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Dynamic Power Allocation for Maximizing
Throughput in Energy-Harvesting

Communication System
Rahul Vaze, Rachit Garg, and Neetish Pathak

Abstract—The design of online algorithms for maximizing the
achievable rate in a wireless communication channel between a
source and a destination over a fixed number of slots is consid-
ered. The source is assumed to be powered by a natural renew-
able source, and themost general case of arbitrarily varying energy
arrivals is considered, where neither the future energy arrival in-
stants or amount nor their distribution is known. The fading coef-
ficients are also assumed to be arbitrarily varying over time, with
only causal information available at the source. For a maximiza-
tion problem, the utility of an online algorithm is tested by finding
its competitive ratio or competitiveness that is defined to be the
maximum of the ratio of the gain of the optimal offline algorithm
and the gain of the online algorithm over all input sequences. We
show that the lower bound on the optimal competitive ratio for
maximizing the achievable rate is arbitrarily close to the number
of slots. Conversely, we propose a simple strategy that invests avail-
able energy uniformly over all remaining slots until the next energy
arrival, and show that its competitive ratio is equal to the number
of slots, to conclude that it is an optimal online algorithm.

Index Terms—Competitive ratio, energy harvesting, online
algorithms, throughput maximization.

I. INTRODUCTION

W ECONSIDER the energy harvesting paradigm for pow-
ering wireless communication, where the source har-

vests energy from natural renewable sources, such as solar cells,
windmills, etc., for transmitting its data to the destination. Using
energy from nature not only improves the lifetime of wireless
devices, which are otherwise battery-powered, but also provides
a means of green communication. Harvesting energy from nat-
ural sources, however, makes the future available energy levels
at the source unpredictable, and the source has to adaptively
choose the transmission power for maximizing its utility func-
tion without knowing the future energy arrivals. Another impor-
tant constraint dictated by harvesting energy from nature is the
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energy neutrality constraint, i.e., energy spent by any time in-
stant cannot be more than the energy harvested until that time.
Energy neutrality and unpredictable energy availability makes
the design of optimal algorithms in the energy harvesting para-
digm a challenging problem.
In this paper, we consider a wireless communication channel

between a single source–destination pair. The source is assumed
to harvest energy from renewable sources, and the problem is
to maximize the mutual information or the achievable rate be-
tween the source and the destination over a fixed number of
slots. Each slot corresponds to a coherence interval, time for
which the fading coefficients remain constant. The source is as-
sumed to have only causal information about the energy arrivals
and fading coefficients. To model the most general energy har-
vesting paradigm, we assume that the energy arrivals are arbi-
trarily varying and the source is not assumed to have any infor-
mation about the future energy arrivals or its distribution. This
assumption is valid for the case when energy is harvested from a
combination of heterogenous sources such as wind, vibrational
source, and body-strapped devices, for which the distribution
of energy arrivals may be time-varying and potentially hard to
compute.
We consider the scenario when the wireless fading channel

is an arbitrarily varying channel (AVC), where the fading coef-
ficients do not follow any distribution and vary arbitrarily over
time. AVCs in wireless communication are motivated from the
nonstationarities in propagation environment because of mo-
bility, presence/absence of line of sight, Doppler effects, etc. In
prior work, AVCs have been studied from an information-theo-
retic point of view [1]–[3], however, to the best of our knowl-
edge, AVCs in the energy harvesting paradigm have not been ex-
plored before. In any case, assuming arbitrarily varying energy
arrivals and fading coefficients provides a worst-case guarantee
on the system performance. Therefore, the problem we consider
in this paper is to find online algorithms (that have access to only
causal information about energy arrivals and fading coefficients
with no distribution information) that maximize the achievable
rate over a fixed number of slots.
In prior work, optimal offline algorithms (that have access

to all future energy arrivals instants and amounts) have been
derived for maximizing the achievable rate in energy har-
vesting systems for the additive white Gaussian noise (AWGN)
channel [4]–[6] and for the wireless fading channel [7], [8].
Similar results are available for many other communication
channels, e.g., interference channel [9], broadcast channel [10],
and relay channel [11]. The scope of these algorithms, however,
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is limited because of unrealistic assumption of noncausal in-
formation. Some properties of stochastic online algorithms,
where the source has the knowledge of the distribution of
energy harvest instants and amounts, have been derived in
[12]–[14] using results from stochastic control theory. To the
best of our knowledge, however, no analysis is known for
online algorithms with unknown energy harvest distribution for
maximizing the achievable rate.
With arbitrarily varying energy arrivals and fading coeffi-

cients, we turn to the competitive ratio analysis of online algo-
rithms that is popular in the computer science community [15] to
derive “good” online algorithms for maximizing the achievable
rate. With online algorithms, no knowledge of future inputs (en-
ergy arrivals and fading coefficients in our case) is assumed, and
the input can even be generated by an adversary that creates new
input portions based on the systems reactions to previous ones.
The goal is to derive algorithms that have a provably good per-
formance even against adversarial inputs. The performance of
online algorithms is usually evaluated using competitive anal-
ysis [15], where an online algorithm is compared to an op-
timal offline algorithm that knows the entire request sequence
in advance and can serve it with maximum profit/minimum

cost. In the dynamic programming literature, this framework is
known as the minimax ormaxmin control [16], where the objec-
tive of the algorithm is to maximize the utility while the nature
is assumed to choose parameters to minimize the utility.
In prior work, competitive analysis has been used to de-

sign online algorithms for several communication systems,
e.g., [17]–[21]. The most related papers to this work are [19]
and [20], where the problem of dynamic power allocation in
an arbitrarily varying wireless fading channel (AVC) under
a sum-power constraint is considered. The two fundamental
differences between the problem studied in this paper and
prior work are: 1) future energy availability is unknown; and
2) energy neutrality constraint, and to the best of our knowledge
these issues have not been addressed in the literature.
To state our results formally, we define an online algorithm

and its competitiveness as follows.
Definition 1: Let be an optimization problem that depends

on request sequence . An online algo-
rithm for solving is presented with requests

, and it has to serve each request without knowing the
future requests. In our case, is the sequence of energy arrivals
and fading coefficients. Formally, when processing to solve

does not know any requests . Let the profit of the
online algorithm for serving be . An optimal offline
algorithm knows the entire request sequence in advance
and serves it with maximum profit .
Definition 2: Let be any online algorithm for solving a

maximization problem . Then, is called -competitive or
has a competitive ratio of if for all input sequences

and the optimal competitive ratio is defined as

The contributions of this paper are as follows.
• We first consider the special case when all the energy
arrives at the start of transmission, and only the fading
coefficients are arbitrarily varying. For this special case,
we show that the optimal competitive ratio for solving
the achievable rate maximization problem over slots is
, and a simple online algorithm that divides the energy

equally in all slots is optimal. This special case setting
is equivalent to achievable rate maximization in an AVC
with a sum-energy/power constraint [19], where non-
matching bounds on the optimal competitive ratio have
been derived as a function of the ratio of the maximum
and the minimum value of the fading coefficients. The
bounds derived in [19], however, are valid for the case
when the number of slots is allowed to be a function of
the available energy and the maximum and the minimum
value of the fading coefficients. The bounds [19] are
discussed in detail in Remark 3. Our results apply to any
fixed number of slots , where need not be a function
of any other system parameter.

• For the general case of arbitrarily varying energy arrivals
and fading coefficients, we show that the optimal compet-
itive ratio is , and an online algorithm that invests avail-
able energy uniformly over all the remaining slots until the
next energy arrival is optimal.

• We also consider the problem of minimizing the transmis-
sion time of a fixed number of bits when both the energy
arrivals and fading coefficients are arbitrarily varying, that
is related to the achievable rate maximization problem. We
show that the competitive ratio of any online algorithm
for minimizing the transmission time of a fixed number
of bits is lower-bounded by infinity. This is a negative re-
sult that shows that there exist input sequences for which
an optimal offline algorithm can finish transmission in fi-
nite time. However no online algorithm can. For the case
of minimizing the transmission time of a fixed number of
bits under an AWGN channel, where all fading coefficients
are equal to unity, a simple online algorithm has been pro-
posed in [22] whose competitive ratio is less than 2. Thus,
the problem of minimizing the transmission time of a fixed
number of bits critically depends on the arbitrarily varying
nature of fading coefficients.

Notation: Let and be two functions defined on
some subset of real numbers. Then, we write
if ;
if ; and

if
. We use the symbol to define a variable.

II. SYSTEM MODEL

Consider a wireless communication channel between a
source and a destination, where the received signal at the
destination at time is given by

(1)

where is the signal transmitted by the source with power ,
is the fading coefficient, and is the additive white Gaussian
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noise, which is assumed to have zero mean and unit variance
and is independent across time . We assume a block fading
model [23], where the fading coefficients remain constant
for time units. We call each such block as a slot of width ,
where in the th time-slot, the fading coefficient is denoted as
for , where is the total number of slots of

interest. Throughout the rest of this paper, we work with slots
rather than actual time instants. We assume that the source is
powered by a renewable energy source and receives amount
of energy at the start of the th slot.
As discussed before, we consider an arbitrarily varying fading

channel and energy arrivals, where at slot no information (not
even the distribution) about the fading coefficients or the en-
ergy arrivals of the future slots , is known. We
assume that at the beginning of each slot , the source obtains
the information about fading coefficient of slot , and the
energy that arrives at slot . The source at slot can use in-
formation about the fading coefficients and energy arrivals until
slot , i.e., , for making transmission decisions
(e.g., power to transmit) to maximize its utility. We call this the
causal information.
In this paper, we consider that the source is interested in max-

imizing the mutual information or the achievable rate. Let the
source use energy in slot , then from (1), the achievable
rate in slot is given by [24]

(2)

since throughout the slot of width , the fading coefficient is
, and for which equally distributing the energy over all time

units maximizes the achievable rate [24]. Throughout the rest of
the paper, we consider with base 2 and drop the subscript 2
from here onward. The overall rate accumulated over slots is

(3)

and the total energy consumed is .
The optimization problem of interest is

s.t.

(4)

with only causal information about and . The constraint
in (4) represents the fact that the en-
ergy used by slot is less than the energy arrived until slot ,
which is popularly known as the energy neutrality constraint.
We are interested in finding the optimal online algorithm
that achieves the best competitive ratio, i.e.,

(5)

where is the
sequence of fading coefficients and energy arrivals for slots,
and the optimal competitive ratio is

(6)

A related problem to (4) is, given a fixed number of bits at
the beginning of communication, minimize the time by which
all bits are sent to the destination with causal information
about and . Note that here we do not have any restriction
on the number of slots, i.e., the total slots used to transmit bits
need not be less than . With the previous definition of
being the energy spent in slot , and as the bits transmitted
in slot using energy , the number of bits transmitted until
slot is

Then, the optimization problem to find the optimal total trans-
mission time is

(7)

Similar to (4), we are interested in finding online algorithms to
solve with the best competitive ratio

where we have inverted the ratio in comparison to (6), because
(7) is a minimization problem.
For both the optimization problems (4) and (7), the optimal

offline algorithm has been characterized in [4]. However, the
structure of the optimal offline algorithm does not directly lead
to the evaluation of or that is required for com-
puting the competitive ratio. For analytical tractability of the
competitive ratio, we will typically use an upper bound (lower
bound) on .
Remark 1: A typical strategy to find the optimal

competitive ratio [e.g., (6)] involves two steps. In the
first step, we construct a set of adversarial sequences

(typically finite for analytical tractability)
to lower-bound the optimal competitive ratio by ,
where . In the
second step, we find an online algorithm and upper-bound
by . Then, if , the optimal
solution is found. Finding the choice of sequences such that

, however, is often quite difficult.
Before going to the competitive ratio analysis of online algo-

rithms where both energy arrivals and fading coefficients are ar-
bitrarily varying and are only known causally (4), in Section III
we consider the case when energy arrives only at the begin-
ning of communication, and only the fading coefficients are
arbitrarily varying and known causally. This restricted case is
equivalent to sum-rate maximization in an arbitrarily varying
fading channel with a sum-power constraint (energy available
at the beginning of the communication), which has received re-
cent attention in [19], from the competitive ratio point of view.
Moreover, the competitive ratio analysis of this restricted case
acts as a building block for the competitive ratio analysis of the
general case.
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III. FIXED ENERGY WITH ARBITRARY FADING COEFFICIENTS

Consider the case when energy only arrives at the beginning
of transmission at slot 1 given by , and no energy arrives
after that, while the fading coefficients are arbitrarily varying
and only causally known. In this case, any input sequence is of
the form

With this model, the optimization problem (4) specializes to

s.t. (8)

where compared to (4), the energy constraint is only a sum-
energy constraint of throughout the slots.
Remark 2: Under a sum-energy/power constraint, the op-

timal offline strategy (if the source knows the sequence at
the beginning of transmission) to solve (8) is the well-known
water-filling strategy [24]. For the special case, when all the
fading coefficients are identical, the water-filling strategy is to
transmit equal energy/power in each slot. We will use this fact
at multiple instances to upper-bound the rate achieved by the
optimal offline algorithm.
Remark 3: In prior work, bounds on the competitive ratio

of (8) have been derived in [19] as a function of and
, where . Assuming that the

number of slots is a function of initial energy , and
, a lower bound on the competitive ratio of any online al-

gorithm has been shown to be , and an
online algorithm is proposed for which the competitive ratio

is . Thus, there is a large gap between the

lower and upper bound on the competitive ratio.
In this section, we consider the general case, where the

number of slots is fixed and is not a function of any other
system parameter, and show that the optimal competitive ratio

.

A. Lower Bound on the Competitive Ratio

In this section, we show that the competitive ratio of any on-
line algorithm solving is lower-bounded by for arbi-
trarily small . We first discuss the simple case of
to illustrate the proof idea, and then generalize it for any .
As discussed in Remark 1, to lower-bound the optimal com-

petitive ratio, it is sufficient to consider any input sequences.
In this section, we consider only two input sequences

, and ,
where is the parameter that we will choose to get the largest
lower bound on the competitive ratio, and . We choose
to be small enough such that for any we
consider, the achievable rate obtained in any slot using energy

is (linear approximation),
similar to [19]. Since we are looking for the worst possible input
sequence for deriving the lower bound, we can choose any value
of , and in particular to be small enough. Note that we will

prove the upper bound on the competitive ratio for any value of
and in Subsection III-B.
Following Remark 1, we have the following lower bound on

the competitive ratio:

With the linear rate approximation in each slot, it immediately
follows that the optimal offline algorithm will invest all its
amount of energy in one slot that has the highest fading coeffi-
cient. Thus, with , while .
Now, consider an online algorithm . Note that the input se-

quence in slot 1 for both and is identical, and thus without
the knowledge of future fading coefficients of slot 2, cannot
adapt the energy it spends in slot 1 depending on .
Thus, let spend fraction of its energy in slot 1 for
both and , and use the rest fraction in slot 2. Thus,
with parameter we can index all online algorithms. Note that
any online algorithm will choose that that minimizes the com-
petitive ratio (penalty with respect to an optimal offline algo-
rithm). Next, we show that no matter what is, the competitive
ratio of any online algorithm is at least 2.
With spending fraction of its energy in slot 1 for

both and , while
. Thus

At the optimal value of , the two terms inside the max-
imum are equal. Thus, satisfies . There-
fore, , and hence

and consequently, . Note that

for any value of .

Therefore .
Clearly

Thus, for any arbitrarily small .
Working backwards, what we have essentially done is as fol-

lows. Let us say we want to show that for some .
Then, we pick large enough so that using the linear
approximation that for any . Then,
pick small enough so that the linear approximation on achiev-
able rate for any is tight. The same
technique is applied for obtaining a lower bound for any number
of slots in the following Theorem.
Theorem 1: Let any online algorithm be -competitive for

solving . Then, for any arbitrarily small .



VAZE et al.: DYNAMIC POWER ALLOCATION FOR MAXIMIZING THROUGHPUT IN ENERGY-HARVESTING COMMUNICATION SYSTEM 1625

Proof: Consider input sequences of length

, where . We also fix the total energy
available that arrives at slot 1 to . As in the case of

, we let small enough such that
. With

, the achievable rate with the optimal offline algorithm with
sequence is since it spends all its energy in
the slot with the largest fading coefficient.
Consider an online algorithm . Since the input at slot 1 is

identical for , at slot 1, does not know
which input sequence has actually occurred. Thus, cannot
adapt the amount of energy it spends in slot 1 depending on

. Thus, let spend fraction of its en-
ergy in slot 1. At slot 2, if sees as the input
resulting because of , it transmits no energy. Otherwise, if

is the input at slot 2 that is identical for ,
similar to above description, let spend fraction of its en-
ergy in slot 2 irrespective of the input sequence since it has no
knowledge of the input sequence among the possible input
sequences . Carrying this forward, let spend
no energy in any slot for which the input sequence is . Oth-
erwise, let spend fraction of its energy in slot , such that

. Thus, with parameter we can index all on-
line algorithms. The rate of an online algorithm with input
sequence is . From Remark 1

(9)

Similar to the case of , at the optimal values of
, all the terms inside the maximum are equal. Thus,

. Hence

(10)

where

Similar to the case, it can be easily shown that
. Moreover, since the lower bound (10) is

valid for all , therefore . Thus, for
any arbitrarily small .
In the proof, we assumed that can take any value in

, which is consistent with the typical wireless channel
modeling [23], where fading coefficients are assumed to have
infinite support. In case the fading coefficients are bounded from
below and above, i.e., , where
and , then we cannot let any and
in the proof of Theorem 1. However, if is large enough,
reworking the proof of Theorem 1 by replacing by

, and choosing to be large enough, we can
get , for small enough that depends on .
The regime where is large enough has been considered
previously in [19] to derive a lower bound on the competitive
ratio that is given by .
Remark 4: Note that the lower bound obtained in Theorem 1

also applies to the case when an online algorithm makes de-
cision at slot with information only about the past and

, or no information at all since knowing the present
information can only improve the performance of an online
algorithm.
Discussion: In this section, we constructed a lower bound on

the competitive ratio of any online algorithm for maximizing
the achievable rate under a sum-energy/power constraint. We
showed that the lower bound is arbitrarily close to the number
of slots . To derive this bound, we first chose the available
energy value to be small enough such that the rate achievable
in any slot is well approximated by linear payoff: the product of
the fading coefficient and the energy invested in that slot. With
the linear payoff, the basic idea behind the lower bound is that if
we keep increasing the fading coefficients in subsequent slots,
the optimal offline algorithm invests all its energy in the last
slot. Any online algorithm, however, has to invest equal energy
in all slots since it tries to maintain a minimum ratio between
the optimal offline algorithms payoff and its own payoff at each
slot without knowing the future fading coefficients.
Compared to [19], we obtained the lower bound as a function

of the number of slots rather than the ratio of the maximum
and the minimum fading coefficient magnitudes. The utility of
this lower bound is that, in Section III-B, we will show that this
bound is actually tight, i.e., there exists an online algorithm that
can achieve this lower bound.We also note that our lower bound
does not contradict the upper bound derived in [19] (Remark 3)
since [19] assumes that the number of slots is a function of the
available energy , and , and the bound is derived
for a particular choice of .

B. Upper Bound on the Competitive Ratio

We propose an equal power allocation (EPA) algorithm to
upper-bound the competitive ratio of (8). With EPA algo-
rithm, the available energy at the start is equally distributed
across all the slots, i.e., . Next, we
show that the competitive ratio of the EPA algorithm is .
Theorem 2: EPA algorithm is -competitive for solving .

Consequently, the EPA algorithm is an optimal online algorithm
for solving (8).
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Proof: Consider any input sequence
. Let

Since the EPA algorithm invests equal energy in each
slot, the achievable rate with the EPA algorithm

by just counting for the rate obtained in
the th slot.
To upper-bound the rate obtained with the optimal offline

algorithm, consider an enhanced version of the input sequence
that consists of fading coefficients with all entries equal

to , i.e., .
Clearly, the achievable rate with is better than . Thus,

. Moreover, with , since all fading co-
efficients are identical, from Remark 2, the optimal offline
algorithm (waterfilling) invests equal energy in each slot
to get . Thus, the competi-
tive ratio of the EPA algorithm is

(11)

The final conclusion follows by comparing the upper bound
(11) to the lower bound on the competitive ratio derived in
Theorem 1.
Discussion: In this section, we proposed a simple EPA al-

gorithm that spends equal energy in all slots without using the
causal fading coefficient information, and whose competitive
ratio is upper-bounded by the number of slots . More sig-
nificantly, the competitive ratio of the EPA algorithm matches
with the lower bound obtained in Theorem 1, and hence we con-
clude that the EPA algorithm is an optimal online algorithm for
solving (8). As described before, upper and lower bounds on the
competitive ratio have been derived previously in [19] as a func-
tion of the ratio of the maximum to the minimum fading coef-
ficient. However, the bounds do not match. Note that our upper
bound on the competitive ratio derived using the EPA algorithm
does not contradict the lower bound derived in [19] (Remark 3)
since [19] assumes that the number of slots is a function of
the available energy , and . Using Theorems 1 and
2, we note that the number of slots is the right quantity of in-
terest in terms of the competitive ratio rather than the ratio of
the maximum to the minimum fading coefficient [19].
In light of Remark 4, from Theorems 1 and 2, it also fol-

lows that the EPA algorithm is an optimal online information
even if only past or no information about the fading coefficients
is available at each slot. Thus, the optimality of the EPA algo-
rithm is somewhat a negative result since the optimal competi-
tive ratio is invariant to the availability of the information about
the past/present fading coefficients and shows that the causal
fading coefficient information is actually not useful.

IV. ARBITRARY ENERGY ARRIVALS AND FADING
COEFFICIENTS

In this section, we consider the general case, where both the
energy arrivals and fading coefficients are arbitrarily varying
and only causal information is available about them, i.e., we are
interested in solving (4).

A. Lower Bound on the Competitive Ratio

With arbitrarily varying energy arrivals and
fading coefficients, the input sequence is

. Let us restrict our
attention to the case when . Then, we
are in a setting equivalent to Section III, where all the energy
arrives at the beginning, and since is
a special case of input sequences, from Remark 1, it follows
that the lower bound on the optimal competitive ratio obtained
in Theorem 1, also applies to the general case of arbitrarily
varying energy arrivals and fading coefficients. We summarize
the result in the following theorem.
Theorem 3: Let any online algorithm be -competitive for

solving (4). Then, for any arbitrarily small .
Remark 5: Note that from the definition of the competitive

ratio, considering a special case of
is sufficient to derive a lower bound on the optimal competi-
tive ratio. However, since the upper bound has to hold for all
input sequences , i.e., all possible values of ,
limiting to special cases of inputs is not sufficient for deriving
an upper bound on the competitive ratio. Hence, the results of
Section III-B do not apply for arbitrarily varying energy arrivals.
In Section IV-B, we propose a modified EPA algorithm that is
online and whose competitive ratio is upper-bounded by .

B. Upper Bound on the Competitive Ratio

To upper-bound the competitive ratio with arbitrarily varying
energy arrivals and fading coefficients, we modify the EPA al-
gorithm as follows, and call it repeated equal power allocation
(REPA) algorithm. With REPA, if at slot the available energy
is , then it equally distributes the available energy over the
remaining slots and uses energy in each slot
until the next energy arrival. Clearly, the REPA algorithm is
online, i.e., it does not depend on future, and satisfies the en-
ergy neutrality constraint. Note that if the energy only arrives
at slot 1, then the REPA algorithm is equivalent to the EPA al-
gorithm. Next, we show that REPA algorithm is -competitive
for solving (4).
Theorem 4: The REPA algorithm is -competitive for

solving (4). Consequently, the REPA algorithm is optimal
for solving (4).

Proof: Consider any input sequence
. Consider

the slot indices for which energy arrivals , and denote
them by , where . Without loss, assume that

, i.e., nonzero energy arrives in slot 1. Otherwise, we
can start from the th slot and remove the first
slots from consideration. This can only improve the upper
bound. Let denote the index of slot interval between energy
arrivals at slots and . The th slot
interval represents the slots between slot , where the last
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Fig. 1. Illustration of strategy used to upper-bound the rate with optimal offline algorithm.

energy arrival happens, and the last slot . See Fig. 1 for
illustration. For simplicity of exposition, we let the input
sequence corresponding to the th slot interval be

,
where .
Let be the largest fading coefficient mag-

nitude in slot interval , i.e.,
. Then, as in the proof

of Theorem 2, we enhance the input sequence corresponding to
the th slot interval as

, and . See Fig. 1 for
illustration.
Clearly, the rate achievable with is better than , thus

. Note that because of energy neutrality con-
straint, the maximum energy spent by the end of slot interval is

. Thus, in any slot interval , the maximum energy

that can be spent is . Therefore, the maximum
rate achievable in any slot interval is obtained by spending all
the energy that has arrived until then in slot interval .
Moreover, since with , in each slot interval the fading coef-

ficients are identical, and hence the energy spent by an optimal
offline algorithm in any slot interval is spent equally among all
the slots in that slot interval (Remark 2), therefore,

since

is the width of the th slot interval. To obtain this upper bound,
we have made significant relaxation of energy constraint since
we allow spending energy in slot interval 1, spending energy

in slot interval 2, and so on such that the energy spent
in slot interval is , as shown in Fig. 1.
Hence

(12)

Thus, (12) serves as an upper bound on that we will
use to upper-bound the competitive ratio of the REPA algorithm.
Next, we lower-bound the rate with the REPA algorithm by

considering the original input sequence and not its enhanced
version. With the REPA algorithm, let the energy used in any
slot of slot interval be . Then, , and

for . Simple algebraic ma-

nipulations show that . Then, with the
REPA algorithm, for each slot interval , consid-
ering only one slot that achieves the fading coefficient
in

Substituting, , we get

and the total achievable rate

(13)

where follows from the fact that
for . Thus, from (12) and (13), the competitive ratio of
the REPA algorithm is
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Discussion: In this section, we proposed the REPA algorithm
that spends the available energy equally in all future slots until
the next energy arrival and upper-bounded its competitive ratio
for solving (4). The REPA algorithm is essentially a pessimistic
algorithm that assumes that no further energy is going to arrive
in future and spends its energy equally in each slot. Even though
the REPA algorithm is pessimistic, and does not depend on the
current or past fading coefficients, we showed that the competi-
tive ratio of the REPA algorithm is equal to the number of slot
that matches with the derived lower bound in Theorem 3. Sim-
ilar to the commentmade in the discussion of Section III-B, once
again we conclude that the value of current or past fading coef-
ficients information is minimal for solving (4) since the compet-
itive ratio of the REPA algorithm that is agnostic to the causal
fading coefficient information is optimal.
In Section V, we discuss a related problem of minimizing

the transmission time for a fixed number of bits, when both the
energy and fading coefficients are arbitrarily varying.

V. TRANSMISSION TIME MINIMIZATION PROBLEM

In this section, we consider the problem of minimizing the
transmission time of fixed number of bits that are available at
the beginning of transmission (7), when both the energy arrivals
and fading coefficients are arbitrarily varying, and only causal
information is known about them. This problem has been previ-
ously considered in [7], where the optimal offline algorithm has
been derived. For this problem, we will show a negative result
that the competitive ratio of any online algorithm is infinity. We
would like to note that for the minimum transmission comple-
tion time problem in anAWGN channel, where all the fading co-
efficients are equal to 1, the competitive ratio is upper-bounded
by 2 [22].
Theorem 5: Let any online algorithm be -competitive for

solving (7). Then, .
Proof: Following Remark 1, to prove the theorem, we

will construct two sequences and and a value of
such that the time taken to transmit by the optimal of-
fline algorithm is finite, but the time taken by any online
algorithm to transmit bits with at least one of the two se-
quences is infinite. As before, any input sequence is of the type

Let

while

Let bits, and slot width .
Consider the optimal offline algorithm. We upper-bound the

time taken by the offline algorithm to finish the transmission of
bits. With , the channel in slot 2 is far better than in

slot 1, and if the optimal offline algorithm invests all its energy
in slot 2, then the number of bits transmitted by the

optimal offline algorithm is . Hence, the optimal
offline algorithm finishes transmission of bits within
two slots, i.e., . Similarly, with , since 10 units of
energy arrive in slot 2, it is optimal [7] to invest in slot 1

Fig. 2. Comparison of number of bits sent with and as a function of .

and in slot 2, and the number of bits transmitted by the
optimal offline algorithm in two slots is ,
which is again greater than 3 bits, and hence .
Let any online algorithm spend fraction of its energy

available in slot 1, and fraction of its energy available in
slot 2. Also, let the online algorithm know the future energy
arrivals and fading coefficients from slot 3 onwards. This relax-
ation can only improve the performance of any online algorithm.
Then, the number of bits sent by is

and

Note that . We have chosen
to be small enough for , so that

, and
, i.e., all the available energy is used up by slot 2 with both
and , knowing the future from slot 3 onwards.
With the optimal choice of is a decreasing

function of , while is an increasing function of .
Moreover, since and ,
for for some value of . Let
be the value of for which , then
we know that for , while for

. For the choice of input sequences ,
we have that for , while
for , also illustrated in Fig. 2. Thus, at the inter-
section point, the value of . Since
cannot be simultaneously less than 0.6 and more than 0.608,
we conclude that any online algorithm will not finish trans-
mission with at least one of the input sequences. Hence, we
get the following lower bound on the optimal competitive ratio

.
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Fig. 3. Histogram of the competitive ratio of the REPA algorithm with
Bernoulli energy arrivals and exponentially distributed channel coefficients for

.

Note that this choice of and is not unique, and one can
easily find many other input sequences for which the competi-
tive ratio of any algorithm is .
Discussion: In this section, we constructed two input se-

quences to show that the competitive ratio of any online algo-
rithm to solve (7) is lower-bounded by infinity. The basic idea
behind the construction was to find a set of two input sequences
and a value of for which the choice of energy invested in the
first slot by an online algorithm so that it can transmit bits
in finite time with the two sequences is contradictory to each
other. Therefore, any online algorithm with any choice of en-
ergy to transmit in slot 1 can transmit bits in finite time with
only one of the two sequences. This construction is indeed pos-
sible since the energy arrivals and the fading coefficients in fu-
ture can be arbitrarily ordered. For a special case, when all the
fading coefficients take a constant value (e.g., unity in case of
additive white Gaussian channel), we cannot have such a con-
struction, and there exists an online algorithm for solving (7) for
which the competitive ratio is less than 2 [22].

VI. SIMULATIONS

In this section, we illustrate the performance of the REPA al-
gorithm using some simulation results. For , in Fig. 3,
we plot the histogram of the competitive ratio of the REPA al-
gorithm when the energy arrival distribution at each instant is
Bernoulli with rate , and the channel coefficient distribution is
i.i.d. exponential with parameter 1 to model the Rayleigh fading
channel. We observe that in this case the competitive ratio of
REPA is far better than the worst competitive ratio promised
by REPA, i.e., for . To illustrate the case
when the REPA algorithm actually has competitive ratio close
to the worst possible , we use Bernoulli energy ar-
rival distribution with rate and the following -length channel
coefficient sequences, , for

and plot the averaged competitive ratio in Fig. 4. It
is evident that for small values of , the REPA algorithm loses

Fig. 4. Competitive ratio performance of the REPA algorithm with Bernoulli
energy arrivals and “bad” channel coefficient sequences for .

out to the optimal offline algorithm, since the REPA algorithm
keeps sufficient energy for future use, while the optimal offline
algorithm uses most of the energy in initial time-slots or as soon
as it arrives.

VII. CONCLUSION

In this paper, we derived the optimal competitive ratio for
maximizing the achievable rate in a wireless communication
channel over a fixed number of slots, with arbitrarily varying en-
ergy arrivals and fading coefficients. The competitive ratio anal-
ysis provides strong worst-case guarantees on the performance
of any online algorithm that has access only to the causal in-
formation. We showed that a very simple algorithm that invests
equal energy in all future slots and is agnostic to the current
or past fading coefficient realizations is an optimal online al-
gorithm and has competitive ratio equal to the number of slots
of interest. Another important conclusion we drew was that the
optimal competitive ratio is invariant to the availability of the
current/past fading coefficient information, i.e., with or without
the causal information, the optimal competitive ratio remains
the same. This is quite a pessimistic result since one would ex-
pect an optimal online algorithm to adapt its transmission power
as a function of current/past fading coefficients and provide with
a better competitive ratio. We also considered the problem of
minimizing the transmission time of a fixed number of bits and
showed that no matter how smart an online algorithm is, the
competitive ratio of any online algorithm is infinity, i.e., there
exists a set of input sequences for which the online algorithm
never finishes transmission of appropriately chosen number of
bits.
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