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On the Delay Performance in a Large-Scale Wireless
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and Implications
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Abstract—We present a comprehensive delay performance mea-
surement and analysis in a large-scale wireless sensor network.
We build a lightweight delay measurement system and present a
robust method to calculate the per-packet delay. We show that
the method can identify incorrect delays and recover them with
a bounded error. Through analysis of delay and other system
metrics, we seek to answer the following fundamental questions:
What are the spatial and temporal characteristics of delay perfor-
mance in a real network? What are the most important impacting
factors, and is there any practical model to capture those factors?
What are the implications to protocol designs? In this paper, we
identify important factors from the data trace and show that
the important factors are not necessarily the same with those in
the Internet. Furthermore, we propose a delay model to capture
those factors. We revisit several prevalent protocol designs such
as Collection Tree Protocol, opportunistic routing, and Dynamic
Switching-based Forwarding and show that our model and anal-
ysis are useful to practical protocol designs.

Index Terms—Delay measurement, impacting factor, large-scale,
wireless sensor networks.

I. INTRODUCTION

ECENT advances in wireless sensor networks (WSNs)
have fostered a large number of applications, such as
structural protection and health-monitoring WSNs [1], [2], etc.
Those WSN applications often require quality-of-service (QoS)
guarantees to fulfill the system requirements, e.g., real-time data
delivery. Of the major factors that affect system QoS, delay is
an important one.
There are many research works on delay analysis and mea-
surement. Kompella et al. [3] present a fine-grained latency
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measurement method in presence of packet losses for the In-
ternet. Wilson et al. [4] present delay analysis results in data cen-
ters, providing guidelines to practical data center design. There
are tremendous research efforts made to delay analysis and mod-
eling in WSNs. For example, probabilistic delay bounds are
presented in [5]-[8] by extending network calculus. Further-
more, stochastic delay models are proposed by combining real-
time theory and queuing theory [9]-[11] or applying Discrete
Markov Process [12]. There are also some empirical network
delay models such as [13] and [14].

While there are excellent research works for WSNs, Internet,
and data centers, a practical end-to-end delay performance mea-
surement and analysis in an operational large-scale WSN is still
missing. On the other hand, considering the emerging demand
of WSN applications, it is important to understand the delay per-
formance in practical large-scale networks.

Delay performance measurement and analysis, in a large-
scale WSN, face nontrivial challenges. First, different from the
Internet and data centers [3], [4], [15], there are no effective
methods in WSNs supporting per-packet delay measurement.
Traditional delay measurement methods rely on network syn-
chronization, which introduce additional overhead. Thus, it is
not always efficient to apply network synchronization to an op-
erational network. Second, analyzing the collected information
is challenging. Collecting all required information from the net-
work incurs a high network overhead. Thus, the information is
usually incomplete due to resource constraints for sensor nodes
and packet losses in the network. Meanwhile, there are various
performance metrics in the network, and a single delay change
may be accompanied by variation of multiple metrics. More-
over, with low power listening, each node switches between
wake-up and sleep states to save energy. The delays exhibit in-
trinsic randomness in its distribution, introducing difficulty to
efficient and automatic analysis.

In this paper, we build an infrastructure for delay measure-
ment in CitySee, a large-scale WSN consisting of 1200 nodes.
The infrastructure does not rely on network synchronization and
thus does not introduce additional overhead. We present basic
statistical characteristics based on the collected data. To system-
atically and automatically identify important impacting factors
from various parameters, we build a method based on Rulefit for
the collected data trace. Furthermore, we quantitatively calcu-
late the correlation between different impacting factors and the
delay performance. Based on those important factors, we build a
practical delay model and validate the model using the collected
data trace. Finally, we revisit three important protocols based on
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Fig. 1. Deployment and sensor nodes in CitySee: 1) overview of the deploy-
ment area; 2) node locations in the network.
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Fig. 2. Sensor nodes in CitySee: 1) CO5 sensor node, 2) normal sensor node,
and 3) mesh node.

the measurement results and propose a practical delay model. In
summary, the contributions of this paper are as follows.

+ We build a measurement infrastructure in an operational
large-scale WSN with little network overhead. Based on
the collected data, we present the spatial and temporal char-
acteristics of delay performance.

* We present an automatic method based on Rulefit [16]
to identify important impacting factors to the delay
performance.

* We propose a practical model and validate it with the col-
lected data. We show the implications to protocol designs.

The rest of the paper 1is organized as follows.

Section II presents the system overview. Section III shows
the delay measurement method. Section IV presents the delay
distribution overview. Section V introduces the method of
identifying important factors. Section VI builds a delay model
based on the analysis. Section VII shows the implications of
the analysis and the evaluation results. Section VIII introduces
the related work. Finally, Section IX concludes this work.

II. SYSTEM OVERVIEW

A. Network

The primary goal of CitySee is to precisely measure CO,
emissions in a citywide area. We started the project since July
2011. Fig. 1 shows an overview of the network. Totally, we have
deployed 1200 nodes. The network employs a tiered architec-
ture with three kinds of nodes, i.e., normal telosB nodes, CO»
nodes, and mesh nodes.

In the network, each normal sensor node reads the sensing
data and records system status. CO3 nodes can also read the
CO» concentration. The CO» sensing component is connected
to the main board through the UART connection. The normal
nodes and CO, nodes form a network and deliver their data to a
sink node (normal node) in the network. Fig. 2 shows the sensor
nodes in our network.
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Fig. 3. Overview of network architecture.

Listen to the
channel
N

Listen to the
channel
N

Hear a transmission and
then begin to receive

Node 1

Sends the data when
the receiver wakes up

Has a packet and then
begin to se\rlld preambles

Node 2

Fig. 4. Basic mechanism of LPL protocols.

The mesh nodes have a high bandwidth of several megabytes
per second and a long transmission distance. They comprise
the network backbone. Sink nodes of different subnets are con-
nected to the network backbone in order to deliver packets to
the base station. Fig. 3 illustrates the overview of the system ar-
chitecture.

B. Protocols

1) Low Power Listening: Low power listening (LPL) is
widely adopted in WSNs to save energy. In LPL, each node
switches between awake and sleep state to save energy. Most
LPL protocols share the similar principle as shown in Fig. 4.
Each node samples the channel for a short duration in each
cycle. If energy is detected, the node stays awake for another
short duration to receive packets. Otherwise, the node turns
off the radio, and in the next cycle (e.g., 500 ms later) resam-
ples the channel. To transmit a packet, the sender continues
sending packets as preambles until the receiver wakes up. For
broadcast, the preamble lasts for a cycle duration in order to
ensure that all neighboring nodes wake up once. For unicast
with link-layer ACK, the sender can stop the preambles until
an ACK is received or the end of a cycle. Another type of LPL
protocol is receiver-initiated low-duty cycle protocol. Each
node periodically wakes up and sends probe packets to see if
there are transmissions intended for it. If a node has packets to
send, it will keep awake and send the packets once receiving
a probe packet from the receiver. Since a sender may begin to
send packets at any time, the time the sender needs to wait is
randomly distributed in the cycle. This introduces randomness
to packet delay.

2) Collection Tree Protocol: Collection Tree Protocol
(CTP) [17] is used to build a routing tree in the network. CTP
adopts the ETX metric [18], the expected transmission count, as
the path quality metric. Each node selects a path with minimum
ETX. The ETX of a link is calculated as 1/¢, where ¢ is the
packet reception ratio. The path ETX is calculated as the sum
of all link ETXs along the path.
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Fig. 5. Measuring delay in the network.

C. Measurement Infrastructure

Time synchronization can be used to measure delay in the net-
work. However, time synchronization protocols in WSNs, such
as FTSP [19], etc. [20]-[22], incur additional traffic overhead
into the network in order to maintain a global timestamp for all
nodes.

We use a lightweight approach to measure the end-to-end
packet delay without incurring synchronization traffic. For each
packet, we define the delay as the time from the packet is gen-
erated at the source node to the time that the packet is received
at the sink node. As shown in Fig. 5, the delay for a packet on a
path mainly consists of the following parts: 1) the packet trans-
mission time for a packet, i.e., the time used to modulate the
packet to signal; 2) the channel accessing time, i.e., the time
used to contend for the channel, including the backoff time; 3)
the queuing time; and 4) the propagation time on each hop, i.e.,
the traveling time for the signal from the sender to the receiver,
which can be calculated as the distance between the sender and
receiver divided by the light speed.

Our approach is based on the MAC-layer time-stamping tech-
nique (MLT) [19]. In MLT, a packet is time-stamped just before
the first byte is transmitted after backoff (with respect to the
sender's clock) and just before the first byte is received (with
respect to the receiver's clock).

Our approach measures the end-to-end delay as follows.
Fig. 5 shows an example of three nodes. Assuming a packet is
generated at node 1's local time 1, we show how to measure
the generation time to node 2's and node 3's clock. Suppose the
packet is transmitted and time-stamped at £, with the time #;
contained in the packet. Here, node 1 performs backoffs during
the time [¢7,¢2]. Thus, at time ¢3, the packet is modulated and
emitted through the antenna. Then, the packet is received at
node 2 and time-stamped at {3 by MLT. Since the distance
between two nodes is usually several hundreds of meters, we
ignore the signal propagation time from node 1 to node 2.
Node 2 calculates the packet generation time with respect to
node 2's clock by subtracting the time difference ¢ — ¢; from
time t3, i.e., t3 — (#2 — t1). Intuitively, it seems that the packet
is generated at time t3 — (¢2 — #1) to node 2's clock.

Here, we denote the time to — ¢ as the waiting time (ty)
at node 1. This is calculated as the time a packet is transmitted
minus the time the packet is received at node 1. Similarly, the
sink node, i.e., node 3, can calculate the packet generation time
after receiving a packet from node 2 as t5 — (£4— (t5— (t2—#1))),
and the receiving time as ¢5, both are with respect to node 3's
clock. Then, the delay of the packet is calculated as t4 — (t3 —

(tz — 1))
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D. Collected Data

The network collects four types of packets, denoted as C1,
C2, C3, and C4, respectively. Each node sends each type of
packet in every 10 min. There is a common header with four
fields, which records a common sequence number and the
timestamps used for delay measurement. We will introduce in
Section III how to use the timestamps for delay measurement.

III. DELAY MEASUREMENT

In this section, we show how to derive the delay for each
packet.

A. Delay Measurement Analysis

We assume the time ¢ provided by a sensor node follows the
linear clock model [19], i.e.,

t=(1+a)(r —t) (1)
where 7 is the time provided by a perfect clock, ¢, is the offset,
and « is the clock drift bounded by [—&, &]. Each packet from a
node has an unique increasing sequence number ¢. For packet 7,
we denote the receiving time of the packet 2 on node 7 with re-
spect to the perfect clock as ¢,(7, j) and the transmitting time
of the packet ¢ on node j as tx(i, 7). The transmitting/receiving
time is the time just before the first byte of a packet is trans-
mitted/received. We denote O as the source node and D as the
sink node for a path. Thus, t.(i, O) is the generation time of
packet ¢ on the source node. Therefore, the end-to-end delay of
packet ¢ for a path can be calculated as

td(i) = tr(i'/D) - tr(iv O) (2)

Denote the waiting time for packet ¢ at node j on the path as
tw(i, 7). We have ty(i,5) = tx(i,4) — (4, 7). The waiting
time ¢ (, j) contains the backoff time on node i to contend for
the channel. We ignore the signal propagation time in our anal-
ysis considering the distance between the sender and receiver is
small. Therefore, the end-to-end delay is also calculated as

n-1

ta(i) = Z tw (i, 4)- 3)

In practical networks, we denote x (3,4, %) the measured
time of operation X for packet ¢ on node j with respect to k's
clock. We can measure the following:

+ the SourceTime #,(i,0,0), i.e. the generation time of

packet 7 to the source's clock;

+ the SinkTime #.(i, D, D), i.e. the receiving time of packet i

to the sink's clock;

+ the waiting time £, (4, 7, 7) for packet i on node j on a path;

+ the SourceTimeAtSink as i,(i) = 4.(i,D,D) —

>3t (i i 4)-
We summarize the parameters in Table 1.

For two packets ¢; and iz, we denote the measured time dif-
ference on node j as Afx (i1, iz, j) = Ex (i1, Jy ) — x (i, j, j)
and the time difference with respect to the perfect clock
as Atx(i1,i2,7) = tx(i1,j) — tx(iz,j). Denote Al, =
{.(i1) — 14(i2), we have the following theorem.

Theorem 1 (Drift Constraint): For two packets #; and 5
(i1 > i2), the measured SourceTimeAtSink satisfies

(1-28&) AL, (31,49, 0) < Af, < (14 2&) Al (i1,i9,0).  (4)
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TABLE I
NOTATIONS
parameter description
a The maximum clock drift.
o The source node of a path.
D The sink node of a path.

The time of operation X for packet i on node j
with respect to the perfect clock. X={x, r} denotes
the time the packet is transmitted and the time the
packet is received. X=w denotes the waiting time.
On the source node, we use #,(i,0) to denote the
packet generation time.

The end-to-end delay for packet i. Thus we have
ta(i) = t,(i,D) — 1,(i,0). We also have t4(i) =

7;]] tw(i, j) for a path consisting of n nodes.

tx (i, j,k) The measured time of operation X for packet i on
node j with respect to k’s clock.

7a (i) The measured packet generation time for packet i
with respect to the sink’s clock.

Proof: See Appendix A. O

The intuition of the drift constraint theorem is as follows. Due
to a maximum drift of & for each node, the maximum relative
drift between the SourceTimeAtSink and SourceTime should
be less than 2&. We can check the correctness of the measured
timestamps in the received packets and thus filter the incorrect
timestamps. Denote the calculated delay as

ta(i) = 4:(i, D, D) — &.(i) )

we have the following theorem. 3
Theorem 2 (Delay Error Bound): The calculated delay ¢4 (i)
satisfies

(1— a)ta(i) <ta(d) < (1+a)ta(i). (6)

Proof: See Appendix B. O
This theorem shows that the calculated delay has a bounded
error. Intuitively, the delay error is introduced by measuring the
waiting time on each node. As the delay #4(:) is small, the error
is also very small. This is different from time synchronization
protocols that need to maintain a global clock all the time with
periodical beacon packets.

Furthermore, for two packets 4 and i3 (i; > 43), we assume
the timestamp of SourceTimeAtSink in packet #; is incorrect.
We can use the correct timestamps in the packet i, to recover
the i1. We calculate the delay of packet i by

th(i1) =%:(i1, D, D) — (£:(i1, 0, 0) — (£:(i2, 0, 0) 1, (i2))).

)
It can also be shown that the error of the recovered delay is pro-
portional to the delay t4(i1) and the generation time difference
between two packets.

B. Delay Processing

The data processing consists of the following steps.

1) We first calculate t4 = #,(i, D) — #,(4). The calculated #4
is shown in Step 1 in Fig. 6.

2) There exist various types of errors in the data. The first
type of error comes from MLT. Due to packet overflow
in the limited receiving buffer and packet losses, MLT
cannot guarantee to provide correct stamps. To address this

delay (ms)

delay (ms)

delay (ms)

delay (ms)
o

1000, . 5 o s o, oo
33 I ) A s ave BN - AL
the e s £, W e L “ N PR

0 200 400 600 800 1000 1200 1400 1600 1800

Packets

Fig. 6. Delay processing. Step 1: Original data. Step 2: Result after filtering
the incorrect delays. Step 3: Result after recovering the overflow timestamps.
Step 4: Result after recovering the incorrect delays based on the result in Step 3.
Crosses are the recovered delays.

problem, we first validate the delay values and exclude the
incorrect timestamps by Theorem 1. We group the delays
satisfying the drift constraint into the same group. Since
incorrect delays are randomly distributed, we omit those
groups with much less elements than other groups. The re-
sult is shown in Step 2.

3) After removing the incorrect delays, we find there are
very large 4. Those large values are due to timestamp
overflow. In our measurement method, the Souce-
TimeAtSink provided by MLT is a 4-B timestamp
based on a 32-kHz timer. Hence the maximum time is
tmax = 02FFFFFFFF/32 ms, i.e., about 1.5 days.
Since normally 3 is smaller than 1.5 days, we set £q = 4
mod tax. We show 4 in Step 3.

4) Until now, we have calculated the delays for the correct
timestamps. At this step, we recover those incorrect delays
according to (7) with previously received correct packets.

The final result is shown in Step 4 in Fig. 6.

IV. DELAY OVERVIEW

A. Overall Distribution

Normally, the maximum single-hop delay is L according to
the LPL mechanism without other impacting factors, where L
is the cycle length of LPL, e.g., L = 500 ms in our network.
For a packet of k hops, the delay should be distributed between
0 and kL without other impacting factors. The expected delay
for such a path should be ¥T/2. Fig. 7 shows the overall delay
distribution for one subnet. The z-axis is the node ID, and y-axis
is the delay. For each node, we show the statistics of the delays
with the median, 25th percentile, 75th percentile, k& x 500, and
the lowest delay, where & is the average hop count for this node.
We sort all the nodes with respect to the median delay. The
crosses in the figure represent delays larger than & x 500. We
denote those delays as large delays. Overall, this figure presents
several kinds of information: 1) The delay distribution exhibits
randomness. 2) Though the delay of different nodes varies in a
large range, the median delays are evenly distributed between
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0-2 s. 3) There exist many large delays for most nodes. Later,
we will explain the reasons for those large delays.

B. Spatial Distribution

We further look at the spatial distribution of delays in the net-
work. In Fig. 8, each circle is plotted according to the phys-
ical location of different nodes. In the middle area, there is a
building. The radius of each circle represents the average delay
over the measurement period, and the depth of the color repre-
sents the delay variation. A darker color indicates a larger vari-
ation. The red node (60002) is the sink node. We can see that
nodes far away from the sink node have large average delays
as well as large delay variations. Nodes in the right top area are
farthest from the sink node and have the largest delays and delay
variations.

C. Overall Clock Drift

Before examining the delay details, we look at the clock drift
of sensor nodes. To calculate the relative clock drift, as in [19],
we apply robust linear fitting for the collected timestamps and
then calculate the slope as the relative clock drift for all nodes
to sink node. Fig. 9 shows the cumulative distribution func-
tion (CDF) of the relative clock drift for all nodes. The z-axis
is the drift, and y-axis is the CDF of nodes. More than 90% of
nodes have a clock drift less than 40 ppm. This coincides with
the result from [23]. The result shows that the clock drift of most
nodes in the outdoor environment is relatively stable.

V. ANALYSIS OF DIFFERENT FACTORS

In the data, we have various parameters from different as-
pects. We first collect features that may have an impact on delay
as reported in existing works, such as queue length, backoff

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 1, FEBRUARY 2015
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Fig. 9. CDF of drift for all nodes.

time, parent change, etc. We also collect environment factors
(e.g., temperature, humidity, and light), routing parameters (e.g.,
routing loop), data transmission parameters (e.g., overflow, re-
transmission, duplicated counters), and sensor node status (e.g.,
radio duty cycle, radio on time, task execution time, etc.).

It is difficult to identify important impacting parameters to the
delay performance. A single delay change may be accompanied
by variations of different parameters. Moreover, the randomness
introduced in LPL mechanism makes it even difficult to extract
important factors. To address those issues, in this section, we
leverage an automatic tool to identify important impacting fac-
tors and then investigate those important factors.

A. Important Factors

We use Rulefit [16] to find the important factors. Rulefit is a
supervised learning approach to train predictors based on rule
ensembles. Rulefit first trains a decision tree based on the input
data. The decision tree can provide rules, each of which is a
combination of one or more feature tests, i.e., combining one
or more features into simple “and” tests. Let z be a vector of
n features and s; be a subset of possible values for feature x;.
Then, a rule takes the form of

=11

where I(-) is an indicator function. A rule takes value one if
all feature tests in the rule take value one. Rulefit provides the
relative importance of different features based on rules. First,
each rule is given an importance value according to its impor-
tance in the decision tree. Then, the importance for a variable in
arule is calculated as the importance of the rule divided by the
number of variables in the rule. The importance for a variable is
the sum of the importance for the variable in all rules containing
this variable.

Rulefit has two properties: 1) it can rank features by their
relative importance to the prediction goal; and 2) it can pro-
vide easy-to-interpret rules (combinations of features) for user
understanding. Rulefit has been adopted in recent works, e.g.,
[24], to understand different impacting factors. Here, we present
an overview of Rulefit approach. Interested readers can refer to
[16] for more details.

We apply Rulefit to the collected parameters and delays. The
ranking result of all parameters by Rulefit is shown in Fig. 10.
The top five most important factors are retransmission, hop
count, queue length, congestion backoff, and temperature. By
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applying Rulefit, we can filter those less important factors and
then only focus on important factors for a real network.

B. Detailed Correlation

We now investigate those important factors and examine the
relationship of those factors to the delay performance.

1) Hop Count: Fig. 11 shows the delay distribution with
respect to different hop counts. Overall, packets with a larger
hop count to the sink node have a larger delay. More specif-
ically, this figure shows two kinds of information. First, for
hop count &, most delays (more than 80%) are less than & x
500 ms, which coincides with the settings of LPL in our net-
work. Second, this figure also shows that for each hop count,
there exist many large delays, indicating other impacting fac-
tors to the delay performance.

2) Retransmission: Fig. 12(a) shows the average retransmis-
sion count at each hop. We can see that retransmissions per
packet at different hops are almost equal. Though the traffic is
high for nodes near the sink, the corresponding retransmission
count for those nodes is similar to other nodes. We investigate
the data and find the collisions near the sink are not severe. Note
that the retransmission count for nodes at hop 1 is much lower
than other nodes since the radio of the sink is always on.

Fig. 12(b) shows the delay with different retransmission
counts. It can be seen that the retransmission count and delay
have a similar trend. The delay increases with the increasing
of retransmission count. Meanwhile, we calculate the Pearson
correlation for the retransmission and delay. The Pearson

correlation between two variables X and Y is calculated as the
covariance of the two variables divided by the product of their
standard deviations, i.e.,

pPxyYy = ———. 9
IX0y
Then, we show the CDF of correlations for all nodes. As in
Fig. 12(c), the z-axis is the correlation, and y-axis is the CDF of
nodes. We find that most nodes have high correlations between
retransmission and delay.

Furthermore, we look into those large delays. For hop k&, we
denote the delays larger than k& x 500 as large delays and other
delays as normal delays. In order to correlate those large delays
to retransmissions, we set a packet with retransmission count
larger than 0 as a retransmission event. Then, in the entire net-
work, we calculate how retransmission events can be used to
predict large delays. For a packet with a retransmission event,
if such a packet has a large delay, we say the event is correlated
to a large delay and call it a true positive (TP). Otherwise, we
call it a false negative (FN). For a packet without retransmission
event, if such a packet is correlated to a normal delay, we call it
a true negative (TN). Otherwise, we call it a false positive (FP).
Then, we calculate the accuracy, which gives the probability
that a retransmission event can be used to predict a large delay,
ie.,

TP + TN
TP + FN+ FP + TN’

Fig. 12(d) shows the CDF of accuracy for all nodes. The z-axis
is the accuracy, and y-axis is the CDF of nodes. The result shows
the accuracy for most nodes is high. More than 80% of nodes
have an accuracy ratio higher than 60%.

Considering an extreme case when all packets have large de-
lays, even randomly selecting a large enough subset of packets
as retransmission events would lead to a high accuracy. To ad-
dress such a problem, as in [25], we calculate the balanced ac-
curacy, i.e.,

(10)

accuracy =

0.5 x TP n 0.5 x TN
TP +FN TN+ FP’

Fig. 12(d) shows the CDF of balanced accuracy. We can see
that for balanced accuracy, more than 70% of nodes still have a
balanced accuracy higher than 0.6.

3) Queuing: We also examine the impact of queuing on the
delay performance. There is only one queue on each node. For
each packet along the path to sink node, we record the queue
length when the packet arrives at each node. Fig. 13(a) shows
the average queue length for different hops. Unlike the retrans-
mission count, the average queue length varies for different
hops. Nodes near the sink have larger average queue length.
This indicates that although high traffic near the sink does not
incur packet losses and retransmissions, it results in more con-
gestions and thus a larger queue length. Since the sink is always
on, nodes within 1 hop from sink node can quickly drain their
packets and thus have a smaller queue length.

Fig. 13(b) shows the delay with respect to the total queue
length along the path. We also find that many packets with a
large queue length are correlated with large delays. We also cal-
culate the Pearson correlation. Fig. 13(c) shows the CDF of cor-
relation for all nodes. The xz-axis is the correlation, and y-axis
is the CDF of nodes. We can see that for most nodes, delay has

balanced accuracy = (11)
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Fig. 13. Impact of queuing events to delay. (a) Queue length to average retransmissions. (b) Queue length with respect to delay distribution. (c) CDF of correlation
between queue length and delay for all nodes. (d) Accuracy and balanced accuracy of using queuing events to predict large delay.

a positive correlation with the queue length. However, the cor-
relation is not as strong as that of retransmission. In LPL, the
receiver is awake with a high probability after the first packet
in the queue is transmitted. Thus, consecutive packets may not
need to wait until the receiver wakes up. Therefore, the impact
of queue length on delay is relatively small. We further explain
the reason in the delay model in Section VI.

We further examine the predictability of queue length to large
delays. Similar to retransmission, we set a packet with a queue
length larger than 0 as a queuing event. Then, we correlate those
queuing events to large delays and calculate the accuracy and
balanced accuracy. The CDF of accuracy and balanced accuracy
are shown in Fig. 13(d). First, we can find that on many nodes,
queuing events are correlated with large delays, e.g., about 80%
of' nodes have accuracy higher than 60%. For balanced accuracy,
about 80% of nodes have balanced accuracy higher than 40%.
In total, we can see that the correlation here is not as high as that
for retransmission, which coincides with the result of Fig. 13(c).

4) Other Factors: From the result of Rulefit, we find that
environment factors, MAC backoffs (including congestion
backoff and initial backoff), and routing events (including
parent change and loop event) are not as important as afore-
mentioned factors.

It has been shown that environment factors such as
temperature and humidity affect the clock drift and link
quality [23], [26]. Fig. 9 shows the drift of sensor nodes is
relatively small, and thus its impact to packet delay is also
limited. The impact of environment on link quality has also
been studied in different works such as [26]. Link quality is
indeed related to delay performance. Such an impact is captured
in retransmissions. Thus, we do not consider environment as a
direct impacting factor.

The impact of MAC backoffs on delay is also extensively
studied in different works such as [27]. In our network, we

find that the average backoff for each packet is relatively small.
Thus, the impact of backoff is not as significant as other factors.

The impact of routing events, such as parent change and loop
events, has been studied [28] in Internet. It has been shown
that those events may lead to a large end-to-end delay [28]. For
different network deployments, the impacting factors may be
different. The differences should be considered in protocol de-
sign. Different from Internet, our result shows that the impact of
parent change is relatively small in WSNs. On the other hand,
the impact of wireless link quality, retransmission, and so on
becomes high due to the following reasons. First, the number
of those events is relatively small. Second, nodes often switch
among forwarders with similar hop counts. In practical protocol
design, we should consider the scenario when there are no for-
warders with a similar hop count. Third, events such as loop
events can be quickly recovered by the network protocol. For
example, when a loop is detected in CTP, the beacon interval
is decreased to minimum in order to propagate the information
as quickly as possible, alleviating the impact of loop event on
end-to-end delay.

C. Apply Rulefit to Other Networks

To further show that our method can be applied in other
networks, we implement our method with the recent proposed
received-initiated low-duty cycle protocol A-MAC [29]. We
evaluate the protocol in an indoor network. Fig. 14 shows the
result of Rulefit. We can see that retransmission and queue
length are still two of the most significant impacting factors.
Different from the result in Fig. 10, the impact of other factors
is much lower. We investigate the data and find that there are
less contentions for indoor environment with a small network
size. Meanwhile, the temperature for the environment is more
stable than the outdoor environment. The loop event and parent
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change event are also very rare. Nevertheless, we can still

obtain impacting factors using Rulefit for A-MAC.

VI. DELAY MODEL

According to the analysis of different factors, in this section,
we build a model for the end-to-end packet delay and validate
it in our network.

A. Model

We first model the single-hop packet delay and then extend it
to multihop end-to-end delay. To derive the model, we describe
the following parameters:

* tg: the sleep time in LPL;

e t4: the awake time of the receiver in LPL;

* 1: MAC layer backoff time, including the initial backoff

time and congestion backoff time;

» u: the duty cycle ratio of the receiver, i.e., the awake time
divided by the cycle length;

* 1y: the packet modulation/demodulation time. This is usu-
ally platform-dependent and is related to the packet size;

+ 7r: the number of retransmissions for a packet.

We first calculate the delay for a single-hop packet transmis-
sion. Assume the packet is retransmitted r times. According to
the mechanism of LPL, each unsuccessful transmission takes of
time of length ¢, + £5. Thus, the time used for 7 retransmissions
is r(tw + ts). For the (# + 1)th transmission that is successful,
there are two cases in LPL.

* Case I: If the receiver is sleeping, the sender should wait
until the receiver wakes up and then send the packet to the
receiver.
* Case 2: Otherwise, the packet can be sent directly.
For Case 1, since the transmission can fall into any time during
the sleeping period of the receiver, the delay is U (0, t5) +1, +tx,
where U(0,t;) is a random distribution between 0 and 5. For
Case 2, the delay for a packet is ¢, 4 ¢x. According to the duty
cycle ratio of each receiver, the probability for Case 1 is 1 — u,
and for Case 2 is u.

Consequently, the 1-hop delay is given by

r(tw + ts) + tp + tx, with prob. u
T{ts, tw,7) = ¢ Pl + s} + U0, i5) (12)
+ip + x, otherwise.

Based on the single-hop delay, we derive the delay for a mul-
tihop path. A packet p is transmitted on a path consisting of
n nodes from node 1 to n. At each node, the packet is first
put into the transmission queue and then transmitted after prior
packets in the queue are transmitted. To calculate the multihop
delay, we first describe the following parameters:

* I;: queue length at node ¢, i.e., the number of packets in
the transmission queue, including the packet p. The packet
needs to wait until prior [; — 1 packets are transmitted.

* 7; ;: the number of retransmissions for the jth packet in the
queue on node :.

The time for the first packet in the queue can be calculated ac-
cording to (12). We then calculate the time for following packets
in the queue. In LPL, the receiver should stay awake after re-
ceiving a packet. When r = 0, the packet in the queue is directly
sent to the receiver since the receiver is awake. Otherwise, the
packet is retransmitted since the receiver is sleeping. Thus, for
packets except the first one in the queue, the delay is

r=20
otherwise.

i, + tx,
Tq(ts,twfr) = { T(ts, tw7 T'),

Therefore, the delay for a path consisting of n nodes
(1,2,...,n) is given by

(13)

n—1 n—11;—1
D(n) =Y T (&6 i)+ D Ty (85760 i)
i=1 i=1 j=1

(14)

where T'(t51 2111 r; 1) is the single-hop delay for the first
packet in the queue at node i, T, (1571, tiFt, r; ;) is the delay
for the jth packet in the queue, ti1 is the sleep time, and #i1
is the awake time of node ¢ + 1.

B. Model Validation

We validate our model with the collected data. In CitySee,
we have recorded the queue length on each node of the path,
i.e., I;. We also recorded the ETX value from each node to its
neighbors. This can be used to approximate r; j, for j > 1. For
each packet, we also recorded the retransmissions on each hop,
which is r; ;, for j = 1. On each node, we calculate the average
duty cycle u and average backoff time #;,. Using those param-
eters as input, we calculate the delay with the model. Then, we
compare the result of the model to the delay calculated from
the packets. The result is shown in Fig. 15. We show the av-
erage delay and variations for different hops. We can see that
both results increase linearly with the hop count. The model and
practical delay have very similar distribution, showing that our
model is effective to capture those important factors.

VII. IMPLICATIONS

In this section, we revisit three prevalent protocols and dis-
cuss the implications of our analysis and delay model.

A. Routing Protocol

We first analyze the commonly used data collection protocol
CTP in WSNs. Through analysis, we find that CTP protocol,
with ETX as the routing metric, may not appropriately choose
a good path. For brevity, we assume the queuing delay on each
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hop is 0, i.e., I; = 1 on each hop. Then, we have
n—1
D(’I’I,) = Z T (t;+17 ta—,’_17 'ri,l) .
i=1
According to (12), the expected delay is

E(Dn)=E (Ti (ria(ty +1t) +tn, + tx)>

i=1

+(1-uw)E (TLZ U(O,ts)) .

Denote T X, as the ETX for the link from node ¢ to 7 + 1. Ac-
cording to the definition of ETX, we have ET'X; = E(r; 1)+1.
The expected delay on the path is

n—1

ST UETX; = 1) (b +15) + b + L)

E(D(n)) =

ts
+ (1 —-u)(n-— 1)5
= PathETX (14, + t,)

—(n—1) (tw + HT“tS it tx> .5
We can see that even for paths with the same path ETX, the
expected end-to-end delay can be different. In practical settings,
the awake time ¢,, and sleep time ¢ are usually larger than the
backoff time £, and data transmission time ¢,. Thus, we have
(n— 1) (tw + (1L +u)/2)ts — ty — t5) > 0. According to (15),
for the same path ETX, E(D(n)) decreases as the hop count
n increases. This indicates that longer paths, which are often
prohibited previously, may even be better than shorter ones.
Considering a simple example for two paths with the same
ETX of 2: The first path consists of one link with a link ETX 2;
the second path consists of two links, each of which has a link
ETX 1. CTP treats those two paths equally and thus randomly
chooses one as the routing path (in current implementation, the
one that appears earlier in the routing table is selected). In fact,
according to the delay model, the second path is better than the
first one in terms of delay, even though the second one has a
larger hop count. For the first path, there are two transmissions
in expectation including one retransmission. For the second
path, there are two transmissions in expectation without re-
transmissions. Intuitively, according to the mechanism of LPL,
if there is no retransmission, the expected time is L/2, where L
is the cycle in LPL. However, if a packet is retransmitted, the
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expected time is L. Hence, the second path is better. This also
explains in Fig. 10 why retransmission count is more important
than hop count. In current design, the ETX metric only counts
the expectation of transmissions and makes no difference for
retransmissions and successful transmissions.

Accordingly, we propose a new path quality metric, i.e., ex-
pected delay based on ETX (EDETX). According to (12), the
EDETX; ; for asingle hop from node i to node j is calculated
as EDETXlJ = (ETX{_]j — l) (tw —|—ts) +ip+i+ (1 — u)ts/2,
where ETX; ; is the ETX from node i to node j. Those pa-
rameters can be calculated by each node locally. Based on the
single-hop EDETX, each node can calculate the path EDETX to
the sink node, which is the sum of link EDETXs on the path. We
improve the original CTP protocol with the EDETX metric. In
the improved protocol, to minimize the transmission cost, each
node first selects a parent with minimal ETX. Then, the node
will select a parent with minimal EDETX. Thus, EDETX will
not incur additional transmission overhead. It is worth noting
EDETX can also be used without ETX to improve delay perfor-
mance. Fig. 16 shows the comparison result for the improved
protocol and CTP. The 2-axis is the group of packets with the
same ETX. We can see that for different groups, the average
delay with EDETX is reduced.

B. Opportunistic Routing

Opportunistic routing can significantly improve system per-
formance [30], [31]. We evaluate the practical performance of
opportunistic routing with a real trace from CitySee. For each
node, we calculate the probability that the delay performance
can be improved, i.e., the portion of neighbors with smaller de-
lays than the node itself. We evaluate two different strategies as
shown in Fig. 17. First, we evaluate the strategy that a node can
select the next forwarder in all neighbors. For more than 50%
of nodes, the probability to select a better node is higher than
50%. However, opportunistic routing in all neighbors may still
result in selection of a forwarder with a larger delay.

Furthermore, we investigate the second strategy. Each node
only selects neighbors closer to the sink node. We can see that it
is better to select nodes from neighbors with smaller hop counts
to the sink node. For more than 80% of nodes, the probability
of improvement is larger than 95%.

C. Dynamic Switching-Based Forwarding

Dynamic switching-based forwarding (DSF) [32] is proposed
to optimize the expected end-to-end delay in WSNs by selecting
a set of forwarders. In DSF, each node searches in its neighbors
to find an optimal forwarding set with minimum expected end-
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to-end delays. More specifically, a node searches through its
neighbors and calculates whether it is beneficial to add each
neighbor into the forwarding set.

For each node, we calculate its link quality ¢; to each
neighbor i and the delay T; of neighbor i. Assume the for-
warding set is ¥ = {v1,vs,...,vp} and vy, va,..., v p are
in ascending order of waking-up time. For brevity, for a node
that wakes up multiple times, we let it appear multiple times in
the set. Then, the expected delay is

|F| i—1

DRy = (> ][0 - a)aT:

i=1 k=0

(16)

where g = 0.

DSF uses dynamic programming to find F' such that D(F") is
minimized with a certain packet reception ratio being satisfied.
We compare the delay of DSF using our trace to the practical
measured packet delay in our network. Fig. 18 shows the delay
difference of measured delay in our network and the delay of ap-
plying DSF to our trace, i.c., practical delay —DSF delay. First,
for most packets, the difference is larger than 0. We can see that
for more than 75% of packets, the practical delay is larger than
the DSF delay, indicating that using DSF is beneficial in terms of
delay performance. Meanwhile, note that the improvement for
most nodes is less than 500 ms, indicating further improvement
is possible. In LPL protocol, we can extend the delay model to
the network without fixed scheduling for different nodes. In this
case, as in (12), the probability for retransmission count » can
be calculated [33] as

pw:k):Iﬂ1—%ﬁ<1—IR1—%Q.

i€l iEF

an

Thus, the expected number of retransmission can be calculated
as

HieF(l — i)

E(r)= . (18)
( ) 1- HiEF(l ~ i)
Then, the single-hop delay can be calculated as
Dep=E(r)(tw +1ts) + 1o + tx + pts (19)

where e is the sender and pis is the expected delay for a suc-
cessful transmission. We can further calculate the multiple-hop
delay and improve the performance according to techniques de-
scribed in Section VI.
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Fig. 18. Difference of the practical packet delay and DSF.

VIII. RELATED WORK

Delay Analysis: There are extensive works for delay per-
formance analysis in WSNs. First, probabilistic delay bounds
are proposed in [5]-[8] by extending network calculus. In the
second category, stochastic delay models are proposed. For ex-
ample, in [9]-[11], different models are proposed by combining
real-time theory and queuing theory. In those models, unreliable
networks with heavy traffic are considered. There are some em-
pirical network delay models [13], [14] proposed for end-to-end
delay measurements. A delay model based on Discrete Markov
Processing in the network is proposed in [12]. Besides those
end-to-end delay models, the single-hop channel access delay
models are also analyzed in [27], [34], and [35]. However, those
works proposed in WSNs are often based on assumptions—e.g.,
traffic or routing path—and not evaluated in a real large-scale
network. In this paper, we are the first to propose a lightweight
delay measurement and analysis in an operational LPL. WSN.

Delay in Internet/Data Center: There are also a large
number of research works in Internet and data centers.
Pucha et al. [28] show the impact of routing events on
end-to-end delay in Internet. Kompella et al. [3] present
fine-grain latency measurements in presence of packet losses
for internet with a lossy difference aggregator. To measure the
per-flow delay, Lee et al. [15] present a measurement method
with reference delay interpolation. As the development of data
center technologies, Wilson et al. [4] present delay analysis
results in the data center and provide guidelines to the data
center design.

Time Synchronization: There are also many global time syn-
chronization methods in wireless sensor networks, e.g., [19],
[20], and [36]. Those methods can synchronize all nodes in the
network and provide synchronized timestamps. Our measure-
ment method is different from those methods in two aspects.
First, our method does not require time synchronization among
all nodes in the network. We recover the timestamp at the sink
side. Thus, this reduces the message exchange overhead among
all nodes. Second, our method does not need to maintain a syn-
chronized timestamp all the time. Therefore, our method does
not require periodical message exchange.

Large-Scale Sensor Network Deployment: There are many
sensor network deployments in the world. Table II shows sev-
eral network deployments in the world.

IX. CONCLUSION

We focus on delay measurement, analysis, and implications
in an operational large-scale LPL wireless sensor network. We
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propose a lightweight delay measurement method to efficiently
calculate delay without time synchronization, which is appli-
cable to operational networks. We analyze the spatial and tem-
poral characteristics of delay distribution through carefully ex-
amine system metrics. Furthermore, we extract different im-
pacting parameters to delay performance with the incomplete
data, propose a practical delay model to capture those factors,
and validate it in a large-scale network. Finally, we show the
implications of measurement and analysis to protocol design.

APPENDIX A

Proof: According to the linear clock model, we have

Aty (iy,i9,0) = (1 + a1) At (i1, ip, O) (20)
Af (11,22,D> :(1+a2)At (il,fg,D) (21)
n—1

tw(in, g, j) = (1 + as) Zf (i1, 4) (22)
j=1
n—1 nfl

b (in, 3, 5) = (1+ o) > twl(ia, ) (23)
j=1 j=1

where o, a2, arg and auy are clock drifts bounded by [—&;, 4.
Thus, we have

n—1
t,(i1, D, D) — tu
1

Ata = (517.7’.7)

J

— | (62, D, D) Z (i2,5,7) (24)
According to (20)—(23), we have
n—1
A'Ea: ir(ilsD7D)7 {W(i17j7j)
j=1
- ZZ: D D Z 127] .7
n—1
= (14 02) Aty (i1, 2, D) — (1 + a3) > tw(is, j)
j=1
n—1
+ (1 +as) Y (i, ). (25)
j=1
Since a2, ag, and a4 are bounded by [&, 4], we have
n—1
Afy <(1+ &) At (1,02, D) — (1= &) >t (i1, §)
j=1
n—1
+(1+a) Y twliz,j). (26)
j=1
According to (2) and (3), we have
n—-1
Aty < (14 6)At(i1,i2,0) + 26 Y twlin,j).  (27)
j=1
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TABLE 11
WSN DEPLOYMENTS

System Scale Power supply environment
Great Duck island [37] 100+ Battery Outdoor
VigilNet [38] 200 Battery Outdoor
MoteLab [39] 190 Tethered Indoor
SensorScope [40] 97 Solar Outdoor

Trio [41] 557 Solar/Battery Outdoor
CitySee 1200 Battery Outdoor
Since & is in the magnitude of 10~ and Z tw (i1, J) is

in the magnitude of 10~3 s, which are much smaller than (1 +
&) At (i1, 12, O), we ignore the second term and obtain

Al < (14 &)At(iy, iz, 0). (28)
Combining (20), for small &, we have
AL < (1+ &)Agr(fl) iz,0)
1 —a
~ (14 2&)At, (i1, i2, O). (29)
Similarly, we have
Aty > (1 — 28) At (i, ia, O). (30)
Combining (29) and (30), we prove the theorem. O
APPENDIX B
Proof: According to (5), we have
ta(i) = (:(i, D, D) — 1a(i))
n-1
= > tw(ijij) (31)
j=1
Based on (22), we have
n-1
fa(i) <1 +a) Y tu(i,g)
i=1
=(1+ d)tjd(i). (32)
Similarly, we have
ta(i) > (1 — &)tq. (33)
Combining (32) and (33), we prove the theorem. O
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