we sketch in the following.
Recording: We divide the time in a network into consecutive

epochs, which are synchronous among all the nodes including
theAC in the network. For each neighbor , a node locally gen-
erates traffic summaries, denoted by and , for the
packet streams and in each epoch, respectively. Fig. 1
depicts the router state in a toy example.
The traffic summary recorded by a node should reflect both

the packet contents and the arrival/departure time seen at node
to enable the detection ofmalicious packet corruption and delay.
Our FL protocol is based on the assumption that the packets sent
to a node should be consistent with the packets received from
the node in the 1-hop neighbor. The source or destination node
only generates or receives the packets, so the packets from the

Fig. 1. Router state for traffic summaries.

source or destination in each node should be excluded from con-
sistency check. Fortunately, each node can tell the source and
destination from the packet header, and can then exclude these
packets in packet streams from the counting (e.g., and).
For the sake of scalability, the traffic summary cannot simply
be an entire copy of all the original packets (or their hashes
using a cryptographic hash function such as SHA-1 that pro-
vides one-wayness and collusion resistance) and their timing in-
formation. Instead, we use a fingerprinting function to reflect
the aggregates of packet contents to save both the router state
and bandwidth consumption for reporting the traffic summaries
to the AC.We denote the fingerprint for a packet stream gen-
erated by as , as Fig. 1 depicts. In addition, as Fig. 1
shows, for a packet stream (or), the traffic summary of
node also contains the average departure time (or arrival
time) and the total number of packets (or) in

(or) seen in the current epoch to enable the detection of
packet delay attacks.
Reporting: At the end of each epoch, each node sends its

local traffic summaries to the AC .
Detection: After receiving the traffic summaries at the end

of an epoch, the AC runs a consistency check over the traffic
summaries in each neighborhood. A large inconsistency of the
traffic summaries in a certain neighborhood indicates that

is suspicious.

B. Fingerprinting Function

Before we present the instantiation of , we first describe
the general properties that should satisfy. To enable the AC
to detect suspicious neighborhoods, should generate traffic
summaries with the following two properties:
Property 1: Given any two packet streams and , the “dif-

ference” between and can give an estimation of the
difference between and , denoted by:

Defining the “difference” between and is -spe-
cific, as we show shortly.
Property 2: Given any two packet streams and ,

.
The operator on the left-hand side denotes a union opera-

tion of the two packet streams and . The operator on the
right-hand side denotes a “combination” of and ,
which is -specific and defined shortly.
These two properties enable the conversion from checking

packet stream conservation to checking the conservation of
traffic summaries in a neighborhood. In other words, these two
properties enable nodes to simply store the compact packet
fingerprints instead of the original packet streams while still
enabling the AC to detect the number of packets dropped,
modified, and fabricated between two packet streams from their
corresponding fingerprints.

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1221

During the detection phase, the AC only needs to compare
the difference between: 1) the combined traffic summaries for
packets sent to node in , i.e., ; and 2) the
combined traffic summaries for packets received from node in

, i.e., . By Properties 1 and 2

based on Property 2

based on Property 1 (1)

Note that reflects the discrep-
ancy between packets sent to and received from node , and a
large discrepancy indicates packet dropping, modification, and
fabrication attacks in .
Sketch for : The th moment estimation sketch [4], [16],

[39] (as used by Goldberg et al. [20] for path-based FL) serves
as a good candidate for . More specifically, th moment
estimation schemes use a random linear map to transform a
packet stream into a short vector, called the sketch, as the
traffic summary. In benign cases, packets, if viewed as 1.5-kB
(the Maximum Transmission Unit) bit-vectors, are “randomly”
drawn from . Hence, different packet streams will
result in different sketches with a very high probability (w.h.p.).
Goldberg et al. [20] also extensively studied how to estimate
the number of packets dropped, injected, or modified between
two packet streams from the “difference” of two corresponding
sketch vectors, thus satisfying Property 1. We also previously
proved that the sketch satisfies Property 2 [41]. Specifically,
the difference (used in Property 1) between
two sketches is defined as

(2)

where denotes the th moment of the vector . The com-
bination of and used in Property 2 is defined as

(3)

where + denotes the addition of two vectors.

C. Challenges in a Neighborhood-Based Fl

From Property 1, we can further derive the following condi-
tions on the fingerprinting function . Given any two packet
streams and seen at nodes and , respectively, a finger-
printing function computed by and should satisfy

if (4)

if w.h.p. (5)

The first condition ensures the consistency of traffic summaries
(more precisely, sketches in the traffic summaries) in the benign
case when the packet streams are not corrupted. The second con-
dition ensures that if packet corruption happens between nodes
and , inconsistency of the traffic summaries will be observed,
which will then enable the estimation of packet difference in the
corresponding packet streams (Property 1). However, these two
conditions tend to be contradicting with the following dilemma.

Without Different Secrets: If the random linear map in
(which can be implemented as a hash function [12]) is not

Fig. 2. Example of stealthy packet modification attacks when nodes do not
use different secret keys for computing . For simplicity, the sketch vector is
represented as a “0–1” bit vector. The malicious node modifies the packet
stream in such a way that the modified packet stream still results in the same
sketch vector as at node .

computed with different secret keys by different nodes, a mali-
cious node can predict the output of any other node for any
packet. Since maps a set of packets (or their 160-bit crypto-
graphic hashes) to a much smaller sketch, hash collisions will
exist where two different packets produce the same output
(since sketch is not proven to preserve the collision resistance
property of the cryptographic hash function). Hence, a mali-
cious node can leverage such collisions to modify packets such
that the modified/fabricated packets will produce the same
output at other nodes, violating the condition in (5). Fig. 2 de-
picts such an example.

With Different Secrets: If nodes compute with different
secret keys to satisfy the condition in (5), it is hard for the AC to
perform a consistency check among the resulting sketches. For
example, even the same packet stream would result in different
sketches at different nodes, thus violating the condition in (4).
Since the sketch is only a compact and approximate represen-
tation of the original packet stream, the AC cannot revert the
received sketches to the original packet streams to check packet
stream conservation.
Scalability Versus Sampling: Even with for packet finger-

printing, a traffic summary over a huge number of packets can
become too bandwidth-consuming to be sent frequently to the
AC (e.g., every 20 ms). For example, the number of packets for
an OC-192 link (10 Gb/s) can be on the order of 10 per second
in the worst case, which swells the size of a sketch to hun-
dreds of bytes to bound the false positive rate below 0.001 [20]
and may require several kB/s bandwidth for the reporting by
each node. Packet sampling represents a popular approach to
reducing bandwidth consumption, where each node only sam-
ples a subset of packets to feed into for generating the traffic
summaries. To enable a consistency check of the traffic sum-
maries in a neighborhood, all nodes in a neighborhood should
sample the same subset of packets, and the challenge is how to
efficiently decide which subset of packets all nodes should agree
to sample. For security, the sampling scheme must ensure that a
malicious node cannot predict whether a packet to be forwarded
will be sampled or not. Otherwise, the malicious node can drop
any nonsampled packets without being detected.
The problem is further complicated by the presence of collu-

sion attacks in our strong adversary model as well as our path
obliviousness requirement. Several existing sampling schemes
are broken when applied to our setting. For example, in Sym-
metric Secure Sampling (SSS) [20], the packet sender and re-
ceiver use a shared Pseudo-Random Function (PRF) to co-
ordinate their sampling. Imported to our setting, e.g., using the

1222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

neighborhood example in Fig. 2, nodes and share a secret
key and a PRF , compute with for each packet, and
sample the packet if the PRF output is within a certain range. In
this way, node itself cannot know whether a packet is sampled
or not. However, this approach fails in our setting. For example
in Fig. 2, we have the following.
• If and collude, can inform of which packets are
sampled, so that can safely drop nonsampled packets and
not be detected.

• Due to the dynamic traffic pattern, an ingress node of
a neighborhood does not know which egress node a
packet will traverse in (if has more neighbors than
and , there exist multiple possible egress nodes than).
Hence, does not know which PRF or secret key to use for
packet sampling, given that shares a different secret key
with each node in .

So even when the majority of a benign node’s neighborhood
are compromised, the AC can figure out the inconsistency by
inspecting the report from the benign node.

D. DFL Key Ideas

In DFL, nodes temporarily store the cryptographic hashes
(which are collision-resistant) for all packets received/sent per
neighbor in an epoch. At the end of each epoch , nodes use
epoch sampling to decide if packets in the epoch are to be fin-
gerprinted; if so, nodes generate the traffic summaries and report
them to the AC. This reduces both the communication overhead
for sending the traffic summaries to the AC and the compu-
tational overhead for generating and checking the traffic sum-
maries. Specifically, nodes first use the same per-epoch sam-
pling key (described shortly) for computing a PRF to de-
termine if the current epoch is “selected”; if and only if the cur-
rent epoch is selected, nodes will use with the same per-epoch
fingerprinting key (described shortly) to map packets into
per-neighbor traffic summaries. Using the same and en-
ables consistency checking over the traffic summaries from dif-
ferent nodes.
To address the packet modification attacks and collusion at-

tacks mentioned earlier, nodes do not know the per-epoch
and until the end of each epoch , after they have forwarded
(or possibly corrupted) packets in epoch . Thus, when a packet
is to be forwarded (or corrupted), a malicious node does not
know and , and thus cannot predict whether this epoch
is selected for sending traffic summaries, and if selected, what
the sketch output will be for this packet. To achieve this prop-
erty, in DFL, the trusted AC periodically sends the per-epoch

and via function disclosure messages to all nodes at the
end of each epoch in a reliable way (described later), and nodes
use the received and to select epochs and fingerprint
packets that have already been forwarded or corrupted.
A malicious node may first attempt to locally hold all the

packets in an epoch , and only forward or corrupt packets at
the end of when the malicious node learns and , thus
being able to launch the sophisticated packet modification and
selective packet corruption attacks as mentioned earlier. How-
ever, since the traffic summaries also include the average de-
parture/arrival time of the sent/received packets, the malicious
node will be detected with packet delay misbehavior in the de-
tection phase.

Fig. 3. Router per-neighbor state details.

IV. RECORDING TRAFFIC SUMMARIES

The technical challenges in the recording phase are how to
deal with imperfect time synchronization among nodes and
packet transmission delay, and how to efficiently protect the
function disclosure message from adversarial corruption. We
explain how DFL solves these challenges in turn.

A. Storing Packets

In the “ideal” case (with perfect time synchronization and no
packet transmission delay), nodes simply need to store packets
for the single “current” epoch and, at the end of each epoch,
send the traffic summaries to the AC for that epoch. However, in
practice, routers need to determine to which epoch an incoming
packet belongs (or whether a received packet belongs to the cur-
rent epoch or a previous, outdated epoch). One might attempt
to let routers map received packets into epochs based on their
local packet arrival time. However, this approach would intro-
duce large errors (because of misaligned time or network trans-
mission delay).
To deal with imperfect time synchronization, the source in

DFL embeds a local timestamp when sending each packet. Such
a timestamp can be added as an additional flow header, using
the TCP timestamp, or in the IP option field that all routers can
process efficiently. Any router in the forwarding path will de-
termine the corresponding epoch for each packet based on the
embedded timestamp. In this way, we ensure that all routers
put each packet in the same epoch for updating the traffic sum-
maries. For example, if the timestamp embedded by the source
is and the epoch length is , then all routers will map the
packet into epoch .
To eliminate traffic summary inconsistencies due to packet

transmission delay, we also need to ensure that when generating
traffic summaries for a certain epoch , packets that are sent and
not corrupted in epoch are received by all the nodes in the for-
warding paths. To this end, if the epoch length is set to and
the expected upper bound on the one-way packet transmission
delay in the network is , each router stores packets sent in the
current epoch as well as in previous epochs, denoted by

.We call these epochs live epochs. Then,
at the end of an epoch , nodes will generate and send to the AC
the traffic summaries for the oldest live epoch , in which
the packets have either traversed all nodes in their forwarding
paths or been corrupted. The periodic function disclosure mes-
sages that the AC sends synchronize the current epoch ID and
the oldest live epoch ID for which traffic summaries are needed
for reporting.
Hence, a node maintains the following data structures for

each neighbor for each epoch, as Fig. 3 also shows.
• The packet cache temporarily stores hashes for
packets in both and that are seen in a live epoch
(using a cryptographic hash function such as SHA-1).
Each entry contains the packet hash and a bit indicating if
the packet belongs to or .

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1223

Fig. 4. Possible attacks in the recording phase. Amalicious node may attempt
to drop the function disclosure message , or manipulate the TTL value to
cause packets to be dropped at a remote place (node in this example), thus
framing a remote neighborhood (in this example).

• The router stores the sum of packet departure timestamps
seen in and the sum of packet arrival times-

tamps seen in in a live epoch with millisecond
precision.

• Finally, the router stores the total number of packets
seen in and seen in in a live epoch.

Among these data structures, , , , and re-
quire small constant storage, around 8 or 4 B for each. will
be used for packet fingerprinting. The size of depends only
on the epoch length and link bandwidth, but not the number of
flows/paths traversing node . As Section VIII-A shows, with an
epoch length of 20 ms and one-way network latency of 20 ms,
each router line-card requires only around 4 MB of memory for
an OC-192 link, which is readily available today.
For the sake of simplicity, we use and to denote

the packets cached for and by node , respectively.

B. Secure Function Disclosure

At the end of each epoch , the AC discloses the sampling

key and fingerprinting key to all nodes in
the network via a function disclosure message , and requests
the traffic summaries for the oldest live epoch . Obvi-
ously, itself needs to be protected from data-plane attacks
(dropping, modification, fabrication, or delaying) by amalicious
node during end-of-epoch broadcasting. It might be tempting to
let the AC use digital signatures to authenticate in order to
address malicious modification and fabrication. However, fre-
quently generating and verifying the signatures on a per-epoch
basis can be expensive (e.g., an epoch can be as short as 20 ms,
and signature generation and verification time could be on the
order of milliseconds).
Fortunately, the function disclosure message is trans-

mitted at the end of each epoch synchronously among all the
nodes. If a malicious node drops , the AC will fail to
receive the traffic summaries of certain neighbors of , thus
detecting as suspicious. For example in Fig. 4, if drops

instead of forwarding it to its neighbor , node cannot fin-
gerprint the packets to generate traffic summaries, thus failing
the consistency check of traffic summaries in . As we
show in Section V, the AC expects to receive traffic summaries
within a short amount of time after each epoch ends; delaying

more than that amount of time is effectively equivalent to
dropping and causes the malicious node’s neighborhood
to be detected. Thus, the remaining problem is to prevent the
modification and fabrication of , which is equivalent to
authenticating to all nodes in the network without the use

Fig. 5. One-way hash chain example.

of digital signatures. Section VII further elaborates why the
authentication of is needed for security purposes.
In DFL, time in the network is loosely time-synchronized and

divided into consecutive epochs; the authentication of is re-
quired only once per epoch. This setting is naturally alignedwith
that of the TESLA broadcast authentication [36], which authen-
ticates broadcast messages (in our case) using only Mes-
sage Authentication Codes (MACs) with keys derived from a
one-way hash chain. As Fig. 5 shows, the AC applies a one-way
hash function repeatedly on the root key to derive a set of
epoch authentication keys, and uses key to compute a MAC
for authenticating in epoch . The AC publishes through
the network so that nodes can verify if any given epoch key is in-
deed derived from the genuine one-way hash chain. Then,
in epoch includes: 1) the current epoch ID , the oldest live
epoch ID to be examined, sampling and finger-
printing keys, a MAC computed with for the current epoch;
and 2) the key for computing theMAC in a previous epoch ,
by which nodes can verify the authenticity of in epoch
(verification delayed by epochs), i.e.,

(6)

where denotes concatenation. Section VII describes the reason
for disclosing the key for epoch instead of epoch

.
Furthermore, DFL creates a spanning tree in the network

rooted at the AC, along which is delivered to each node.
Since DFL uses a pregenerated, static spanning tree for the
broadcast messages, there is no need for dynamic path support
when protecting .

C. Sampling and Fingerprinting

Given the disclosed and at the end of an epoch ,
each node first uses the sampling PRF with , denoted
by , to determine if the oldest live epoch is selected. If so,
node then uses the fingerprinting function to map the cached
packet hashes in each per-neighbor stream into a sketch vector,
i.e., or , computed with the given .

Finally, node generates two traffic summaries and
for a neighbor for packet streams and , respectively.
• includes a fingerprint , average packet de-

parture time , and the total number of
packets seen in in epoch .

• includes a fingerprint , average packet

arrival time , and the total number of

packets seen in in epoch .
Implementing : Specifically, maps an epoch ID to an
-bit integer uniformly distributed in . Given a sam-
pling rate , a node computes over the epoch ID
that is being examined, and epoch is selected iff

. In this way, on average a fraction of the epochs will
be selected. Since nodes use with the same for epoch

1224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

sampling, in the benign case, nodes will select the same set of
epochs, thus ensuring the consistency of the traffic summaries
in a neighborhood.
Implementing : We use the second-moment sketch com-

puted with as a case study to implement , and analyze
the size of the sketch vector to achieve Property 1 with the

-accuracy. We assume 10 packets per second in the
worst case for an OC-192 link with an epoch length of (sec-
onds). Then, the number of packets in a sampled epoch is

. Using the classical Sketch due to Alon et al. [5] for
example, the storage requirement for the sketch is given by

(7)

where

and (8)

In Section VIII-A, we derive numeric values for the size of the
sketch vector based on the epoch length .
Dealing With TTL Attacks: Certain fields in the IP header,

such as the TTL, checksum, and some IP option fields, will
change at each hop. Both sampling and fingerprinting in DFL
need to properly deal with these variant fields to avoid both
false positives and false negatives. Take the TTL field for
instance hereinafter (though the arguments apply similarly to
other variant fields). On the one hand, if and are computed
over the entire packets including the TTL field, even in the
benign case the same packet stream will leave different traffic
summaries (or precisely, the sketch vectors) at ingress and
egress nodes. On the other hand, if and are computed
over the entire packets excluding the TTL field, a malicious
node can modify the TTL field at liberty without affecting
the traffic summaries. Fig. 4 depicts an example TTL attack,
where the malicious node lowers the TTL value to 2 in the
packets and causes the packets to be dropped at the 2-hop-away
downstream node , thus framing neighborhood .
To address the TTL attacks, when computing and , each

node performs either of the following.
• For a packet received from a neighbor, node computes
and over the packet including the TTL.

• For a packet sent to a neighbor, node computes and
over the packet, but with the TTL field additionally de-

creased by 2 (equal to the TTL value at the 2-hop-away
egress node in).

In this way, node in Fig. 4 simply uses the TTL value as
contained in the packets received from when computing
and since the ingress nodes in (nodes and) must have
computed and with an adjusted TTL value equal to that at
node .
The TTL value in a packet is also decremented by one for

every second the packet is buffered at a router. Holding a packet
longer than 1 s at a router is treated as a packet delaying attack
and will be detected due to the use of the above construction.

V. REPORTING TRAFFIC SUMMARIES

Reporting traffic summaries suffer both security and scala-
bility challenges as explained in turn in this section.

Security: In DFL, all servers periodically send traffic sum-
maries to the AC along their reporting paths. We need to pre-
vent these traffic summaries from being dropped, modified, or
injected along the reporting paths. To this end, DFL utilizes an
Onion Authentication approach [40], [43] to protect the trans-
mission of both the traffic summary reports and along each
path.
Scalability: During the reporting phase, the huge volume of

reporting traffic summaries from all nodes to the AC may easily
cause undesired link load and congestion in some nodes in the
network. Given that modern datacenters can easily contain up
to hundreds of thousands of nodes, the link with heaviest re-
porting load may become the bottleneck and hamper the entire
DCN scalability. For example, DynaFL simply employs a Min-
imum Spanning Tree for each node to send local traffic sum-
maries to the AC; as a result, the reporting alone may consume
more than 10-MB/s bandwidth on a certain link if no epoch sam-
pling is used [41]. In this section, we design two algorithms
for addressing the scalability challenge of the reporting phase
taking into account computational overhead for deriving the re-
porting paths and link congestion due to the transmission of the
traffic summaries. One algorithm, called LevAdj, uses level ad-
justment-based tree, and each node utilizes exactly one path to
the AC for reporting, while the other algorithm is called BinDin,
which combines the Dinic flow algorithm with binary search
and is based on multipath reporting.
The primary motivation for designing two algorithms is to ac-

commodate two different network topologies: “symmetrically
structured” topologies specifically for DCNs and general graph
topologies for generic, abstract network model. The character-
istics of “symmetrically structured” topologies are regular sym-
metric and multihierarchical, and where a source node has
multiple equal-length paths to any end node [17], while we
do not require any layering or pattern for the general graph
topologies. Based on these models, we design the LevAdj al-
gorithm for the DCN topologies and the BinDin algorithm for
more general network topologies for the sake of completeness
and comparison. The results in Section VIII-C show that there
is little difference regarding the bandwidth overhead between
the two algorithms in DCNs. Thus, the LevAdj algorithm is
well suited for DCN topologies since it also incurs less compu-
tational overhead. The BinDin algorithm consumes less band-
width overhead in general topologies, but requires more compu-
tational time than the LevAdj algorithm. Given each algorithm
has its merits, we present the two algorithms in this paper with
a discussion of their tradeoffs.
In the following Sections V-A and V-B, we describe our two

algorithms for alleviating link load due to reporting traffic sum-
maries. We first propose the LevAdj algorithm for DCN topolo-
gies and then present the BinDin algorithm for general network
topologies.

A. LevAdj Algorithm

Considering that the network topology in data center net-
works tends to be strictly hierarchical with a strict layering pat-
tern [17], it is natural and promising for us to make use of a tree
for the reporting phase. Generating a spanning tree based on the
network topology structure is simple and fast, and it is possible
for us to dynamically change the report spanning tree after de-
tecting that one or more nodes were compromised or crashed.

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1225

The key challenge is to avoid creating a hotspot link in the span-
ning tree. However, in the following we prove that generating
a tree that minimizes the reporting load on the busiest link is
NP-complete.
Complexity Proof: Suppose we make use of a tree as the re-

porting paths for all nodes, i.e., all the reporting messages are
transmitted along a spanning tree rooted at AC. Minimizing the
reporting load in the busiest link is equivalent to getting the min-
imum congestion tree based on the network topology graph. Let
be a network topology graph and be a spanning tree of .

The congestion of in , denoted by , is the max-
imal congestion over all the edges in . To prevent network
congestion, we should minimize the load of the busiest link in
the spanning tree, that is, to find the spanning tree whose
congestion is minimum in graph . From the relation between
the “optimization problem” and “decision problem,” finding the
minimum congestion spanning tree in the graph can be reduced
to deciding whether there exists a spanning tree in graph
whose congestion does not exceed a certain amount (some in-
teger). According to a proven theorem [34], it is NP-complete to
decide for planar graph and integer . Hence, ob-
taining the minimum busiest link load based on a tree topology
structure is NP-complete.
Therefore, it is impractical for us to get the optimal solution,

and we design LevAdj as a heuristic to efficiently obtain a good
spanning tree. In the following, we provide the LevAdj algo-
rithm details.
Algorithm Details: In LevAdj, we require the reporting paths

to form a tree for simplicity, i.e., we do not consider multipath
as the reporting topology. In addition, we let every node only
choose the shortest path to the AC (root of the tree). These re-
strictions can simplify the problem while at the same time not
degrading the performance too much. Based on these restric-
tions, nodes can be divided into different groups according to
its distance to the AC node. We use to represent the set of
nodes whose distance to the AC node is (hops), and the parent
of a node in the reporting tree in must belong to . In
this case, the reporting load of node in group is just the
reporting load on the edge between node and its parent node.
Thus, the problem of alleviating the reporting load of the heav-
iest edge can be reduced to the problem of reducing the load of
the busiest node.
The LevAdj algorithm aims to generate the tree-based paths

for sending traffic summaries and consists of two phases, i.e.,
the initialization of the tree and the adjustment of the tree. To ini-
tialize the tree, the algorithm first constructs , which contains
only one node, i.e., the AC node. LevAdj then proceeds to con-
struct the nodes in (). From a high level, nodes
in choose among their neighbors in and decide which
one is the most appropriate. More specifically, given nodes
and in the same level , is preferred over when the parent
of has lighter reporting load than that of node . In this way,
LevAdj constructs the entire tree recursively including all the
nodes.
From the initial construction of the tree, we get the reporting

tree where nodes at each level strive to select parent nodes based
on their parents reporting load. To further improve the perfor-
mance of such a greedy selection, we employ the adjustment
phase on the initially constructed tree. From a high level, such
an adjustment involves moving a whole subtree from its parent

node to another parent to get a better result (the busiest node
reporting load is reduced). The recursive steps of adjusting the
tree are as follows.
• The adjustment begins from the nodes in .
• For each node in , if the busiest node load is reduced by
swapping its subtree with the subtree of some other node
in the same level, the algortihm makes the swapping.

• If all the nodes in have been processed, then the algo-
rithm proceeds to process , , in turn until reaching
the leaf nodes.

• If there is any change to the current topology, we restart the
adjustment process from nodes in .

In the following, we prove the above adjustment process can
terminate.
Convergence Proof: We use to represent the reporting

load of the th node in . Without loss of generality, a node
in chooses among his neighbors, say, nodes and , in
. Node is preferred over when the parent of node has

lighter reporting load than that of node . Let represent
the number of nodes in , and refer to the number of levels.
We use , , , to stand for the path from node
to the root and , , for node . If node is preferred
over , it means there exists an integer such that the reporting
load of is smaller than that of and the reporting load
of equates for any .
When adjusting node in , if the algorithm moves its

subtree from its original parent to node , it is easy to prove
that new is smaller the original , where

because the difference between node ’s and node ’s load will
be smaller after the adjustment.
We can define a variable to represent the reporting load in

the topology as follows:

We can compare such an array between its original value and
its new value , where

If we give more priority to than where ,
we can prove that after every adjustment, :

for any in because the reporting load of
equates for any in and .

From the definition, we know that value is a nonnegative
integer. It must decrease by some amount after one adjustment.
Thus, there exists a limited number of adjustments, and hence
the adjustment will always terminate at some stage.
As we show in Section VIII-C, LevAdj works well in re-

ducing the busiest link load especially in DCNs according to
our experiments.

B. BinDin Algorithm

While the LevAdj algorithm is tailored for DCNs with sym-
metric, layered topologies that are commonly seen in current
practice, there still exist DCN topologies that do not conform to

1226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 6. Illustration of the BinDin algorithm. Node refers to AC, node refers
to the dummy source, and other nodes are the reporting nodes (sources to send
the traffic summaries). The maximum capacity of all the edges represented by
solid lines is initialized to and will be changed dynamically during the algo-
rithm execution. The capacity of all the edges depicted as dotted lines is set to
1 and never changes during the algorithm execution.

such patterns. Hence, in this section we present a more general
algorithm called BinDin.
Key Insights: To reduce the reporting load of the busiest

link, some nodes should avoid using the busiest link to send
traffic summaries. In the reporting phase, the AC is the sink,
while other nodes are the sources. This circumstance is similar
to the classic max-flow problem with only one sink, while it is
different from the maximum-flow problem since our problem
setting has multiple sources. To transform our problem to the
max-flow problem, we add a dummy source that has a direct
link with the other nodes. Adding the dummy source removes
the difference between reporting traffic summaries to the AC
and max-flow problem; but at the same time it raises a new
issue: The dummy source will not go through all the servers
to send information to the AC, i.e., not all the nodes will report
traffic summaries to the AC, violating the requirements of the
reporting phase in DFL. To ensure all the nodes are waypoints
for the dummy source to send traffic summaries to the AC, we
set the capacity of the direct link between dummy source and
reporting nodes to 1, which sums up to the quantities of influx
flow to the sink. The capacity of the links in the original graph
will be set to , where is the number of the reporting nodes.
Fig. 6 depicts an example.
Algorithm Details: As shown in Fig. 6, is the (dummy)

source node, while is the destination node (the AC). It forms
a flow model based on an undirected graph. The maximum ca-
pacity of the edges corresponding to real links in the DCN is
set to , while the capacity of the edges between the dummy
source and other nodes is set to 1. The key idea of BinDin
is that it repeatedly makes use of the link capacity to diminish
the reporting load of the busiest link. As shown in Fig. 7, we
leverage the BinDin algorithm to obtain a viable flow distribu-
tion in which the value of the flows on all the edges between
and other nodes is 1. If such a flow distribution does exist,

the algorithm remembers the load of the busiest link in this flow
distribution, reduces the capacity of the edges by half, and then
continues to minimize reporting load on the busiest link with
capacity between 0 and . Otherwise (if such a flow distri-
bution does not exist), BinDin seeks to minimize the reporting
load of the busiest link with the capacity between to
. Further utilizing the methodology of binary search, we can
run BinDin algorithm in O() time. As the BinDin algo-
rithm solves the maximum-flow problem in the general case
with no more than operation, where is the number of

Fig. 7. Pseudocode of the BinDin algorithm.

nodes of the DCN, is the number of links in the DCN, and
is some constant not depending on the network [19]. Therefore,
the overall time complexity of BinDin is O().
In Section VIII-C, we compare the performance and overhead

of LevAdj and BinDin, and find that the BinDin algorithm con-
sumes less bandwidth than LevAdj while BinDin requires much
more computation time.

VI. DETECTION

The AC performs consistency checks for each neighborhood
based on the received traffic summaries. However, since

an epoch may only have a small number of packets, detecting
a suspicious neighborhood based on the consistency checks for
individual epochs can introduce a large error rate. Consider an
extreme example: If in an epoch, a neighborhood only
transmits a single packet and the packet was spontaneously lost,
concluding that the packet-loss rate is 100% and is sus-
picious is inaccurate. To deal with this problem, we still per-
form the consistency checks and estimate the discrepancy for
individual epochs, but make the detection based on the aggre-
gated discrepancies over a set of epochs (called accumulated
epochs), so that the total number of packets over the epochs
is more than a certain threshold to give a high enough ac-
curacy (e.g.,) on the detection results. Section VIII
studies the value of . Therefore, the AC stores the traffic sum-
maries for each neighborhood and makes detection when the
total number of packets is reached. More specifically, let

and denote the and in the traffic
summary for epoch , respectively; for a certain neighborhood

, whenever

(9)

(where and iterates over all the accumulated epochs),
indicating is reached, the AC performs the following checks
to inspect if is suspicious.
Flow Conservation: The AC first extracts and

for each node in for each epoch , and cal-
culates the difference between the number of packets sent to
and the number of packets received from over all the

accumulated epochs. If the ratio of the difference to the total
number of packets in all the accumulated epochs is larger
than a threshold , i.e.,

(10)

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1227

then the AC detects as suspicious. is set based on the
administrator’s expectation of the natural packet-loss rate; e.g.,
in the simulations in Section VIII, we set to be four times of
the natural packet-loss rate in a neighborhood.
Content Conservation: The AC then extracts the sketches in

the traffic summaries in , and estimates the discrepancy
between the sketches for packets sent to and the sketches for
packets received from . The AC detects as malicious if
is larger than a certain threshold, i.e.,

where

(11)

It has been proven [20] that the above threshold can satisfy the
-accuracy defined in Section II-C.

Timing Consistency: The AC also extracts the difference be-
tween the average packet departure time and arrival time and
concludes that is suspicious if the difference is larger than
the expected upper bound on the 2-hop latency.

VII. SECURITY ANALYSIS

Due to the lack of space,We only showDFL’s security against
a single malicious node while DFL’s security against colluding
nodes can be similarly derived (and resembles the analysis in
the previous work [41]).
Security Against Corrupting the Data Packets: Dropping,

modifying, and fabricating data packets in a neighborhood
will cause inconsistencies between sketches in

as mentioned earlier. Delaying data packets in will
cause abnormal deviation between average packet arrival and
departure timestamps in . If a malicious router changes
the timestamps in data packets embedded by the source nodes,
it is equivalent to modifying packets, and packets may be
mapped to different epochs, in which case such an attack will
manifest itself by causing inconsistencies in the sketches of a
neighborhood containing the malicious router.
Security Against Corrupting : As we mentioned earlier, if

a malicious node drops the , some nodes adjacent to
will fail to send the correct traffic summaries to the AC, thus
causing a neighborhood containing to be detected. We note
that the authentication of is needed. Otherwise, a malicious
node can replace the sampling and fingerprinting keys with its
own fake keys, by which the malicious node can predict the
output of other nodes sketches and perform packet modification
attacks. In addition, if the epoch IDs in were not authenti-
cated, a malicious node can replace the oldest live epoch ID in

for which the traffic summaries are requested with the cur-
rent epoch ID. In this way, inconsistencies of traffic summaries
can be detected for some benign neighborhood due to the packet
transmission delay as Section IV-A describes. With the authen-
tication of , any attempt to modify will be detected (after

epochs).
It is noteworthy that the sent at the end of epoch cannot

simply disclose the MAC secret key for the previous
epoch . This is because at the time is disclosed, the

sent at the end of epoch may still have not reached
certain nodes. Hence, a malicious node that has already received

might send to a downstream colluding node via an

out-of-band channel, so that the colluding node can break the
authenticity of the sent in epoch . Hence, at the end
of an epoch , we disclose the MAC key for epoch to
ensure the sent in epoch has reached all the nodes
in the network.
Security Against Corrupting the Reporting Messages: First,

due to the use of the Onion Authentication, a malicious node
cannot selectively drop the reporting messages of a remote (non-
adjacent) node , to frame a neighborhood containing node .
Since all the accumulated reporting messages are “combined”
at each hop, can only drop the reporting messages from its
immediate neighbors, which will manifest a neighborhood con-
taining as suspicious.

VIII. PERFORMANCE EVALUATION

We analyze the protocol overhead and study the detection
efficiency of DFL via measurements and simulations with our
implementation of the classic Sketch [5] in C++. In particular,
we compare the tradeoffs between LevAdj and BinDin for the
reporting phase.

A. Storage Overhead

DFL incurs only per-neighbor state while existing secure
path-based FL protocols require per-source and per-path state.
In this section, we quantify the per-neighbor storage overhead
of a DFL router , which primarily includes the packet cache
and the sketch for each neighbor .
Sketch Size: The sketch size based on (7) and (8) is less than

500 B.
Cache Size and Per-neighbor Storage Overhead: We now

study the cache size for temporarily storing packet hashes in live
epochs, which, together with the sketch size analyzed above,
constitutes the per-neighbor storage overhead of a DFL router.
We denote the upper bound of one-way network latency as ,
epoch length as , and the number of packets per second as .
Using 20-B packet hashes, the cache size is given by

(12)

We omit the 1-bit indicator for each packet hash entry to in-
dicate to which packet stream the packet belongs (see Fig. 3).
Assuming the per-neighbor sketch size is 500 B, one-way la-
tency ms, and the average packet size is 300 B for an
OC-192 link, we derive the per-neighbor storage overhead of a
DFL router with different epoch lengths shown in Fig. 8. We
can observe that, with an epoch length of 20 ms, only around
4 MB is required per neighbor. The “humps” exist in the curve
due to the use of the ceiling function in (12).

B. Key Management Overhead

One distinct advantage DFL presents is that each router in
DFL shares only one secret key with the AC, whereas in path-
based FL protocols it is necessary for each router to share a
secret key with each source node in the network in the worst
case [12], which dramatically complicates the key management
and broadens the vulnerability surface. To quantify DFL advan-
tage over path-based FL protocols, we leverage the data center
topologies from DCell [24], BCube [23], and VL2 [22], and
measured ISP topologies from the Rocketfuel dataset [37] and
the topology from Internet2 [3]. Fig. 9 shows the maximum

1228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 8. Router per neighbor for an OC-192 link with the average packet size of
300 B and one-way network latency as 20 ms.

Fig. 9. Key management overhead at each router. A router in DFL always re-
quires just one key shared with the AC .

number of keys each router needs to manage in path-based FL
protocols; and a router in DFL always requires only one secret
key shared with the AC (thus invisible in the figure). We can see
that the number of keys a router needs to manage in path-based
FL is 100–10 000 times higher than that in DFL.

C. Reporting Overhead

Reporting traffic summary consumes bandwidth, and it takes
time to generate reporting paths (which matters when topology
changes frequently). We evaluate the bandwidth overhead and
computational overhead of DFL—more specifically, LevAdj
and BinDin.
Bandwidth Overhead: We analyze the bandwidth con-

sumption on each link through the reporting traffic summaries
based on recently proposed popular datacenter topologies from
BCube [23], DCell [24], Fat-tree [33], and VL2 [22]. We study
both LevAdj and BinDin and analyze their tradeoffs.
For the datacenter topologies with 3636–6144 switches/

routers and 3456–5256 servers, we select one of the top-tier
switches as the AC. We consider the epoch length ms,
a per-neighbor traffic summary of 500 B, and the epoch sam-
pling rate to 0.1%. The bandwidth consumptions are shown in
Figs. 10–12. Assuming OC-192 links, we can see that the band-
width used for reporting traffic summaries on a link is under
0.04% of a link capacity. These figures also show both LevAdj
and BinDin reduce the bandwidth consumption by around

Fig. 10. Datacenter topologies with epoch sampling rate = 0.1% based on min-
imum spanning tree.

Fig. 11. Datacenter topologies with epoch sampling rate = 0.1% based on
LevAdj algorithm.

Fig. 12. Datacenter topologies with epoch sampling rate = 0.1% based on
BinDin algorithm.

10 times in DCN topologies, and LevAdj algorithm performs
almost as well as BinDin algorithm. From the results of the
bandwidth overhead, we can see that the difference between the
two algorithms is inconsiderable. More specifically, the results

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1229

Fig. 13. Comparison of DCNs time overhead consumption between LevAdj
algorithm and BinDin algorithm.

differ little for DCN topologies. This is because the LevAdj
algorithm assumes that all nodes choose the shortest paths to
the root (the AC), which works well when the topology is sym-
metric and layered, where nodes have multiple equal-length
paths between each other. All the datacenter topologies used in
this simulation conform to such patterns.
Computational Overhead: From the above results, we

observe that the bandwidth consumption between BinDin algo-
rithm and LevAdj algorithm is insignificant. Thus, we further
analyze the computational overhead of the two algorithms
both in DCN topologies with 3636–6144 switches/routers and
3456–5256 servers. Our experiment environment is based on
Intel Core Duo CPU E7500 2.93 GHz with 4 GB RAM. Fig. 13
plots the computation time of the two algorithms. From these
results, we can clearly see that the running time of LevAdj is
about a hundred times faster than that of BinDin.

D. Detection Delay

As Section VI states, the AC performs consistency checks
and detects any anomalies only when the total number of
packets over multiple epochs is accumulated more than a
certain threshold in order to give a high enough accuracy
(e.g.,) on the detection results. Hence, the number of
packets characterizes the detection delay of the FL protocol.
We fully implement the classic Sketch due to Alon et al. [5] in
C++ with a fourwise independent hash function and perform
simulations to study .
Since in DFL, neighborhoods are inspected by the AC inde-

pendently, we also perform simulations for independent neigh-
borhoods with different sizes. Since we showed DFL’s security
against colluding attacks in Section VII, we emulate a single
malicious node in our simulations. Our setting is as follows.
The natural packet-loss rate in a neighborhood is 0.001, and
the detection thresholds for both flow conservation and content
conservation are . “benign” in Fig. 14 de-
picts the false positive rates in benign cases where no malicious
routers exist in the neighborhood. We can see that with

packets, the false positive rate is under 1%. “drop-only”
shows the false negative rates with a malicious router that only
drops packets with a probability of 0.005. “drop-mod” plots
the false negative rates with a malicious router that both drops
and modifies packets with a probability of 0.005, respectively.
We can see that the sketch-based approach is effective in de-
tecting packet modification attacks since by modifying packets

Fig. 14. False positive and negative rates.

the malicious router is detected faster in “drop-mod” than in
“drop-only.”
Compared to the previous work DynaFL, our new reporting

algorithms (LevAdj and BinDin) not only improve FL scala-
bility by reducing the bandwidth consumption, but also reduce
the detection delay. For example, in DynaFL, to save band-
width consumption, it only samples a fraction of epochs for
sending the traffic summaries. This fraction may be tiny (e.g.,
the sampling rate is 0.1% in DCN) in order to keep the band-
width consumption low. In DFL, since our reporting algorithms
lessen the bandwidth consumption by an order of magnitude
compared to DFL, we can increase the sampling rate by about
10 times, without worrying too much about the overhead. In this
way, DFL localizes faults (if any) in one tenth of time used in
DynaFL.

IX. RELATED WORK

Recent research on datacenters focuses on improving the net-
work scalability and performance, while the security of the net-
work infrastructure has not been well studied [17]. There exist
multiple secure FL proposals [9], [12], [40], [42], which are all
path-based. They are inapplicable to enterprise and datacenter
networks since they fail to support dynamic routing paths, re-
quire per-path state at routers, and incur per-source key sharing
and management. Besides these fundamental limitations, we
show that most existing FL protocols also suffer from security
vulnerabilities.
For example, WATCHERS [14], [25], AudIt [7], and

Fatih [32] implement the traffic summaries using either coun-
ters or Bloom Filters [13] with no secret keys, thus remaining
vulnerable to packet modification attacks as Section III-D
shows.
Both ODSBR [10], [11] and Secure Traceroute [35] activate

FL only when the end-to-end packet-loss rate exceeds a certain
threshold. However, a malicious node can safely drop packets
when FL is not activated and behave “normally” when FL is
invoked. In addition, ODSBR does not consider natural packet
loss, which can make the algorithm either not converge or incur
high false positives by incriminating benign links.
Liu et al. propose enabling 2-hop-away routers in the path

to monitor each other [28] by using 2-hop acknowledgment
packets. However, such a 2-hop-based detection scheme is
vulnerable to colluding neighboring routers. Similarly, both

1230 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Watchdog [30] and Catch [29] can identify and isolate mali-
cious routers for wireless ad hoc networks, where a sender
verifies if the next-hop node indeed forwards ’s packets by
promiscuously listening to ’s transmission. Both Watchdog
and Catch are vulnerable to collusion attacks, where a mali-
cious node drops the packets of a remote sender (which
is out of the promiscuous listening range of) while the
colluding neighbors in the promiscuous listening range of
intentionally do not report the packet dropping behavior of .
In this paper, DFL builds on our previous work (DynaFL),

which first proposed the neighborhood-based FL approach and
utilized the delayed function disclosure mechanism [41]. How-
ever, DynaFL targets general network topologies and fails to
present an efficient reporting algorithm. As a result, DynaFL
suffers high bandwidth consumption and long detection delay.
By leveraging the unique opportunities given by DCN topolo-
gies, DFL makes neighborhood-based FL truly practical by sig-
nificantly reducing both the bandwidth consumption and detec-
tion delay.

X. CONCLUSION

We design practical and scalable FL protocols for enterprise
and datacenter networks that can cope with dynamic traffic
patterns with constant, small router state. After identifying the
fundamental limitations of previous FL protocols, we explore
a neighborhood-based FL approach and propose DFL, which
is applicable to general network topologies. While existing
path-based FL protocols aim to identify a specific faulty link,
DFL localizes faults to a coarser-grained 1-hop neighborhood
to achieve four distinct advantages. First, DFL does not require
any minimum duration time of paths or flows as path-based
FL protocols do. Hence, DFL can cope with short-lived flows
popularly seen in datacenter networks. Second, in DFL, a
source node does not need to know the exact outgoing path
in contrast to path-based FL. Hence, DFL can support agile
(e.g., packet-level) load balancing such as in VL2 [22]. Third,
a DFL router only needs around 4 MB per neighbor state,
while a router in a path-based FL protocol requires per path
state. Finally, a DFL router only maintains a single secret key
shared with the AC, while a path-based FL protocol requires
per-source key storage at routers. On the other hand, the
neighborhood-based protocols require a central administrator
and cannot detect if a malicious router targets a single node’s
traffic. Consequently, it remains an open research challenge
to design a FL protocol that operates in intradomain settings
across mutually distrusting administrative boundaries.

REFERENCES
[1] K. Zetter, “Cisco security hole a whopper,”Wired 2005 [Online]. Avail-

able: http://www.wired.com/politics/security/news/2005/07/68328
[2] T. Espiner, “Symantec warns of router compromise,” 2008

[Online]. Available: http://news.cnet.com/Symantec-warns-of-
router-compromise/2100-7349_3-6227502.html

[3] “The Internet2 observatory: Proposal process,” 2008 [Online]. Avail-
able: http://www.internet2.edu/observatory/archive/proposal-process.
html

[4] D. Achlioptas, “Database-friendly random projections,” in Proc. 20th
ACM SIGMOD-SIGACT-SIGART PODS, New York, NY, USA, 2001,
pp. 274–281.

[5] N. Alon, Y.Matias, andM. Szegedy, “The space complexity of approx-
imating the frequency moments,” in Proc. STOC, 1996, pp. 20–29.

[6] X. Ao, “Report on DIMACSworkshop on large-scale Internet attacks,”
2003 [Online]. Available: http://dimacs.rutgers.edu/Workshops/At-
tacks/internet-attack-9–03.pdf

[7] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker, “Loss
and delay accountability for the Internet,” in Proc. IEEE ICNP, 2007,
pp. 194–205.

[8] K. Argyraki, P. Maniatis, and A. Singla, “Verifiable network-perfor-
mance measurements,” in Proc. ACM CoNEXT, 2010, Art. no. 1.

[9] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy,
“Highly secure and efficient routing,” in Proc. IEEE INFOCOM,
2004, pp. 197–208.

[10] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure Byzantine resilient routing protocol
for wireless ad hoc networks,” Trans. Inf. Syst. Security, vol. 10, no. 4,
2008, Art. no. 6.

[11] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-de-
mand secure routing protocol resilient to Byzantine failures,” in Proc.
ACM WiSE, 2002, pp. 21–30.

[12] B. Barak, S. Goldberg, and D. Xiao, “Protocols and lower bounds for
failure localization in the Internet,” in Proc. EUROCRYPT, 2008, pp.
341–360.

[13] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[14] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A.
Olsson, “Detecting disruptive routers: A distributed network moni-
toring approach,” in Proc. IEEE Symp. Security Privacy, May 1998,
pp. 115–124.

[15] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh, N.
McKeown, and S. Shenker, “SANE: A protection architecture for
enterprise networks,” in Proc. USENIX Security, 2006, Art. no 10.

[16] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” Theoret. Comput. Sci., vol. 312, no. 1, pp. 3–15, 2004.

[17] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and T. Vasilakos,
“Survey on routing in data centers: Insights and future directions,”
IEEE Netw., vol. 25, no. 4, pp. 6–10, Jul.–Aug. 2011.

[18] I. Cunha, R. Teixeira, and C. Diot, “Measuring and characterizing
end-to-end route dynamics in the presence of load balancing,” in Proc.
PAM, 2011, pp. 235–244.

[19] E. Dinic, “Algorithm for solution of a problem of maximum flow in
a network with power estimation,” Soviet Math. Dokl, vol. 11, pp.
1277–1280, 1970.

[20] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford, “Path-
quality monitoring in the presence of adversaries,” in Proc. SIGMET-
RICS, 2008, pp. 193–204.

[21] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G.
Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to
network control and management,” Comput. Commun. Rev., vol. 35,
no. 5, pp. 41–54, 2005.

[22] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.Maltz, P. Patel,
and S. Sengupta, “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[23] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A high performance, server-centric network archi-
tecture for modular data centers,” in Proc. ACM SIGCOMM, 2009, pp.
63–74.

[24] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz, “Dcell: A
scalable and fault-tolerant network structure for data centers,” in Proc.
ACM SIGCOMM, 2008, pp. 75–86.

[25] J. R. Hughes, T. Aura, and M. Bishop, “Using conservation of flow
as a security mechanism in network protocols,” in Proc. IEEE Symp.
Security Privacy, 2000, pp. 132–141.

[26] S. Kandula, R.Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
“Detailed diagnosis in enterprise networks,” inProc. ACM SIGCOMM,
2009, pp. 243–254.

[27] C. Labovitz, A. Ahuja, and M. Bailey, “Shining light on dark address
space,” Arbor Networks, Waltham, MA, USA, Tech. rep., 2001.

[28] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan, “An acknowl-
edgment-based approach for the detection of routing misbehavior in
MANETs,” IEEE Trans. Mobile Comput., vol. 6, no. 5, pp. 536–550,
May 2007.

[29] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Sustaining co-
operation in multi-hop wireless networks,” in Proc. USENIX NSDI,
2005, pp. 231–244.

[30] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbe-
havior in mobile ad hoc networks,” in Proc. ACMMobiCom, 2000, pp.
255–265.

ZHANG et al.: DFL: SECURE AND PRACTICAL FAULT LOCALIZATION FOR DATACENTER NETWORKS 1231

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innova-
tion in campus networks,” Comput. Commun. Rev., vol. 38, no. 2, pp.
69–74, 2008.

[32] A. T. Mizrak, Y. c. Cheng, K. Marzullo, and S. Savage, “Fatih: De-
tecting and isolating malicious routers,” IEEE Trans. Depend. Secure
Comput., vol. 3, no. 3, pp. 230–244, Jul.–Sep. 2005.

[33] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, and V. Subram, “PortLand: A scalable fault-tolerant layer
2 data center network fabric,” in Proc. ACM SIGCOMM, 2009, pp.
39–50.

[34] Y. Otachi, H. L. Bodlaender, and E. J. v. Leeuwen, “Complexity results
for the spanning tree congestion problem,” in Proc. Workshop Graph
Theoret. Concept Comput. Sci., 2010, pp. 3–14.

[35] V. N. Padmanabhan and D. R. Simon, “Secure traceroute to detect
faulty or malicious routing,” Comput. Commun. Rev., vol. 33, no. 1,
pp. 77–82, 2003.

[36] A. Perrig, R. Canetti, D. Song, and D. Tygar, “The TESLA broadcast
authentication protocol,” Cryptobytes, vol. 5, no. 2, pp. 2–13, 2002.

[37] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proc. ACM SIGCOMM, 2002, pp. 133–145.

[38] R. Thomas, “ISP security bof, nanog 28,” 2003 [Online]. Available:
http://www.nanog.org/meetings/nanog28/presentations/thomas.pdf

[39] M. Thorup and Y. Zhang, “Tabulation based 4-universal hashing with
applications to second moment estimation,” in Proc. SODA, 2004, pp.
615–624.

[40] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping adversary identifi-
cation for data plane security,” in Proc. ACM CoNEXT, 2008, Art. no
24.

[41] X. Zhang, C. Lan, and A. Perrig, “Secure and scalable network fault
localization under dynamic traffic patterns,” in Proc. IEEE Symp. Se-
curity Privacy, 2012, pp. 317–331.

[42] X. Zhang, Z. Zhou, G. Hasker, A. Perrig, and V. Gligor, “Network fault
localization with small TCB,” in Proc. IEEE ICNP, 2011, pp. 143–154.

[43] X. Zhang, Z. Zhou, H.-C. Hsiao, A. Perrig, and P. Tague, “Shortmac:
Efficient data plane fault localization,” in Proc. NDSS, 2012.

Xin Zhang received the B.S. degree in automation
from Tsinghua University, Beijing, China, in 2006,
and the Ph.D. degree in computer science from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2012.
He is currently is a Software Engineer with

Google, Pittsburgh, PA, USA, working on datacenter
cluster management. His research interests revolve
around security and network.
Dr. Zhang received the Chinese Government

Award for Outstanding Students Abroad in 2011.

Fanfu Zhou received the B.S. degree in computer
science from Huazhong University of Science and
Technology, Wuhan, China, in 2008, and the M.S.
degree in computer science from Shanghai Jiao
Tong University, Shanghai, China, in 2012, and is
currently pursuing the Ph.D. degree in computer
science at Shanghai Jiao Tong University.
His research interests are primarily in computer

network security and mobile network security.

Xinyu Zhu received the B.S. degree in software
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2012, and is currently a post-
graduate student in software engineering at Shanghai
Jiao Tong University.
His interests lie broadly in network.

Haiyang Sun received the B.S. degree in software
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2012, and is currently a post-
graduate student with the School of Software,
Shanghai Jiao Tong University.
His main interests include binary translation and

virtualization.

Adrian Perrig (M’00–SM’12) received the Ph.D.
degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2002.
He is a Distinguished Fellow with CyLab and a

Full Professor of computer science with the Swiss
Federal Institute of Technology (ETH), Zurich,
Switzerland. He is formerly a Professor in electrical
and computer engineering, engineering and public
policy, and computer science with Carnegie Mellon
University. His research revolves around building
secure systems and includes network security,

trustworthy computing, and security for social networks.

Athanasios V. Vasilakos (M’00–SM’11) received
the Ph.D. degree in computer engineering from the
University of Patras, Patras, Greece, in 1988.
He is currently a Professor with the University

of Western Macedonia, Kozani, Greece. He has
authored or coauthored over 200 technical papers
in major international journals and conferences. He
is the author/coauthor of five books and 20 book
chapters in the areas of communications.
Prof. Vasilakos has served as General Chair, Tech-

nical Program Committee Chair, or TPC member
(i.e., INFOCOM, SECON, MobiHoc) for many international conferences. He
served or is serving as an Editor or/and Guest Editor for many technical journals,
such as the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT;
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:
CYBERNETICS; IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN

BIOMEDICINE; IEEE TRANSACTIONS ON COMPUTERS, ACM Transactions
on Autonomous and Adaptive Systems; the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS special issues of May 2009, January 2011, and
March 2011; the IEEE Communications Magazine; Wireless Networks; and
Mobile Networks and Applications. He is the founding Editor-in-Chief of the
International Journal of Autonomous and Adaptive Communications Systems
and International Journal of Arts and Technology. He is also General Chair of
the Council of Computing of the European Alliances for Innovation.

Haibing Guan (M’00) received the Ph.D. degree
in artificial intelligence from Tongji University,
Shanghai, China, in 1999.
He is currently a Professor with the School of

Electronic, Information and Electronic Engineering,
Shanghai Jiao Tong University, Shanghai, China,
and the Director of the Shanghai Key Laboratory
of Scalable Computing and Systems. His research
interests include distributed computing, network
security, network storage, green IT, and cloud
computing.

