
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014 1463

Denial-of-Service Attacks in Bloom-Filter-Based
Forwarding

Markku Antikainen, Tuomas Aura, and Mikko Särelä

Abstract—Bloom-filter-based forwarding has been suggested
to solve several fundamental problems in the current Internet,
such as routing-table growth, multicast scalability issues, and
denial-of-service (DoS) attacks by botnets. The proposed protocols
are source-routed and include the delivery tree encoded as a
Bloom filter in each packet. The network nodes forward packets
based on this in-packet information without consulting routing
tables and without storing per-flow state. We show that these
protocols have critical vulnerabilities and make several false se-
curity assumptions. In particular, we present DoS attacks against
broad classes of Bloom-filter-based protocols and conclude that
the protocols are not ready for deployment on open networks. The
results also help us understand the limitations and design options
for Bloom-filter forwarding.

Index Terms—Multicast, network protocols, network-level
security and protection.

I. INTRODUCTION

I N-PACKET Bloom-filter-based forwarding has been pro-
posed as a solution for several problems in the current

Internet, including routing-table growth and scalable multi-
cast [1], denial-of-service (DoS) resistant forwarding [2], and
information-centric network design [3], [4]. Its use has also
been proposed for data centers [5], [6] and as an enhancement
for Multi-Protocol Label Switching (MPLS) [7]. There are
several implementations, including one for NetFPGA [3], [6],
[8], [9].
The idea behind in-packet Bloom-filter-based forwarding is

relatively simple: The delivery tree is stored in the packet header
as a set of forwarding-hop identifiers (FHIDs), which can be
either nodes, links, or in–out interface pairs on the delivery
tree. The set of the FHIDs in the delivery tree is encoded as a
Bloom filter [10] data structure, which enables efficient testing
of set membership. Network nodes forward packets by checking
which potential FHIDs, e.g., outgoing links, are in the Bloom
filter.

Manuscript receivedMay 17, 2012; revisedMarch 10, 2013; accepted August
06, 2013; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor I.
Keslassy. Date of publication September 30, 2013; date of current version Oc-
tober 13, 2014.
M. Antikainen and T. Aura are with the School of Science, Aalto

University, Espoo 00076, Finland (e-mail: markku.antikainen@aalto.fi;
tuomas.aura@aalto.fi).
M. Särelä is with the School of Electrical Engineering, Aalto University,

Espoo 00076, Finland (e-mail: mikko.sarela@aalto.fi).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2013.2281614

In comparison to standard IP routing-table lookup or solu-
tions that use Bloom filters to encode routing tables [11] or des-
tination addresses [12], [13], in-packet Bloom-filter-based for-
warding requires little computation at the routers. It can also
scale to much larger numbers of multicast groups than the cur-
rent IP multicast protocols because the network nodes do not
need to store any per-group or per-flow state. These properties
make it attractive to use the same protocol for both unicast and
multicast.
Existing Bloom-filter-based protocols have proposed three

security mechanisms: 1) limiting the number of items stored in
the Bloom filters; 2) centralizing Bloom filter computation and
making forwarding-hop identifiers secret; 3) using cryptograph-
ically computed per-flow forwarding-hop identifiers.
However, perhaps surprisingly nobody until today has thor-

oughly evaluated the security of these proposals. In this paper,
we start this work by analyzing the denial-of-service resistance
of the existing Bloom-filter-based forwarding architectures.
Many variations of such protocols have been proposed in the
literature (see Section II). Since no single protocol has yet
been standardized, the analysis in this paper aims to cover all
the different variants of encoding the delivery tree in to the
in-packet Bloom filter. To do this, we have created a unified
connectivity-graph model that makes it possible to analyze
different protocol variants with a single model.
We evaluate the effectiveness of the security mechanisms

against denial-of-service attacks using three different attacks.
First, we show that static link-identifiers can be reverse-engi-
neered. This was hypothesized in [2]. However, our paper is
the first to show this is actually the case. Second, we show
that distributed packet-flooding attacks can get around the pro-
posed security mechanisms in existing literature. Third, some
protocol variants are vulnerable to attacks that prevent nodes
from leaving a multicast group. These attacks show that most
of the abstract security claims presented in the literature do not
hold under detailed analysis.
The attacks are distributed. That is, they require the attacker

to have access to a botnet consisting of at least hundreds of
compromised computers. This is a reasonable assumption be-
cause real DoS attacks on the current Internet are commonly
launched from botnets. It is also estimated that a large portion
(16%–25%) of Internet hosts belong to botnets [14]. Moreover,
the abstract security claims made about the Bloom-filter-based
protocols cover distributed denial-of-service attacks.
Our work shows that Bloom-filter-based forwarding needs

further improvements on security before deployment on open
networks. All the existing protocol variants have weaknesses
that allow an attacker with a botnet to send traffic to a target

1063-6692 © 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

node and, sometimes, to prevent the victim from unsubscribing
traffic flows. However, it should be noted that the security mech-
anisms proposed in the literature do increase the cost of DoS at-
tacks and, thus, they may be useful in combination with further
security solutions.
The rest of the paper is structured as follows. Section II gives

an overview of Bloom-filter forwarding and previous work on
DoS resistance. Section III presents a unified connectivity-graph
model for analyzing different protocol variants. This model is
then used to show that an attacker can reverse-engineer the link
identifiers, which should be secret. Section IV presents injec-
tion attacks in which a single legitimate route to a target node
is exploited by an entire botnet. Section V explains how a ma-
licious subscriber can prevent others from unsubscribing a data
flow. The implications of the attacks on the security and design
of Bloom-filter-based protocols are discussed in Section VI. Fi-
nally, Section VII concludes the paper.

II. BLOOM-FILTER FORWARDING

This section gives an overview of the Bloom-filter-based for-
warding proposals. Section II-A provides background informa-
tion onBloom filters, and Section II-B surveys the proposed pro-
tocols. (For readers not previously familiar with the concepts, a
brief tutorial is provided in Appendix A.) Section II-C discusses
the previous work on denial-of-service attacks and countermea-
sures in this family of protocols.

A. Bloom Filters

Bloom filter [10] is a probabilistic space-efficient data
structure for storing sets. Its basic operations are membership
testing and element addition, but not element removal. Bloom
filter is implemented as a bit array with fixed length and
a small number of hash functions that map data items to
indexes in the bit array. A data item is added to the
set by computing the hash functions on it and setting the
corresponding bits in the bit array to 1. Membership is tested
similarly by computing the hash functions on the data item
and checking whether the corresponding bits in the array are
all 1. The operations take constant time but can, nevertheless,
be computationally relatively expensive if cryptographic hash
functions are used.
Bloom filters are probabilistic in the sense that the member-

ship testing may return false positive results. The probability of
false positives growswith the number of elements added to the
set because the percentage of 1-bits in the bit array grows. For
this reason, it is necessary to limit the number of elements that
are stored in the filter. For example, if we use hash func-
tions, a filter of length can store data items with
false positive rate of approximately 0.8%. (For details about
Bloom filters and the false positive rate, we refer the reader,
e.g., to Mullin [15].)
Because of their space efficiency, Bloom filters are typically

used for storing large sets or when the memory usage needs to
be minimized. In this paper, the filters have to fit into network
packet headers. Therefore, we consider unusually short filters of
256–1024 bits, which can store roughly 20–100 data items.

B. Bloom-Filter-Based Multicast Forwarding

Three methods have been proposed for Bloom-filter-based
multicast forwarding: 1) using Bloom filters in the multicast
routers to reduce the space required for storing the multicast
forwarding table [11]; 2) source routing where the multicast de-
livery-tree is encoded as a Bloom filter in the packet headers
(e.g., [1] and [3]); and 3) storing the list of receivers in the packet
header as a Bloom filter [12], [13].
1) Encoding Multicast-Group Addresses Into Bloom Filter:

One of the first papers to suggest Bloom filters for multicast
forwarding is by Grönvall [11]. In this work, each outgoing
interface of a multicast router has a Bloom filter that encodes
the multicast-group addresses reachable through that interface.
False positives are acceptable because they only cause the mul-
ticast packets to be forwarded to some unnecessary paths.
2) Bloom-Filter-Based Source Routing: Several proposed

future-internet protocols encode the source tree or route in an
in-packet Bloom filter. In these proposals, effectively, each link
is given an -bit link identifier in which pseudorandomly
chosen bits are set. The function and inputs used to choose the
bits vary in different proposals.
The Bloom filter for the multicast tree is the bitwise OR of

all link identifiers in the tree. The membership of a link identi-
fier is tested by checking the equality , where is the
bitwise AND of the bit arrays. Thus, the forwarding nodes only
need to compute simple bitwise logical operations to process
each packet. (See Appendix A for an example.)
The Free Riding Multicast (FRM) [1] was the first to propose

implementing interdomain multicast using this method. It uses
BGP to propagate membership information. The border router
at the source computes the spanning tree for the multicast group
and encodes the tree into the packet header. The link identifiers
are encoded by hashing the pair of autonomous system num-
bers (ASNs). There are a few basic problems with FRM: It as-
sumes that all BGP routers have an up-to-date information of the
current state of interdomain routing and, as the ASNs are public
information, it provides no security against malicious users. Ac-
cidental forwarding loops may also be created.
The Line Speed Publish/Subscribe Inter-net-

working (LIPSIN) protocol [3] makes use of Bloom
filters to implement multicast with sender access control
for a publish–subscribe internetworking architecture that
decouples the sender and receiver from each other [16]. The
link identifiers are secret, and the path filters are computed by a
topology manager, an external third party responsible also for
the access control. Implementing such a logically centralized
topology manager is possible in the intradomain case because
it is akin to the path computation element (PCE) in MPLS [17].
However, creating a centralized topology manager that can be
deployed in the distributed interdomain environment is much
harder because it would require network operators to relinquish
control over routing policy. This is currently an unresolved
problem.
LANES [18] is another Bloom-filter forwarding protocol for

a future publish–subscribe Internet architecture. Unlike FRM or
LIPSIN, it uses in-packet Bloom filters only for unicast. Multi-
cast is implemented by stateful routers at branching points.

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1465

Bloomcast [4], [19], [20] is an interdomain multicast protocol
that uses IP unicast formulticast signaling. The subscriber nodes
send joinmessages to the publisher over IP. The Bloom filter for
the path is collected into a hop-by-hop header in the join packet.
That is, the join packet starts with an empty filter from the sub-
scriber and, at each hop on the way to the publisher, a link iden-
tifier is added to the filter with bitwise OR. This distributed filter
discovery is an alternative to the centralized topology manager
used in LIPSIN.
In addition to the already mentioned protocols,

Rotherberg et al. [6] propose using in-packet Bloom filters
in switching for data centers, while Zahemszky et al. [7]
present Multi-Protocol Stateless Switching (MPSS), which
combines Bloom-filter forwarding and MPLS. These protocols
are intended for use within a single administrative domain and
are thus not particularly sensitive to security vulnerabilities.
Nevertheless, the broad range of Bloom-filter protocols
proposed in the literature means that it is important to
understand their security properties and limitations.
3) Encoding Receiver Set Into Bloom Filter: Application-

oriented multicast (AOM and DOM) [12], [13] encodes the re-
cipient address prefixes into a Bloom filter in the packet. Each
router compares the Bloom filter against a list of Bloom filters in
its routing table, which is updated whenever a router sees a mul-
ticast join message. When the router discovers a match showing
that one or more receivers are reachable through a given inter-
face, it reconstructs the Bloom filter with only those receivers,
hence deleting any excess 1-bits from the filter.
This approach has some advantages and some drawbacks for

security. One advantage is that it is more difficult for the attacker
to add bits to the Bloom filter because the filter is recomputed
after every hop. Also, since the routers hold state for the recip-
ient domains, it becomes more difficult to forge a Bloom filter
that causes packets to go to a chosen target.
A major drawback is that each router needs to compare the

packet to all the destination Bloom filters in its routing table.
BGP routing tables may contain hundreds of thousands of
entries, and hence the process is computationally expensive,
leaving routers potentially vulnerable to resource exhaustion
attacks. The attacker only needs to make sure that the router
contains many destination entries and receives many multicast
packets. Both are easily achieved if the attacker controls a
botnet.
Our analysis is focused on the source-routed protocols where

routers do not hold large routing tables and do not need to per-
form expensive computation.

C. Known DoS Problems and Solutions

Multicast enables the sender to reach a large number of re-
ceivers even though it only sends each packet once. The use
of Bloom filters creates a probabilistic element in packet for-
warding; packets may be forwarded over links they were not
intended as well as over the intended links. (However, false
negatives, i.e., packets not forwarded over intended links, are
not possible.) These two—traffic amplification and potential for
false positives—create potential security problems. First, mul-
ticast protocols are prone to injection attacks in which the at-
tacker tries to send unauthorized packets into the multicast de-

Fig. 1. Forwarding anomalies [19]. (a) Forwarding loop. (b) Repeated flow
duplication.

livery tree. Second, false positives may cause packets to loop
or hop from one branch of the multicast tree to another, causing
traffic to be amplified in the whole downstream multicast tree.
1) Injection Attacks and Z-Formation: Rothenberg et al. [2]

identify the potential for injection attacks in Bloom-filter based
forwarding and suggest, without giving many details, that an at-
tacker could analyze correlations between filters and thus derive
new filters that enable the injection attack. To our knowledge,
we are the first to show that such attacks are, indeed, possible.
Their proposed solution, called Z-formation, is to compute

the link identifiers dynamically on per-packet basis. The Bloom-
filter hash functions are implemented as a cryptographic hash
that takes its arguments from a flow identifier in the packet, a
periodically changing secret key local to each forwarding node,
and the incoming and outgoing interface identifiers on the in-
tended path of the packet. This way, the Bloom filter stores more
routing context than just the links on the route. The purpose is
to increase the difficulty of reverse-engineering the secret link
identifiers or combining the filters of different flows (which oth-
erwise could be done by computing their bitwise OR). More-
over, the time dependence of the identifiers means that the path
filter will need to be refreshed periodically, at which point mis-
behaving senders can be denied the capability to send to the
path.
2) Forwarding Anomalies and Bit Permutations: DoS attack

may also result from forwarding anomalies caused by the false
positives. The obvious case is a packet with an all-ones filter:
The packet would be forwarded to everywhere and loop around
any cycles in the network. For this reason, the forwarding nodes
drop packets in which the fill factor , i.e., the percentage of
1-bits, exceeds a threshold . The maximum fill factor is
usually 50%.
Särelä et al. [4], [19] point out that false positives can also

cause unintentional forwarding loops if a packet is accidentally
forwarded back to an earlier node in the multicast tree, and false
positives between two branches of the multicast tree can cause
flow duplication. Fig. 1 illustrates these situations. The latter
can happen even in valley-free routing, which prevents loops.
While Särelä et al. focus on accidental routing anomalies, we
are concerned about malicious senders causing similar problems
intentionally.
To solve these problems, Särelä et al. suggest permuting the

Bloom filter at each router. The permutation is simply a shuffle
of the filter bits. The bit permutations are described in more

1466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

Fig. 2. Different FHID types and connectivity graphs for the same network. (a) node. (b) link, i.e., node pair. (c) in–out interface
pair.

detail in Appendix A. Each node has a fixed, pseudorandomly
chosen permutation, which is applied to the filters in all packets
that travel through the node. This is sufficient to protect against
loops and flow duplication because the Bloom filter becomes a
function of the path that the packet has already traversed.
An alternative to the permutations would be to include a hop

counter or the already traversed path of the packet as an input
to the Bloom filter hash functions, i.e., the z-Formation. The
permutations have almost the same effect, but they are faster to
compute than the z-Formation and they have practical compo-
sitionality properties.
Analogous to the link identifiers, permutations can be kept se-

cret and they can depend on the incoming or outgoing interface
or their combination. It is, however, not practical to change the
permutations frequently. First, the problem of creating fast and
efficient key-dependent pseudo-random bit permutations either
with software [21] or hardware [22], [23] is a well-known dif-
ficult problem in the field of cryptography. Also, static bit per-
mutations can be implemented in hardware simply by crossing
wires, which makes them attractive for the designers of for-
warding hardware. Second, changing the bit permutations is not
easy to do gradually. If a forwarding node uses both the new
and old permutation simultaneously, it will have to create two
copies of every packet, one processed with the old and one with
the new bit permutation. There is no similar problem with the
updating of FHIDs.

III. REVERSE-ENGINEERING ATTACK

We will now start with the security analysis of Bloom-filter
forwarding. In Section III-A, we explain how different vari-
ants of the link identifiers can be modeled in a uniform way.
The model will be used in all the following sections including
Section III-B, in which we show that an attacker with a botnet is
able to reverse-engineer the supposedly secret link identifiers.

A. Connectivity Graph

As seen in Section II-C, the data items stored in the Bloom
filter do not need to be just link identifiers. They could equally
identify the nodes on the path, the links on the path, or the
incoming–outgoing interface pairs on the path. Moreover, the
identifiers could be symmetric, i.e., the same regardless of the
direction in which the packets travel, or they could be direc-
tional, i.e., different in the upstream and downstream direc-
tions. All these variants provide sufficient information for the
forwarding nodes to pass the packet onto the next-hop node. To
avoid confusion, we will use the term FHID to denote all these
different types of identifiers. This paper, however, focuses on
directional identifiers because they give stronger sender access
control. (Symmetric identifiers would be suitable for groups in
which all members are allowed to send.)
In order to analyze networks with different identifier types,

we define the concept connectivity graph. The vertices in this
directed graph represent forwarding-hop identifiers, and there
is an edge from one identifier to another if a packet can traverse
the second hop directly after the first one. Fig. 2 illustrates the
connectivity graphs for the same network topology with three
different identifier types. Using the forwarding-hop identifiers
in the figure, the path from 1 to 4 via 2 and 3 would be encoded
as the set of: (a) nodes {2, 3, 4}; (b) links ;
and (c) in–out interface pairs .
Depending on the FHIDs, the resulting connectivity graphs

can differ greatly in size. Table I shows the graph sizes for two
quite different network topologies. The AS graph is a power-law
network in which the core nodes can have thousands of neigh-
bors. In the tree topology, the node degrees are almost uniform.
As we will see below, the size of the connectivity graph can
be an indicator for the difficulty of many attacks presented in
this paper: The more FHIDs there are, the harder it is for an at-
tacker to reverse-engineer them or to combine them into useful

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1467

Fig. 3. CDF of accuracy for reverse-engineered link identifiers (for the topologies, see Appendix B). (a) AS graph. (b) 32 32 grid graph. (c) 5-ary tree of depth 7.

TABLE I
CONNECTIVITY GRAPH SIZES IN TWO DIFFERENT NETWORK TOPOLOGIES

paths. Nevertheless, we will see that even a very large connec-
tivity graph does not make a network entirely immune to DoS
attacks.

B. Reverse-Engineering FHIDs

The secrecy of forwarding-hop identifiers is critical to the se-
curity of Bloom-filter forwarding. For this reason, we first inves-
tigate the difficulty of reverse-engineering the identifiers. If the
attacker knows all the FHIDs, it can flood specific targets with
packets. Moreover, even partial knowledge of the secret iden-
tifiers may enable the attacker to create routing loops or cause
flow duplication intentionally.
We consider an attacker that controls a botnet. The bots are

randomly distributed around the network, and they can sub-
scribe to flows from each other. The attacker also knows the
network topology and routing policy. This analysis applies di-
rectly, for example, to LIPSIN [3], but not to protocols where
the FHIDs are flow-specific or where the filters are permuted.
In order to compute the approximate forwarding-hop identi-

fiers, the attacker first obtains the path filters between all pairs
of bots. (How it obtains them depends on how filter discovery
is implemented in the particular system. That is, however, ir-
relevant to the attack.) Since the attacker knows the network
topology and routing policy, it knows which connectivity graph
vertices each path passes through. For each vertex, it computes
the intersection (i.e., bitwise AND) of the filters of all the paths
that pass through the vertex. This gives the vertex FHID with
reasonable accuracy if even two paths cross there. Most of the
computed FHIDs will have some extra bits set, but that does not
prevent their use in filter creation.
The attack was simulated with three very different network

topologies: the AS topology, planar grid graph, and a 5-ary

tree of depth 7. In the simulation, the length of the filters was
, and the number of hash functions was set to 12,

4, or 5 depending on the node degrees in the topology. (See
Appendix B for details of the example topologies.) Bots were
placed randomly in the network. After this, the path filters
were calculated for the shortest paths between all pairs of bots.
To make the attacks more difficult, all filters have been filled
to the maximum fill factor by setting random bits.
Finally, approximations of all of the FHIDs were computed as
the bitwise AND of the path filters that are known to include
the FHID.
Fig. 3 shows the accuracy of the computed link identifiers

for the three network topologies and different botnet sizes. The
faster the cumulative distribution function (CDF) curve rises,
the larger percentage of the computed link identifiers are known
with high accuracy. In all cases, an attacker with a medium-to-
large botnet could compute a significant portion (between 5%
and 50%) of the link identifiers with reasonable accuracy. The
resolved identifiers were typically at the core of the network
where most paths cross.
Note that the attacker can use partially solved FHIDs just as

well as fully computed ones. Path Bloom filters are created by
computing the bitwise OR of the FHIDs, and the extra 1-bits in a
Bloom filter simply result in some more false positives, which is
not a problem for a DoS attacker. The unnecessary 1-bits matter
only if the fill factor of the created path filter exceeds the 50%
maximum, but the attacker can avoid using such long routes.
While the graphs are only presented for link identifiers, re-

sults for the other FHID types were similar. The node identifiers
are the easiest to reverse-engineer, and the in–out interface-pair
identifiers are more difficult due to the vast number of them.
Some identifiers in the core network can nevertheless be com-
puted with high accuracy.
The attacker is thus able to reverse-engineer most FHIDs at

the core of the network, but fewer of those close to the network
edge. This means that the attacker is able to create routing loops
or amplifying routes in the core network. On the other hand, the
reverse-engineering attack does not seem to enable the flooding
of arbitrary edge nodes. Periodic updating of the identifiers can
make the attack somewhat more difficult because the attacker
will have to repeat the reverse-engineering regularly. We can
nevertheless conclude that it is wrong in principle to assume
that the identifiers can be kept secret.

1468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

Fig. 4. Injection attack: and are combined into for sending packets from to the target. (a) Network topology. (b) Connectivity graph (in–out
interface pair). (c) Path permutations.

As mentioned in Section II-C, there may be another secret pa-
rameter in the forwarding nodes: the filter permutation. These
affect the reverse-engineering attack in two ways. First, they
obscure the filter in such a way that the above process for com-
puting FHIDs will not work in general. Second, there does not
seem to be any straightforward way for a sparsely distributed
botnet to reverse-engineer the individual permutations. For this
reason, we turn next to another class of attacks that can deal with
the permutations of the filters as well.

IV. INJECTION ATTACK

This section presents a form of injection attack against
Bloom-filter-based multicast. We show that if the attacker has
control over just one node that can send to a target, then a
significant portion of the botnet will be able to send packets
to the target. Section IV-A explains the basic principle of the
attack, and the following sections show that it is possible under
increasingly stringent security assumptions.

A. Basic Injection

Fig. 4(a) shows a simple injection attack. The target has
subscribed to a data flow from a compromised node, the bot
. These packets are sent with the path filter in the packet

header. The goal of the attacker is to enable another bot to
also send to the target . If this succeeds with , the attacker
can try to do the same for all nodes in the botnet.
The attacker needs help from another suitably positioned

node . This node subscribes to a flow from . The packets
from to are sent with the path filter . As seen in
the figure, the path represented by intersects with the path
represented by . Since the attacker controls the bots, it learns
both of these filters. The attacker then computes the bitwise OR
(i.e., union) of the path filters

(1)

This filter can be used for sending packets from to the
target .
In order for the attack to work, two conditions must be met.

First, the two paths need to meet in such a way that a complete
path from to is formed by their union. How much overlap
between the paths is required depends on the FHID type.We can

state the general requirement in terms of the connectivity graph:
If the connectivity-graph vertices in and form together a
continuous path from to , then can send packets to the
target with . Second, the fill factor of must not exceed the
maximum 50%. That will usually not happen when and
are unicast paths. The natural question to ask next is how often
these conditions are met in practice.Wewill, however, defer this
question to the end of Section IV-B, where we evaluate a more
advanced version of the attack.
It must be noted that the packets sent by with the filter

are not only forwarded to but also to . There are techniques
for reducing such collateral damage, but we will not go into the
details because the attacker does not necessarily care.
If the filters are created by a trusted topology manager, one

potential countermeasure is to fill all filters up to the 50% max-
imum (by setting random bits as necessary). This prevents the
attacker from combining filters with simple bitwise OR. The at-
tacker can, however, remove the extra bits from the filter by
testing which ones are unnecessary for the packet to travel to
. Any transport-layer acknowledgment or application-layer

response mechanism will also enable the attacker to remove the
extra bits from by testing which bits can be zeroed while
still prompting a response from . Thus, setting all filters to the
maximum fill factor cannot be relied on as a security measure.
Another, similar countermeasure would be to reduce the

length of the Bloom filter so that the fill factor would be close
to 50%. The length of the Bloom filter can be reduced by folding
the filter and computing the bitwise OR of the overlapping
parts: For example, halving a Bloom filter would happen by
computing the bitwise OR of the first half of the filter with the
second half. However, reducing the Bloom filter length does not
prevent our attack because dynamic Bloom filter lengths would
also make it possible for the attacker to expand the filters.

B. Injection With Permutations

The injection attack becomes more interesting if the for-
warding nodes permute the Bloom filters. The secret permuta-
tions certainly make it impossible to combine the filters with
(1). For example, when each router in Fig. 4 permutes the filter,
cannot use to send packets to because the bits of
will be in a wrong order when they reach the point where

the two paths meet. In order for them to be permuted into the

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1469

Fig. 5. Solving (partially) the composite permutation between two bots by
turning 0-bits to 1-bits.

right locations, the filter would have to traverse the path from
to the meeting point.
However, while we cannot reverse-engineer the individual

permutations, we can reason about the composite permutations
over longer paths. Fig. 5 illustrates how the attacker discovers
the composite permutation on the path between two bots. It sets
one or more 0-bits in the filter to 1 at the sender and observes
which bits change to 1 at the receiver. (Setting multiple bits at
the same time can speed up the process as long as the fill factor
of the filter remains under the maximum.) However, the attacker
cannot learn how the 1-bits are mapped because zeroing any one
of them would lead to the packet not arriving at the receiver.
In order to discover the full permutation, the attacker needs to
wait for the FHIDs in the network to be updated several times,
so that the locations of the 1-bits change and all bit locations
in the filter are zero at least once. Thus, the periodic update of
the secret identifiers, which was intended as a security measure,
actually helps this attack.
The average number of updates required to fully compute

the composite permutation is logarithmic with the length of the
filter. Experimentally, we found the number of updates to be be-
tween 5 and 20 for any reasonable filter. For a worst-case sce-
nario for the attacker, consider a filter length and fill
factor close to . In that case, the composite permutation
between two bots is almost guaranteed to be known completely
after 20 filter updates and at most 512 packets sent per update,
i.e., about 10 packets in total. Usually, a fraction of this number
of updates and packets is sufficient.
Let us now look at Fig. 4(c). We have given names to the

composite permutations that the Bloom filter undergoes when
the packet travels through specific path segments. With the pro-
cedure described above, the attacker can learn the composite
permutations from to and from to
as well as their inverses.
Remember that the goal of the attacker is to create a filter that

can be used to send traffic from to . Such a filter would
need to satisfy the subset relations and

. (One filter is a subset of the other if all 1-bits in the first
one are also set in the second one.) Satisfying the first relation
makes a packet sent from traverse to the meeting point of the
paths. The second relation enables the packet to traverse from
there to the target. Now, the attacker can compute the following
filter from the composite permutations and filters that it already
knows:

(2)

It is clear that satisfies the first subset relation. It also satisfies
the second relation

(3a)

(3b)

(3c)

(3d)

Thus, if there is a bot in a suitable place, it can help
to inject packets into the legitimate path from to . As
promised earlier, we now return to the question of attack im-
pact. That is, we want to know how many bots in a typical
botnet can make use of this technique to send a flood of packets
to a given target.
We have simulated the attack for the three different network

topologies (see Appendix B). Some bots and a target node were
placed randomly into the network. One of the bots was chosen
randomly as , which is given a valid filter to the target. After
this, we calculated the number of bots that were able to inject
traffic into the target. The experiment was repeated 1000 times
for each set of parameters. Fig. 6 shows the CDF of the per-
centage of successful bots for the different topologies and two
different FHID types.
Our first observation is that the attack efficiency depends on

the FHID type. The more information about the path the FHID
encodes, the less often the paths meet in a suitable way. Clearly,
FHIDs that identify in–out interface pairs are more resistant to
the attack than link identifiers. Another observation is that the
network topology has a great effect. In a tree topology, almost
all long paths meet each other and, thus, it is usually possible
to form a path from almost every bot to the target. In the AS
network, on the other hand, there are many alternative paths
through the core of the network and fewer paths meet. However,
even in the best case of Fig. 6(d), there is a probability of a few
percent that more than half of the bots in the botnet can send
packets to the target.
We also noticed that the attack failures arise from poor place-

ment of the special node and from the lack of a good candi-
date for . In the simulation, we chose the randomly. How-
ever, if the attacker could choose to place far away from the
target and if it could place even one bot very close to the target
to act as , then most bots could always send to the target.
Whether the attacker can influence the placement of the bots
depends on factors outside this analysis, such as the applica-
tion-level protocols or service-discovery mechanisms. A related
observation is that the success rate depends heavily on the size
of the botnet. This is because the attacker can use the bot with
the best location as . As the number of bots grows, there will
more likely be a good candidate for near the target.
In order to verify the correctness of the simulation results, we

have included an example analytical model of the injection-at-
tack efficiency in Appendix C. The model only covers the tree
topology, which is the easiest to describe mathematically and
has the simplest routing policy. The analytical results in Fig. 11
match closely with the simulation results in Fig. 6(f), which
gives us confidence in the simulation. Similar modeling of the
AS and grid networks including their routing policies would

1470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

be a major undertaking because we have chosen the simula-
tion topologies to represent three quite different types of net-
works and routing algorithms and not for the ease of analytical
modeling.
Finally, we consider injection attacks in a network where the

FHIDs are not updated regularly or where the permutations are
rerandomized at the same time with the identifiers. In that case,
the attacker cannot learn the mapping of the 1-bits in the com-
posite permutations by waiting for identifier updates. Neverthe-
less, the injection attack is still possible by setting all the un-
known bits to one. Let us denote by the filter for sending
packets from to [see Fig. 4(a)]. The attacker already has
learned when measuring the permutation . To send
packets from to , it uses the following filter:

(4)

This filter clearly satisfies the two subset relations required
for an injection. However, it is not obvious from the above for-
mula how the attacker is able to calculate its value. The key
insight is that the attacker can set all of the unknown bits to 1.
This is done using (5b) and (6b), where the symbol denotes
bitwise NOT operation (i.e., bitwise complement)

(5a)

(5b)

(6a)

(6b)

The right sides of (5b) and (6b) are known to the attacker, and
it can calculate the left sides because the bits whose mapping in
the two composite permutations is unknown are zeroed out. The
only drawback compared to (2) is that, because more filters are
combined, there is a greater risk of exceeding the maximum fill
factor 50%. In a network with a large radius, this may prevent
the attacker from using pairs of bots that are very far apart from
each other. In our simulations, such cases do not occur, and the
results of Fig. 6 apply also to this more generic version of the
attack.

C. Injection With Unknown Topology

We now take the injection attack one step further by removing
the assumption that the attacker knows the network topology
and routing policy. This makes the attack more complicated be-
cause the attacker does not initially know which paths between
bots meet as in Fig. 4. The attacker can, however, deduce this
information by looking at the Bloom filters.
The key idea is that we can estimate the number of FHIDs

in a path by counting the 1-bits in the filter. We can also deter-
mine the approximate number of common FHIDs in two paths
by computing their dot product (i.e., the number of 1-bits in the
bitwise AND). Multiple observations of the dot product over
time, after FHID updates, are required for high-confidence esti-
mates of these values.

Without filter permutations, observations of the dot product
alone could be used to decide which paths meet. With permu-
tations, a slightly more complex process is required because
only a common path segment starting from or ending to the
observer can be detected. Thus, in Fig. 4(b), bot can esti-
mate the number of common hops in the beginning of the paths
represented by and , and can estimate the number of
common hops in the end of the paths represented by and .
If the sum of these values is equal to or greater than the esti-
mated length of the path , then the paths and meet.
More specifically, two filters that do not contain any common

connectivity graph vertices should have a dot product close to
, where are the fill factors and is the filter length. On

the other hand, if the two filters have common elements, the
dot product of the two Bloom filters should be larger than this.
Generally, the value of the dot product of two Bloom filters,
which share common elements and thus have approximately

bits at corresponding positions, follows the hypergeometric
probability distribution

(7)
The distribution has the mean value

. By calculating several dot products after pe-
riodic identifier updates and comparing the dot products to the
mean values for different , the attacker can determine the length
of the shared paths with ever increasing confidence.
Thus, with a relatively simple statistical computation from

the filters between bots, the attacker can determine which paths
meet in the way that enables the injection attack. Even after just
a few identifier updates, the attacker can make relatively good
guesses. An attacker with a large botnet does not need to get
all the values right for a successful packet-flooding attack, only
most of them.

D. Injection With Flow-Specific FHIDs

Our analysis thus far has covered FHIDs that are static or
periodically updating and the same for all data flows. We now
turn to flow-specific identifiers. They are implemented by in-
cluding some flow-specific information from the packet headers
in the input to the Bloom-filter hash functions (e.g., the z-Forma-
tion [2]). The flow-specific information can be a sender or mul-
ticast-group identifier, or there can be a special identifier space
for naming the flows. For unicast flows, both endpoint names
could be used in a way similar to the TCP connection identi-
fiers. The reasoning behind this defense mechanism is that the
FHIDs and Bloom filters for different flows will be independent
of each other. Consequently, the attacker cannot reverse-engi-
neer FHIDs by computing the bitwise AND of path filters or
concatenate paths with the bitwise OR. It might thus appear that
flow-specific identifiers prevent the attacks discussed so far in
this paper. This is unfortunately not the case.
The weakness in flow-specific identifiers is the way in which

they are assigned. The protocol proposals that employ flow-spe-
cific identifiers [2], [4] brush aside the question of how the in-
dependence of the identifiers between flows is enforced. Let

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1471

us consider what happens if it is the sender’s and/or the re-
ceiver’s responsibility to choose or set the flow-specific values
in the packet headers. In that case, the attacker could violate
the rules about setting these values, so that the same “flow-spe-
cific” values are actually used in all of the attacker’s flows. In
the injection attack, the attacker could copy the flow-specific
data from the one legitimate flow (from to) and use these
values in all the packets sent between the bots. In the reverse-en-
gineering attack of Section III, the attacker could similarly use
the same “flow-specific” values in all the packets. The honest
forwarding nodes in the network do not have routing tables, and
they do not store any information about the data flows. Thus,
they have no way of verifying the sender, multicast-group or
flow identifiers in the packets.
To better understand how this weakness is exploited, we con-

sider the basic injection attack (see Section IV-A), but against
a network that uses flow-specific FHIDs. Let denote a
Bloom filter that is constructed with a flow identifier . Ini-
tially, the attacker has a legitimate Bloom filter from bot to
the target . This filter is a function of some unique
flow identifier , which the attacker knows. The attacker
cannot send data to the target with any other flow identifier than

.
As explained in Section IV, the first step for the attacker is

to construct a path between its bots and . Since both
bots are controlled by the attacker, it may freely choose the
flow identifier. The attacker creates the path filter from to
using the known flow identifier , thus creating a filter

. Now, in the simplest case where no permutations are
used, the attacker can construct a Bloom filter from to the
target with a simple bitwise OR similar to (1):

. This works because the same flow iden-
tifier is used for every flow.
The permutations or other previously discussed security

mechanisms do not affect this attack. In order to enforce the
flow-specific identifiers, the identifiers would have to be as-
signed by a trusted topology manager that also creates all the
filters used in the network.

V. RESUBSCRIPTION ATTACK

The final attack presented in this paper targets the distributed
filter discovery defined by Särelä et al. [19]. The path Bloom
filter is the bitwise OR of the FHIDs on the path. Recall that, in
the distributed path discovery, this value is computed by sending
a join packet from the subscriber to the publisher. The join
packet starts with an all-zero filter, and the FHIDs are added
to it hop by hop.
The problem with the distributed filter discovery is that

nothing forces the subscriber to start the join packet off with an
empty filter. A malicious subscriber may set the initial filter in
the join packet to any filter value that it knows. For example,
when some honest subscribers leave the multicast group, the
malicious subscriber can observe this as a change in the Bloom
filter of the received multicast packets. It can then send a join
packet with the old multicast filter as the initial filter value.
This will prevent any nodes from leaving the multicast group.
It should be noted that this resubscription attack works just as

well with filter permutations. This is because the permutations

done in the downstream direction for the filter in the packet
headers and in the upstream directions for the filter in the join
packet cancel each other out. Frequent updating of the FHIDs,
on the other hand, can reduce the effect of the attack because
the old filters will cease to function after the update. In order to
prevent the resubscription attack completely, departures from
the multicast group need to be timed together with global FHID
updates.

VI. DISCUSSION

One lesson from the attacks described in this paper is that
the Bloom filters and their operations are not secure crypto-
graphic constructs. It is possible to analyze and combine them
in various unexpected ways in order to derive information and
new filters that are useful in attacks. The correlation attack sug-
gested by Rothenberg et al. [2] can be implemented, and we
have seen other, even more effective attacks that combine for-
warding paths in clever ways.
The natural question to ask at this point is whether any variant

of Bloom-filter forwarding escapes the attacks presented in this
paper. Some do. If the FHIDs and filters are computed by a
trusted topology manager as a function of unique flow identi-
fiers that are chosen by the topology manager, then the filters for
all flows are independent of each other and cannot be combined
with bitwise operations as required by the reverse-engineering
or traffic-injection attacks. Moreover, if the FHIDs are updated
frequently, that minimizes the impact of the resubscription at-
tack. Unfortunately, the flow-specific identifiers require the for-
warding nodes to compute the hash functions for each packet,
which has serious implications on the forwarding performance.
The cryptographic computation would completely negate the
original argument that Bloom-filter forwarding is efficient be-
cause only simple bitwise operations on the filters are needed at
each forwarding hop.
All the defense mechanisms that do not require per-packet

hash computation at the forwarding nodes are less secure against
the injection attack. Two proposed mechanisms stand out be-
cause they can significantly reduce the probability of two paths
meeting in a way that allows a bot to participate in the injec-
tion attack. First, inbound–outbound interface pairs are a better
FHID type than node or link identifiers because they result in
a larger connectivity graph and more independent paths across
the network. Second, the hop-count-dependent FHIDs proposed
in LIPSIN restrict meeting points of two paths and to be
at the same distance from the beginning of the two paths. This
will, however, work only if the filters are computed by a trusted
topology manager so that the attacker cannot tamper with the
hop count used for filter creation. Moreover, the defense is fully
effective only if ingress filtering is deployed to prevent the at-
tacker from setting nonzero initial hop counts in the packets that
it sends. Both of these defense mechanism increase the number
of bots needed for an overwhelming flooding attack but their
effectiveness depends on the circumstances such as the exact
network topology and routing, which means that these are not
strong security mechanisms.
Of the most important protocol proposals in the litera-

ture, FRM does not have any built-in security mechanisms,
which makes the vulnerabilities described in this paper trivial

1472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

to exploit. The security of LIPSIN is based on secret and
hop-count-dependent FHIDs. Additionally, loop avoidance is
implemented statefully by caching recent packets. Bloomcast
adds new security mechanisms: Flow-specific FHIDs that iden-
tify in–out interface pairs, filter permutations, and maximum
fill factor. As explained above, some of these mechanisms can
reduce the impact of the injection attack, but none can prevent it
completely. The reverse-engineering attack will not be effective
against Bloomcast, thanks to the filter permutations. In LANES,
Bloom-filter forwarding is used for unicast forwarding. Nev-
ertheless, LANES is vulnerable to the injection attack because
even though the forwarding is intended only for unicast, its use
for more complex routes cannot be enforced. This is because
the forwarding nodes cannot differentiate intentional branches
in the path from false positives. All the protocols are, at least
to some extent, vulnerable to the resubscription attack because
the timing of FHID updates has not been selected to prevent it.
A more traditional defense strategy would be to create

a trusted routing and forwarding infrastructure and enforce
correct routing with some combination of ingress filtering,
cryptographic authentication, and accountability enforcement.
These kinds of security features have been proposed for the IP
routing, e.g., in the Accountable Internet Protocol (AIP) [24],
self-certifying addresses [25], and packet-level authentica-
tion [26]. It may be possible to employ such measures in
systems that are under a single administration, but their deploy-
ment to open networks like the global Internet is problematic.
Hop-by-hop cryptographic authentication would also negate
the efficiency gains of Bloom-filter forwarding.

VII. CONCLUSION

Bloom-filter-based multicast has been advocated as a scal-
able and DoS-resistant architecture. This paper presents, to
our knowledge, the first systematic security analysis of the
Bloom-filter-based forwarding proposals and their DoS vul-
nerabilities. The results indicate that the relatively abstract
arguments [2], [3], [27] about the security of these protocols
are inaccurate.
We explain how a distributed adversary can reverse-engi-

neer secret link identifiers, which can then be used for inten-
tional creation of routing loops and other anomalies. We also
show that most versions of Bloom-filter forwarding are vul-
nerable to a form of packet injection that enables distributed
flooding attacks by botnets. Moreover, we present a simple at-
tack against distributed Bloom-filter discovery in which a sub-
scriber prevents others from unsubscribing. These vulnerabili-
ties were analyzed using a generalized network model, the con-
nectivity graph, which allows us to analyze several variants of
Bloom-filter forwarding in a unified way.
Our central conclusion is that Bloom-filter-based multicast is

resistant to distributed packet flooding only under very strin-
gent assumptions, i.e., when the link identifiers (or other for-
warding-hop identifiers) are flow-specific and cannot be forged
by the end-hosts. In practice, this requires per-packet crypto-
graphic computation at the forwarding nodes and trusted infra-
structure for discovering the Bloom filters, which would negate

many of the advantages of the proposed Bloom-filter-based pro-
tocols. The protocol variants that do not implement these se-
curity mechanisms suffer from distributed DoS vulnerabilities
comparable to the current Internet. This paper can be seen as
a reminder that broad security claims should be presented with
extreme care and that vague claims are often shown false after
a more careful study.

APPENDIX A
TUTORIAL ON PACKET FORWARDING AND FILTER DISCOVERY

Fig. 7 shows an example network topology and link iden-
tifiers, one for each direction of each link. These link identi-
fiers are -bit bit arrays with randomly chosen bits set (e.g.,

and). Let us assume that node 1 wants to send
packets to the multicast group consisting of nodes {3, 4}. The
Bloom filter needed in the packet headers is ,
where is the bitwise OR operation.

a) Packet Forwarding: When node 1 forwards a packet
with the filter , it matches the filter against the outgoing link
identifiers and by checking whether and

, respectively. (is the bitwise AND operation).
The first of these checks is true, and the packet is forwarded
to node 2. The second check is usually false. Node 2 computes
similar checks for the outgoing links and . Both of these are
true and, thus, the packet is forwarded to nodes 3 an 4. These
nodes still check whether the links and might match .
The checks that usually produce the value falsemay sometimes
return true because of a false positive in the Bloom filter. The
false positives cause the packet to be forwarded to some nodes
unnecessarily, but the protocol parameters are selected so that
this does not cause significant overhead.

b) Filter Discovery With Topology Manager: In order
to send packets to the multicast group, node 1 needs to first
learn the value of the filter . It may obtain this from a trusted
topology manager. The topology manager handles subscrip-
tions, i.e., tracks multicast group membership, computes the
filters, and only gives the filter to node 1, which is the
authorized publisher for the group.

c) Distributed Filter Discovery: An alternative to the
topology manager is distributed filter discovery. In that case,
the subscribers (nodes 3 and 4) send join packets toward the
publisher (node 1). The old Internet routing mechanisms may
be used for passing the join packets upstream to the publisher.
For example, node 3 creates a join packet with an empty
(all-zero) Bloom filter and passes it to node 2. Node 2 sees that
the join packet came from link , and it adds the reverse link
identifier to the filter with bitwise OR. Node 2 then passes
the join packet, now containing the filter value , to node 1.
Node 1 also adds the reverse link to the filter. The filter value
is now . This is the path filter from node 1 to node 3.
Similarly, node 4 sends a join packet upstream to node 1, and
its path filter is collected on the way. To send to the
multicast group {3, 4}, node 1 computes the bitwise OR of
the path filters: . This is equal to the filter

, which is exactly what node 1 needs.
d) Filter Permutations: The forwarding nodes at every

hop may shuffle the Bloom filters in the multicast packets with
a randomly chosen bit permutation. A bit permutation is a

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1473

Fig. 6. Injection attack efficiency. (a)–(c) link. (d)–(f) in–out interface pair. (a) AS topology, 33 508 nodes. (b) 32 32 grid, 1024 nodes. (c)
5-ary tree of depth 7, 19 531 nodes. (d) AS topology, 33 508 nodes. (e) 32 32 grid, 1024 nodes. (f) 5-ary tree of depth 7, 19 531 nodes.

Fig. 7. Multicast tree example.

Fig. 8. Filter permutation shuffles the bits of the Bloom filter.

function that shuffles the order of the bits in a Bloom filter.
Fig. 8 shows an example of this process for a 512-bit Bloom
filter. Bit permutations are familiar from their use as P-boxes in
symmetric cryptographic algorithms. In Bloom-filter-based for-
warding, the aim of this security measure is to obscure the filter
values from malicious nodes and to prevent forwarding loops
and flow duplication.
In distributed filter discovery, each node that passes the join

packet upstream needs to perform the inverse permutation. In
centralized filter discovery, the topology manager needs to com-
pute the path filters similarly in upstream direction and per-
form the inverse permutations on the partial filters at each node.

The inverse permutation done during the upstream filter cre-
ation process ensures that when the filter is permuted during the
downstream forwarding of multicast packets, the bits will be in
the right locations of the filter at each forwarding node, so that
they can be correctly compared to the next link identifier.
To see why the bit permutations do not break the for-

warding mechanism, let us consider Fig. 7 again. Now, each
forwarding node is assigned a random but unchanging bit
permutation , and it permutes the Bloom filters in the packets
before other processing. During the path discovery, the reverse
permutations are applied. The path filter from node 1
to 3 becomes . Similarly, the path filter
from node 1 to 4 is . The bitwise OR of
these gives the filter that will be used in the data packets

, which is equal to
. When node 1 processes this

data packet, it first applies the permutation and then checks
whether the filter contains or . The filter in the forwarded
packet is updated to . Node 2 applies
to this. The result is , which node 2 matches with
and . This is also the filter value in the packets forwarded

by node 2. As can be seen, the permutations are unwound
exactly right before the matching.

APPENDIX B
NETWORK TOPOLOGIES USED IN THE SIMULATIONS

The attacks presented in Sections III and IV were evaluated
with three different network topologies: a measured Internet AS
graph [28], planar 32 32 grid graph, and 5-ary tree of depth 7.
We have chosen these three drastically different topologies be-
cause Bloom-filter forwarding protocols have been proposed for
many different types of networks and none has yet become their

1474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

Fig. 9. Degree distribution of the internet AS topology [28].

TABLE II
NETWORK TOPOLOGIES USED IN THE SIMULATIONS

standard operating environment. Table II summarizes the prop-
erties of the topologies and the forwarding-protocol parameters
used in each of them.
The main differences between the topologies are the node de-

gree distribution and the likelihood of two paths meeting. While
the node degrees are nearly constant in the artificial topologies,
the node degrees of the AS topology follow the power-law dis-
tribution (see Fig. 9). In the tree topology, there is only one pos-
sible path between two nodes and almost any two long paths
will cross each other. In the planar grid topology and in the core
of the AS graph, there are many more independent paths.
The number of Bloom-filter hash functions (i.e., number of

1-bits in the FHIDs) was selected separately for each topology
to match the node-degree distribution. In line with most of the
literature, we have chosen to use a constant for each network.
In a topology with highly variable node degrees such as the
AS topology, it would be preferable to use variable that is
set separately for each node (the number of 1-bits in the FHIDs
growing logarithmically with the node degree) [4]. That would
affect the details of our analysis, but not the fundamental results
of this paper.

APPENDIX C
ANALYTICAL MODEL OF TREE TOPOLOGY

This appendix provides an analytical model of the injection
attack in the tree-topology network when the FHID is the in–out
interface pair. The purpose of the analysis is to confirm the sim-
ulation results in Section IV. Specifically, the following calcu-
lations correspond to Fig. 6(f).
The number of nodes in a -ary tree of depth is

. We consider a network topology that is
a full -ary tree of depth and start by placing randomly the
target node and the bot in the network. In the tree topology,

Fig. 10. Variables in the analytical model.

the path from to [see Fig. 4(a)] first traverses up the tree
and then, at a node that we denote by , turns down toward .
We denote the nodes on this path by

and their levels in the tree
by , respectively. (Leaf nodes are on level zero, and
the root on level .) The variables are illustrated in Fig. 10.
In random placement, , and have the follow probability
distributions:

is on level

(8a)

is on level is on level

(8b)

is on level is on level

(8c)

Note that we intentionally choose first, then , and last
and compute the conditional probabilities in this order.
Next, we consider random placement of bots in the network

and which of them will be used as in the injection attack. In
Section IV-B, we observed that if there is even one bot close to
in the network, it may be used as to facilitate the flooding

attack frommany other bots. However, we did not define what is
considered “close” because it depends on the network topology
and routing. In the tree topology with shortest-path routing, let
us consider the path from to . From each node on the path,
there are branches leading to other subtrees. has additionally
a branch up toward the root, unless itself is the root. Each
of the bots is located on some such branch. Importantly, we
denote by the node on the path from to that is closest
to along the path, such that some of the bots are
placed on the branches starting from . The attacker may pick
an arbitrary one of the bots as . In the tree topology,
and any other bots placed on the branches starting from are
not able to send to using the injection attack. However, all the
other bots, which are on more distant branches, can flood the
target with the help of . This is because the paths from them
to share at least one link with the path from to .
Let us enumerate the nodes on the path from to and con-

sider them as potential . The total size of the branches starting
from the node under investigation is denoted by , and the total
size of the later branches (ones closer to) is denoted by . In
order for the current node to be , the random placement of
bots must have landed no bots in the nodes and bots in

ANTIKAINEN et al.: DoS ATTACKS IN BLOOM-FILTER-BASED FORWARDING 1475

Fig. 11. Analytical results in the tree topology.

the nodes. This allows us to compute the probability that the
current node is with a specific value of

For

(9)

For the five types of nodes on the path from to , we get
the following probabilities of each one being with specific
values :

(10)

The first formula covers the rare case where the closest bot to
and therefore all the bots are under in the tree. It evaluates

to nonzero only for . The other formulas cover the path
from up to and down to . The last one represents the
fairly common situation where there is at least one bot under
in the tree. From these values, we can accumulate the probability
distribution for the number of bots that are unable to flood the
target

(11)

The results from this formula are shown in Fig. 11, and
they correspond closely to the simulation results seen earlier in
Fig. 6(f).

REFERENCES

[1] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “Revisiting IP multi-
cast,” Comput. Commun. Rev., vol. 36, no. 4, pp. 15–26, 2006.

[2] C. Rothenberg, P. Jokela, P. Nikander, M. Särelä, and J. Ylitalo,
“Self-routing denial-of-service resistant capabilities using in-packet
Bloom filters,” in Proc. Eur. Conf. Comput. Netw. Defense,
2009, pp. 46–51.

[3] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P.
Nikander, “LIPSIN: Line speed publish/subscribe inter-networking,”
in Proc. ACM SIGCOMM, 2009, pp. 195–206.

[4] M. Särelä, C. E. Rothenberg, T. Aura, A. Zahemszky, P. Nikander, and
J. Ott, “Forwarding anomalies in Bloom filter basedmulticast,” inProc.
30th IEEE INFOCOM, 2011, pp. 2399–2407.

[5] C. Macapuna, C. Rothenberg, and M. Magalh aes, “In-packet Bloom
filter based data center networking with distributed OpenFlow con-
trollers,” in Proc. IEEE GLOBECOM Workshops, Dec. 2010, pp.
584–588.

[6] C. Rothenberg, C. Macapuna, F. Verdi, M. Magalhães, and A. Zahem-
szky, “Data center networking with in-packet Bloom filters,” in Proc.
28th SBRC, Gramado, Brazil, 2010, pp. 553–566.

[7] A. Zahemszky, P. Jokela, M. Särelä, S. Ruponen, J. Kempf, and P.
Nikander, “MPSS: Multiprotocol stateless switching,” in Proc. IEEE
INFOCOM Workshops, 2010, pp. 1–6.

[8] J. Keinänen, P. Jokela, and K. Slavov, “Implementing zFilter based
forwarding node on a NetFPGA,” in Proc. NetFPGA Dev. Workshop,
2009, pp. 1–8.

[9] A. Ghani and P. Nikander, “Secure in-packet Bloom filter forwarding
on the NetFPGA,” in Proc. 1st Eur. NetFPGA Dev. Workshop, 2010,
pp. 1–7.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, Jul. 1970.

[11] B. Grönvall, “Scalable multicast forwarding,”Comput. Commun. Rev.,
vol. 32, pp. 68–68, January 2002.

[12] X. Tian, Y. Cheng, and B. Liu, “Design of a scalable multicast scheme
with an application-network cross-layer approach,” IEEE Trans. Mul-
timedia, vol. 11, no. 6, pp. 1160–1169, Oct. 2009.

[13] X. Tian, Y. Cheng, and X. Shen, “DOM: A scalable multicast protocol
for next-generation Internet,” IEEE Netw., vol. 24, no. 4, pp. 45–51,
Jul.–Aug. 2010.

[14] S. Silva, R. Silva, R. Pinto, and R. Salles, “Botnets: A survey,”Comput.
Netw., vol. 57, no. 2, pp. 378–403, 2012.

[15] J. K. Mullin, “A second look at Bloom filters,” Commun. ACM, vol.
26, pp. 570–571, Aug. 1983.

[16] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” Comput. Surv., vol. 35, pp. 114–131,
June 2003.

[17] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label
switching architecture,” Internet Engineering Task Force, RFC 3031
(Proposed standard), Jan. 2001 [Online]. Available: http://www.ietf.
org/rfc/rfc3031.txt

[18] K. Visala, D. Lagutin, and S. Tarkoma, “LANES: An inter-domain
data-oriented routing architecture,” in Proc. ReArch, 2009, pp.
55–60.

[19] M. Särelä, C. E. Rothenberg, A. Zahemszky, P. Nikander, and J. Ott,
“BloomCasting: Security in Bloom filter based multicast,” in Nordsec
2010 Conference, 2011.

[20] M. Särelä, “BloomCasting for publish/subscribe networks,” Ph.D. dis-
sertation, Aalto Univ., Espoo, Finland, 2011.

[21] R. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions for
fast software cryptography,” IEEE Micro,, vol. 21, no. 6, pp. 56–69,
Nov.–Dec. 2002.

[22] Y. Hilewitz, Z. Shi, and R. Lee, “Comparing fast implementations of bit
permutation instructions,” in Conf. Rec. 38th Asilomar Conf. Signals,
Syst. Comput., 2005, vol. 2, pp. 1856–1863.

[23] Z. Shi, X. Yang, and R. Lee, “Arbitrary bit permutations in one or two
cycles,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit., Proces-
sors, 2003, pp. 237–247.

[24] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet de-
nial-of-service with capabilities,” Comput. Commun. Rev., vol. 34, no.
1, pp. 39–44, 2004.

[25] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel, “Sep-
arating key management from file system security,” Oper. Syst. Rev.
vol. 33, pp. 124–139, Dec. 1999.

[26] D. Lagutin, “Securing the Internet with digital signatures,” Ph.D. dis-
sertation, School of Science and Technology, Aalto University, Espoo,
Finland, 2010.

1476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 5, OCTOBER 2014

[27] M. Ain, S. Tarkoma, D. Trossen, and P. Nikander, “Conceptual
architecture of PSIRP including subcomponent descriptions,” PSIRP
project, Deliverable D2.2, 2008.

[28] CAIDA, La Jolla, CA, USA, “The CAIDA AS relationships dataset,”
Jan. 20, 2010 [Online]. Available: http://www.caida.org/data/active/as-
relationships/

[29] L. Gao, “On inferring autonomous system relationships in the In-
ternet,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733–745, Dec.
2001.

Markku Antikainen received the M.Sc. degrees
in security and mobile computing from Aalto Uni-
versity, Espoo, Finland, and the Royal Institute of
Technology, Stockholm, Sweden, in 2011, and is
currently pursuing the Ph.D. degree in computer
science at Aalto University.
Before starting the graduate studies, heworked as a

Security Consultant with Nixu, Ltd., Espoo, Finland.

Tuomas Aura received the M.Sc. and Ph.D. degrees
from Helsinki University of Technology, Espoo, Fin-
land, in 1996 and 2000, respectively. His doctoral
thesis was on authorization and availability in dis-
tributed systems.
He is a Professor of computer science and engi-

neering with Aalto University, Espoo, Finland. Be-
fore joining Aalto University, he worked with Mi-
crosoft Research, Cambridge, U.K. He is interested in
network and computer security and the security anal-
ysis of new technologies.

Mikko Särelä received theM.Sc. degree in computer
science from Helsinki University of Technology,
Espoo, Finland, in 2004, and the Dr. Tech. degree in
electrical engineering from Aalto University, Espoo,
Finland, on his work on information-centric network
architectures in 2011.
He works as a Post-Doctoral Researcher with

Aalto University. During his Ph.D. studies, he
worked with Nomadiclab, Ericsson, Kirkkonummi,
Finland, on information-centric network architecture
and future Internet. His current research interests

include Ethernet scalability and security, energy efficiency, and mobility.

