
1978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 6, DECEMBER 2014

Network Codes Resilient to
Jamming and Eavesdropping
Hongyi Yao, Danilo Silva, Sidharth Jaggi, and Michael Langberg

Abstract—We consider the problem of communicating informa-
tion over a network secretly and reliably in the presence of a hidden
adversary who can eavesdrop and inject malicious errors. We pro-
vide polynomial-time distributed network codes that are informa-
tion-theoretically rate-optimal for this scenario, improving on the
rates achievable in prior work by Ngai et al.Ourmain contribution
shows that as long as the sum of the number of links the adversary
can jam (denoted by ) and the number of links he can eavesdrop
on (denoted by ) is less than the network capacity (denoted by
) (i.e., ), our codes can communicate (with van-

ishingly small error probability) a single bit correctly and without
leaking any information to the adversary. We then use this scheme
as amodule to design codes that allow communication at the source
rate of when there are no security requirements, and codes
that allow communication at the source rate of while
keeping the communicated message provably secret from the ad-
versary. Interior nodes are oblivious to the presence of adversaries
and perform random linear network coding; only the source and
destination need to be tweaked. We also prove that the rate-region
obtained is information-theoretically optimal. In proving our re-
sults, we correct an error in prior work by a subset of the authors
in this paper.

Index Terms—Achievable rates, adversary, error control,
network coding, secrecy.

I. INTRODUCTION

A SOURCE Alice wishes to multicast information to a set
of receivers over a network. As shown in an elegant se-

quence of papers, network coding, i.e., allowing internal nodes
in a network to perform nontrivial arithmetic operations on
incoming information to generate their outgoing information,
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in general strictly increases the achievable rate region. An
information-theoretic proof of this was provided in [1], and fur-
ther, the work of [2] demonstrated that linear codes sufficed to
achieve such performance. The techniques in [3] demonstrated
an explicit procedure to design such codes over finite fields.
Efficient code constructions were provided in [4] (deterministic
codes) and in [5] (distributed randomized codes). An extensive
account of the theory and applications of network coding can
be found in [6].
However, if a network with even a single receiver Bob con-

tains a malicious adversary Calvin, there are at least two secu-
rity challenges—Calvin might eavesdrop on private communi-
cations, or he might disrupt communications by injecting fake
information into the network, or in general he might do both.
In the network coding model, this second danger may be even
more pronounced since all nodes, including honest ones, mix
information. In this case, even a small number of fake packets
injected by Calvin may end up corrupting all the information
flowing in the network, causing decoding errors. In particular,
Calvin may use his knowledge of the network topology so as
to sit in the bottleneck of the network, and thereby jam com-
munications in a network location where it might do the most
damage. Also, Calvin’s eavesdropping capabilities have nega-
tive security implications in two ways. First, Calvin is able to
eavesdrop and thus infer something about Alice’s secret mes-
sage to Bob. Second, Calvin might also be able to use the eaves-
dropped information to carefully design his jamming pattern so
as to make it hard for Bob to correctly decode Alice’s message.
In this paper, we consider the secrecy and error control issues

together. Namely, we design schemes that allow reliable net-
work communications in the presence of an adversary that can
both jam and eavesdrop, without leaking information to him. In
particular, suppose the network’s min-cut from Alice to Bob is
, and Calvin eavesdrops on links and corrupts links.1

Our main contribution is in the demonstration of schemes that
are distributed, computationally efficient to design and imple-
ment, and can be used to communicate a single bit secretly and
without error. We then use this scheme as a tool to improve on
prior work [7] and achieve a provably optimal communication
rate of when no secrecy constraints are posed and a rate
of when communication is kept secret fromCalvin.
In particular, the overall rate of communication thus achievable
in the presence of Calvin’s adversarial jamming is the same as
if the jamming behaved like random noise. A preliminary ver-
sion of the results in this paper was presented in [8].

1We consider a model where network links rather than nodes are eaves-
dropped and corrupted; eavesdropping on a node is equivalent to eavesdropping
on links incoming to it, and corrupting a node is equivalent to corrupting the
links outgoing from it.
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A. Prior Work

Related problems have been considered in the past. Prior re-
sults may be classified in the following three categories. An ex-
tensive discussion on the field of security problems for networks
performing network coding can be found in [6, Ch. 7].
1) Secrecy: For networks containing adversaries that only
eavesdrop on some links (without jamming transmissions),
the work of [9] provided a tight information-theoretic char-
acterization of the secrecy capacity, i.e., the optimal rate
achievable without leaking any of Alice’s information
to Calvin. Efficient schemes achieving this performance
were proposed by [10]–[13]. Cryptographically (but not
information-theoretically) secret schemes for this scenario
were also considered in [14].

2) Error-control: For networks containing adversaries with
unlimited eavesdropping capabilities and limited jamming
capabilities, prior related work has focused primarily on
the detection of Byzantine errors (i.e., a bounded number of
arbitrary—rather than random—errors) [15], nonconstruc-
tive bounds on the achievable zero-error rates [16], [17],
and network error-correcting codes [18] (which have high
design complexity) and [7] and [19]–[21] (which have low
design complexity). Results for this setting are also avail-
able under cryptographic assumptions [22], [23].

3) Secrecy + Error-control: The scenario closest to the one
considered in this paper, with limitations on both Calvin’s
eavesdropping power and his jamming power , have
been considered in [7], [21], and [24]–[26]. Here, there are
two questions one could consider.
a) What is the maximum rate at which one can commu-
nicate reliably (without caring about hiding one’s data
from Calvin)?

b) What is the maximum rate at which one could com-
municate both secretly and reliably?

For Model 3b, under the requirement of zero error proba-
bility, the maximum rate of secret and reliable communica-
tion is given by . Schemes achieving this rate
have been proposed in [25], [26] (high design complexity
schemes), and [13], [24], and [27] (low design complexity
schemes). The optimality of such a rate has been shown in
[26] for single-letter coding and in [27] for block coding.
For Model 3a, if the requirement of zero error probability
is relaxed to vanishingly small error probability, as consid-
ered here, then higher rates than may be
achieved. In particular, the work in [7] provided computa-
tionally efficient communication schemes at rate as
long as the restrictive requirement was sat-
isfied.Work by a subset of the authors of this paper claimed
in [21] to improve this requirement to . As
we demonstrate in Section VIII, the prior proof of the claim
was incorrect, and Section II gives a correct proof of the
claim.

In this paper, for Model 3a, we present a communication
scheme of rate as long as the (improved) requirement

is satisfied. For Model 3b, we obtain the rate
(that we prove to be optimal) of . These two re-
sults together complete the story for a line of work begun in [7].
Our results are obtained by combining ideas in [7] with the se-
crecy/“data-hiding” scheme of [13].

To put our results in perspective (in particular to compare
with the most relevant prior work [7]), consider the following
two scenarios that are specific examples of our general result.
1) Suppose (a “realistic” scenario, corresponding
to the adversary being able to eavesdrop on links it can
jam) and denote these quantities both by . Prior work [7],
for either Model 3a or Model 3b, would apply only in the
regime where is less than a third of the min-cut . In
contrast, our current work demonstrates that communica-
tion is possible (in either 3a or 3b) as long as is less than
half the min-cut .

2) An even more extreme example is as follows. Suppose
(also a “realistic” scenario, corresponding to a

“blind” adversary—one who cannot base his jamming
function on what is being actually transmitted. In a wire-
less setting, this may happen perhaps because he has only
one antenna). In this scenario, our schemes achieve a
positive rate for any , whereas prior work [7]
would be restricted to the setting wherein is less than
half the min-cut .

II. MAIN RESULTS

The main results of this work are Theorems 1–3. Let be the
size of the finite field over which the network code operates,
and let be the block-length (number of symbols over ) of
the packets transmitted over the network.
Theorem 1: If , then Alice can communicate a

single bit correctly to Bob (while keeping it secret from Calvin)
using codes of computational complexity
and error probability .
Combining the codes in Theorem 1 with the “shared-secret”

codes in [7] gives us Theorems 2 and 3. Roughly, we say that
a message at a certain rate is “robustly achievable” if there ex-
ists a communication scheme that allows Bob to decode Alice’s
message (with high probability). A more formal definition fol-
lows in Section III.
Theorem 2: No rate higher than is robustly

achievable. If , then a rate of is
robustly achievable with codes of computational complexity

.
We say that a message at a certain rate is “secretly and

robustly achievable” if there exists a communication scheme
that keeps Alice’s message information-theoretically secure
from Calvin, and simultaneously allows Bob to decode Alice’s
message (with high probability). A more formal definition
follows in Section III.
Theorem 3: No rate higher than is secretly and

robustly achievable. A rate of is secretly and
robustly achievable with codes of computational complexity

.
Note that achievability in Theorem 2 does not immediately

imply the achievability in Theorem 3 since the concatenation of
an (outer) secrecy scheme with an (inner) error control scheme
may not necessarily be secure (see, e.g., [13]). As will become
clear later, such an implication (in fact, an equivalence) will
follow from the fact that the secrecy and error control schemes
that we use both have a linear structure, which naturally ensures
their compatibility.
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Fig. 1. Toy example demonstrating how to share a single bit secretly and robustly: This example corresponds to the “Secret-sharing layer” referenced later in
Fig. 3 and then in Section V. In this example, , and (hence, ). The block-length used in this example equals 6. Alice just
wants to share a single bit with Bob secretly and reliably—if the bit equals 0, she uses the scheme in (a), else she uses the scheme in (b). Bob decodes by checking
the rank of the received matrix. Note that we assume that Alice and Bob know the value of and in advance, though not Calvin’s location—this is analogous
to having a prior estimate of channel conditions.

A. Toy Example

We first begin with a toy example demonstrating the main
ideas behind our central result, viz. the modular scheme that
Alice and Bob use to communicate a single bit correctly, and
without leaking information to Calvin. In our example network,
Alice communicates with Bob over a network that comprises
three parallel paths passing through distinct relays. Honest re-
lays simply forward incoming data. One of the relays is con-
trolled by the adversary Calvin, who therefore knows the trans-
mission on the incoming link, and can corrupt the corresponding
outgoing transmission arbitrarily. The identity of the node con-
trolled by Calvin is unknown to Alice and Bob. In a slightly
generalized version of this example, Calvin may “control”

relays (i.e., observes the packets incoming to re-
lays and so , and based on these observations corrupts
the packets outgoing from these relays and so ), out of
a total of relays.
The scheme demonstrated in Fig. 1 is as follows. Let the

block-length be a design parameter chosen by Alice
and Bob so as to guarantee performance. The matrix is known
to all parties and is designed as an invertible matrix whose last

columns are the transpose of a generator matrix of an MDS
code. (The design of is explained in Section IV-B.)
If Alice wishes to transmit a 0 to Bob, she transmits a “random

low-rank codeword” over the parallel links. That is, she appends
a zero-matrix to a random (hence full-rank
with high probability) matrix . She “mixes” the rows
of the resulting matrix by premultiplying it with and transmits
the resulting rows over her outgoing links [in Fig. 1(a), this cor-
responds to sending a single vector repeatedly over the different
links].
Conversely, if Alice wishes to transmit a 1 to Bob, she trans-

mits a “random high-rank codeword” over the parallel links.
That is, she chooses to be a random (hence full-rank with
high probability) matrix and appends a random

matrix . She again mixes this with and transmits
the resulting row-vectors over her outgoing links [in Fig. 1(b),
this corresponds to sending three linearly independent vectors
over the different links].
Note that Calvin knows the matrix , as does Bob—it is part

of code design. For this reason, must be carefully designed,
so that on observing any rows/packets, Calvin cannot dis-
tinguish between a zero bit-matrix and a high-rank bit-matrix.
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Fig. 2. System diagram: a pictorial representation of the system model described in Section III . Alice uses private randomness (known only to her) and “mixing”
matrices (known to the other parties, Bob and Calvin) to encode her message (of rate ) to . (This encoding procedure is further
detailed in Figs. 3 and 4, and in detail in Sections V and VI.) This is transmitted over the “Network channel.” Calvin overhears packets and, based on these,
attempts to reconstruct and also to “jam” transmission to Bob by injecting jamming packets . In addition to the packets he overhears, Calvin knows
Alice’s mixing matrices , , the network topology, and the network transforms , , and (respectively from Alice to Bob, Alice to Calvin, and Calvin to
Bob)—Calvin’s choice of may be a function of all of these.

(For instance, if the last column of had a zero on the th row,
Calvin could easily distinguish between the two cases by ob-
serving the th packet.)
Bob’s decoding rule is straightforward. He first premultiplies

the matrix with the inverse of in an attempt to re-
cover and . If the resulting row vectors corresponding to
the locations of are “rank-deficient” (of rank strictly less than

), he decodes to a 0, otherwise he decodes to a 1.
To show that this scheme does not enable Calvin to estimate

Alice’s message bit, note that from his perspective the distribu-
tion over the messages he eavesdrops is identical regardless of
Alice’s message bit—in both cases, his observed packet is uni-
formly distributed over all length- vectors.
To show that the scheme also enables Bob to decode Alice’s

0 or 1 message correctly, with high probability, regardless of
Calvin’s adversarial jamming action, we proceed as follows.
Note that Calvin has no information on what vectors are being
transmitted on links not controlled by him. Hence, even though
he can transmit arbitrary vectors on the links controlled by him,
the probability that these vectors are linearly dependent on the
other vectors (on links not controlled by him) is quite small (ex-
ponentially small in the block-length, and the block-length can
be chosen to be large, to guarantee probability of success arbi-
trarily close to 1).2

Refining the ideas presented in this toy example to the general
scenario requires several nontrivial extensions. Details of these
extensions are in the following sections, but we summarize these
here.
First, Alice and Bob need to design a distributed scheme that

operates even when they are ignorant of network topology prior

2Note the following asymmetry: When Alice sends bit 0, Bob never makes
an error; he makes an error (with small probability) if and only if bit 1 is sent
and the received matrix is not full-rank. The reason for this asymmetry is as
follows: If Alice’s secret bit is 0, then the rank of the transmitted message is
, and hence the maximum rank of the received message is .

However, in this case, by Bob’s decoding rule, he (correctly) outputs a 0. On the
other hand, if the secret bit is 1, it is possible (though “unlikely”) that the packet
injected by Calvin is able to lower the rank of the matrix Bob uses to decode.

to communication. This requires that Alice’s message bit re-
mains secret fromCalvin even if he receives random linear com-
binations of Alice’s transmissions (rather than the specific vec-
tors she injects into the network). It also requires that Calvin’s
injected jamming vectors be linearly independent of other ran-
domly linearly combined vectors. Since the linear transforms
applied by the network need not preserve the uniform proba-
bility distribution that Alice imposes on her transmitted vectors,
a more delicate analysis is needed.
Second, Bob does not in general know the linear transform

imposed by the network. To circumvent this problem, the
“subspace metric” codes introduced by Kötter et al. [20] prove
quite useful.
Lastly, we note that the ideas above can really only be used to

transmit a “few” bits fromAlice to Bob. This is because each use
of the scheme requires Alice to send a somewhat bulky matrix
simply to communicate a single bit to Bob, and if the scheme
is repeated too many times, then the throughput of Alice’s mes-
sage goes down considerably. Fortunately, a “shared-secret” al-
gorithm presented in [7] enables us to guarantee high-rate se-
cret communication from Alice to Bob, as long as Alice can
share even just a “few” bits secretly with Bob. We thus use our
single-bit sharing scheme as a module for the shared-secret al-
gorithm to obtain the desired result.

III. NETWORK MODEL AND PROBLEM STATEMENT

We use the general model proposed in [7] and pictorially
represented in Fig. 2. To simplify notation, we consider only
the problem of communicating from a single source to a single
destination.3

A. Network Model

Alice communicates to Bob over a network with an attacker
(adversary) Calvin hidden somewhere in it. Calvin aims to

3Similarly to many network coding algorithms, our techniques generalize to
multicast problems.
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disrupt the transfer of information from Alice to Bob and in the
meantime to eavesdrop on the information Alice sends. He can
observe some of the transmissions and can inject his own fake
transmissions.
Calvin is computationally unbounded and knows the en-

coding and decoding schemes of Alice and Bob and the network
code implemented by the interior nodes. He also knows the
network topology, and he gets to choose which network links
to eavesdrop on and which ones to corrupt.
The network is modeled as a directed and delay-free graph

whose edges each have capacity equal to one symbol of a finite
field of size , , per unit time.4 All computations are over .
The network capacity, denoted by , is the min-cut from source
to destination .5

Each packet contains symbols from . Alice’s message is
denoted . To send this to Bob over the network, Alice en-
codes into a matrix , possibly using a stochastic
encoder.6 The th row in is Alice’s th packet. As in [5], Alice
and internal nodes take random linear combinations of their ob-
served packets to generate their transmitted packets.
Analogously to how Alice generates , Bob organizes re-

ceived packets into a matrix . The th received packet corre-
sponds to the th row of . The random linear network code
used by Alice and all internal nodes induces a linear transform
from to , such that when no error is induced by

the adversary.7 Thus, is a matrix in , and .
Hereafter, we assume that the matrix is invertible, which hap-
pens with high probability if is sufficiently large [5].
Calvin can eavesdrop on edges, and can inject (possibly

fake) information at locations,8 in the network. The ma-
trix received by Bob is then , where corre-
sponds to the information injected by Calvin as seen by Bob.
Note that the limitation of Calvin’s jamming capacity implies
that ; in particular, can be thought of as ,
where correspond to the (at most ) packets injected by
Calvin, and as the linear transform imposed by the
network between Calvin and Bob. Similarly, Calvin’s observa-
tion can be described as a matrix , where
is the linear transform undertaken by as seen by Calvin. Both
and are known to Calvin a priori, but not to Alice or

Bob (since Calvin is hidden). Neither Alice nor Bob are as-
sumed to know the network transform, or indeed even the net-
work topology prior to the commencement of communication,
though Calvin is allowed to know these. However, Alice and
Bob are both assumed to know the values of , , and (or
good upper bounds on these) since these are critical for them to
decide the rates at which to transmit. This is analogous to the

4For ease of presentation, edges with nonunit capacities are not considered
here (as in [7], they may be modeled via block coding and parallel edges).
5For the corresponding multicast case, is defined as the minimum of the

min-cuts over all destinations. It is well known that also equals the time-
average of the maximum number of packets that can be delivered from Alice to
Bob, assuming no adversarial interference, i.e., the max flow.
6The random coin tosses made by Alice as part of her encoding scheme are

not known to either Calvin or Bob.
7For the ease of notation, we assume Bob removes redundant incoming edges

so that the number of edges reaching Bob equals the min-cut capacity from
Alice to Bob.
8We assume throughout that the information injected into the network by

Calvin is added to the original information transmitted (here we consider ad-
dition over our field ).

encoder/decoder pair needing to “estimate channel conditions”
before deciding what rate/code to use.

B. Problem Statement

Alice wishes to communicate with Bob with perfect secrecy
and vanishingly small error probability. That is, Alice’s scheme
is perfectly secret if

(1)

i.e., Calvin obtains no information about Alice’s message re-
gardless of which links he eavesdrops. The error probability
is the probability (over all randomness introduced by Alice and
Calvin) that Bob’s reconstruction of Alice’s information
is inaccurate, i.e., . We consider the error proba-
bility of the worst-case scenario.9 Namely, a scheme has error
probability less than if , where is
assumed to be nonsingular, and . The rate of
a scheme is the number of information bits of information Alice
transmits to Bob, amortized by the size of a packet in bits, i.e.,

. The rate is said to be secretly and robustly
achievable if for any , any , and sufficiently large ,
there exists a perfectly secret block-length- network code with
rate at least and a probability of error less than . The rate
is said to be robustly achievable if for any , any ,

and sufficiently large , there exists a block-length- network
code (which need not be perfectly secret) with rate at least
and a probability of error less than .

IV. AUXILIARY TOOLS

A. Mapping Between Finite Fields

We first define a mapping commonly used in the network
error-correcting code literature (for example, see [13]) that maps
between a vector space over a finite field and a corresponding
extension field of the minute field. This mapping helps us trans-
late between the field over which the internal nodes in the net-
work perform network coding and the field over which the
end-to-end codes operate .
Let , and let be an extension field of .

Let be a vector space isomorphism. In
addition, let be a vector space
isomorphism such that the th row of is given by

. In other words, we expand each
element of as a length- row vector over (with
the number of columns in matrix increasing accordingly). We
will omit the subscript from when the dimensions of the
argument are clear from the context.
Throughout, without loss of generality, we assume that is

divisible by .

B. Secrecy/Data-Hiding Coding

For generality, let (rather than ) denote the number of
packets transmitted by Alice (so that the description below can
apply to both cases and as needed). Con-
sider a special case of the problem where Calvin can eavesdrop
on packets, but cannot jam any packets. Below, we re-
view a construction of a perfectly secret end-to-end scheme that

9Our interest is to design communication schemes that do not rely on the
specific network topology or network code used.



YAO et al.: NETWORK CODES RESILIENT TO JAMMING AND EAVESDROPPING 1983

asymptotically achieves the maximum possible rate (i.e., the se-
crecy capacity) for this problem. The scheme, proposed
in [13], is based onMaximum Rank Distance (MRD) codes. (For
more details on MRD codes, see [13], [19], and [28].)
Recall that . Let be the parity-check

matrix of a linear MRD code over . Let
be an invertible matrix chosen such that the first rows
of are equal to . Equivalently, should be chosen as
any invertible matrix such that the last rows of form
a generator matrix of a linear MRD code over [13,
Proposition 9]. Such amatrix can always be found sinceMRD
codes exist for all parameters provided [13], [28].
Alice’s encoding proceeds as follows. She first generates a

random matrix uniformly and independently from
any other variables. Then, she computes ,

where . Alice thus encodes a given message

, where .
Assuming Bob receives , Bob

computes to recover . Then,
Bob can directly obtain since, by construction, .
Recall that Calvin’s observation is given by ,

where . According to [13, Theorem 7], we have that
for all , and therefore (1) is satisfied. Thus,

the scheme is indeed perfectly secret.
The decoding complexity is given by operations over
, which can be done in operations over .

C. Error Control Under a Shared Secret Model

Consider now a second scenario, wherein Calvin can jam
packets and eavesdrop any number of packets

he chooses. However, we posit the existence of a “low-rate
side-channel,” which Calvin cannot access, that enables Alice
to transmit to Bob a “small” secret (of size asymptotically
negligible compared to Alice’s message). We also drop the
requirement of secret communication, i.e., all we require is
that Bob can decode Alice’s transmission correctly, with high
probability over the transmissions on the side channel. Below,
we review a coding scheme presented in [7] that can asymp-
totically achieve the maximum possible rate (the so-called
shared-secret capacity) for this case.
Let denote . We first describe how Alice pro-

duces the secret bit string based on a given message
. To begin with, she generates

symbols independently and uniformly at
random. Let be the matrix given by .
Then, she computes a matrix , where

. The tuple , consisting in
total of symbols in , comprises the message “hash”
that should be secretly transmitted to Bob. The bit represen-
tation of this tuple yields the string , consisting
of bits. Over the main channel, Alice

transmits the matrix .

Assuming that is secretly and correctly
received by Bob, let us proceed to the description of Bob’s de-
coder. First, Bob reconstructs the matrix . Bob obtains

, where has rank at most . This can

Fig. 3. Secret-sharing layer: (Described in detail in Section V.) Alice first gen-
erates a secret hash of her message as follows. She chooses symbols

uniformly at random from , uses these symbols to generate a
random parity-check matrix , and uses to generate a hash of her se-
crecy-encoded/masked message (generated as described in Fig. 4). The bits
of and together comprise her secret bits .
She then uses these bits to encode bit-matrices —if is a 0-bit, then
is a zero-matrix, else it is a random full-rank matrix. As in the secrecy-encoding
in Fig. 4, each of these bit-matrices is mixed with a random matrix . The
resulting mixed matrices (translated to via ), along with the “standard”
identity matrix header used in, for instance, [5], comprise the secret-sharing
layer.

also be written as , where consists of the first
columns of . Let be the reduced row echelon form of .
It is shown in [7] that, with probability at least for
any fixed network, can be written as for some

. It is also shown in [7] that, with probability at least
, the system has a unique solution in .

Bob solves this system to find , computes , and fi-
nally recovers .
Overall, the probability of error of the scheme is at most

, while the decoding complexity
is operations in .

V. SENDING A SINGLE BIT SECRETLY AND RELIABLY

Let . In this section, we show how Alice can
transmit a secret bit reliably to Bob when .
We assume that the block-length for this single-bit scheme
is , as this is the smallest packet-length required for
the scheme to work. Larger block-lengths can be handled by
zero-padding the transmitted packets. A summary of the coding
scheme (in which several secret bits are transmitted between
Alice and Bob) is presented in Fig. 3.
Let and be as given in Section IV-B

with .
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A. Alice’s Encoder

Initially, Alice chooses a matrix uniformly at random from
full-rank . If her secret bit is 1, is nonzero; other-
wise, if is 0, . Then, she sends to Bob using the
data-hiding scheme described in Section IV-B. More precisely,

she transmits , where and

is a uniformly random matrix chosen indepen-
dently from .

B. Bob’s Decoder

For convenience, let for the remainder of this sec-
tion. Recall that Bob receives a matrix , where

is nonsingular and has rank
at most . Let denote the reduced row echelon form of
. Consider first the case where , for some

. It is possible to show that , where

is a matrix of rank at most . As will be shown
later, with high probability, is full-rank if and only if Alice’s
secret bit is 1. Thus, Bob can decode by computing the rank of
.
In general, however, may not have the form described

above. Nevertheless, as shown in [19, Proposition 10] and
[24, Ch. 5], it is possible to extract from some matrices

, and such that

(2)

for some , , , and

. The matrices , , and can be obtained by converting
to reduced row echelon form (see [24, Sec. 5.1.2]) and there-

fore are known to the decoder. The last three terms in (2) may be
seen as generalized errors terms, as some of its factors ( and
) are known. Note that a partially known error term is analo-

gous to an erasure in classical coding theory (where the location
of the error, but not its value, is known) and has the same effect
of enabling the decoder to correct more errors than if such vari-
ables were unknown.
Additionally, it is shown in [24, Theorem 5.4] that , , and

[the inner dimensions of the three outer products in (2)] satisfy
and . Since , it

follows that

In possession of , , and , Bob is now ready to decode the
data-hiding layer that has been applied to .
We have

(3)

where , and . Note that
and are known.

Now, let and be full-rank

matrices such that and . Then, Bob can further
simplify (3) by computing

Note that , while
is the maximum possible rank of .

Thus, Bob performs the following test. If is full-rank,
then Bob concludes that bit was sent; otherwise, Bob
concludes that bit was sent.
With respect to complexity, computing takes

operations in . Computing , , , and the rank
of each take operations in , which amounts to

in . Thus, the overall decoding complexity is
operations in .

C. Probability of Error Analysis

When bit 0 is sent, Bob never makes an error; he makes an
error if and only if bit 1 is sent and is not full-rank.
Recall that when bit 1 is sent, is uniformly distributed over

. Due to the data-hiding encoding, Calvin has no in-
formation about , and therefore is statistically independent
from . It follows that is also uniformly dis-
tributed over . Thus, the probability of error when bit 1

is sent is equal to the probability that
is not full-rank for a uniform .
Lemma 4: If is uniformly distributed then, for

any and any , the matrix
is full-rank with probability at least .

Proof: Without loss of generality, assume . It suffices
to prove the statement for ; If , then removing
columns from cannot possibly increase the rank of .
For any fixed and , consider the entries of as vari-

ables taking values in . Then, each entry of is a mul-
tivariate polynomial over with degree at most 1. It follows
that is a multivariate polynomial over with de-
gree at most . Note that if , the statement
follows trivially, so assume . From [5, Lemma 4], we
have that .
Thus, the probability of error of the scheme is upper-bounded

by , which can be made arbitrarily small by
choosing sufficiently large. This proves Theorem 1.

VI. ACHIEVABILITY FOR THEOREMS 2 AND 3

We start by addressing Theorem 2. The achievability of
Theorem 3 will be shown in Section VI-D. The notation used
in this section is summarized in Table I.
We describe a coding scheme that achieves rate

asymptotically in the packet length . As before, assume that
is divisible by , and let , where

and .
Let be the parity-check matrix of a linear

MRD code over . Let be an invertible matrix
such that the first rows of are equal to , as dis-
cussed in Section IV-B.

A. Alice’s Encoder

First, given a message , Alice sets
(this will be generalized in Section VI-D). Then, she generates
a string of bits according to the scheme described
in Section VI-C. Next, for each th bit of , Alice produces
a matrix according to the scheme described in
Section V. Then, for each , she computes
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TABLE I
SUMMARY OF COMMONLY USED NOTATION/PARAMETERS

, where each is chosen uniformly at

random and independently from any other variables. Finally, she
produces a transmission matrix

B. Bob’s Decoder

For each , Bob extracts a submatrix from
corresponding to the submatrix from (i.e.,

columns ). He then
applies on the decoder described in Section V to obtain each

.
Similarly, Bob extracts a submatrix consisting of the first
and the last rows of . Note that , where

and has rank at most

. Then, Bob applies the decoder described in Section IV-C
to obtain .
Finally, Bob computes .

C. Overall Analysis

1) Error Probability Analysis: By the union bound, the prob-
ability that Bob makes an error when decoding the -bit secret
is at most . Given that

the secret is decoded correctly, the probability that Bob makes
an error when decoding the message is at most . Thus,
the overall probability of error is at most .
2) Rate Analysis: The rate of the scheme is given by

.
Thus, the rate loss is .
3) Complexity Analysis: Decoding all the secret bits takes

operations in , while the compu-
tational complexity of decoding the message is dominated by
the secrecy/data-hiding decoding steps with operations
over .

Fig. 4. Overall encoding: pictorial representation of the encoding (described in
detail in Section VI). Alice generates her transmission as follows. She first
mixes the packets of her message (written as matrix ) with
random packets (rows of the random matrix ) via the invertible matrix

to obtain her secrecy-encoded/masked message (for technical reasons, she
also switches from the field to the field via the isomorphism ). This
matrix has the property that if Calvin observes any rows of it, or indeed
any linear combinations of its rows, no information about is leaked to
him. To further protect her transmissions from the jamming packets Calvin
may inject into the network, Alice adds redundancy by appending zero rows.
Finally, she appends a “small secret-sharing layer” header, as described in Fig. 3.

Note: Both the rate loss and the error probability can be made
asymptotically small by choosing to grow faster than polyno-
mially but slower than exponentially in . For instance, we may
choose .

D. Achievability of Theorem 2

We now describe how the coding scheme described above can
be adapted to achieve rate asymptotically in
the packet length without leaking any information to Calvin.
The overall scheme is illustrated in Fig. 4. Essentially, Alice will
hide her message from Calvin by applying the secrecy encoding
scheme described in Section IV-B, and the rate will be reduced
accordingly.
More precisely, let be the parity-check matrix

of a linear MRD code over , and let
be an invertible matrix such that the first rows of are
equal to . Now, given a message , Alice com-

putes , where is chosen inde-

pendently and uniformly at random. The rest of the encoding
is the same, as well as the decoding, except for one last step
from Bob. Namely, after recovering as described above, Bob
computes to recover Alice’s message. The secrecy
of the message is guaranteed by this procedure as discussed in
Section IV-B, while the remainder of the analysis of the scheme
is the same as described in Section VI-C. Overall, Alice has to
pay a price of packets of rate loss in order to guarantee se-
crecy from Calvin.
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Note that, from an opposite angle, a scheme achieving
Theorem 2 can be immediately derived from the above scheme
if ones uses both and to encode the source’s message at
rate .

VII. CONVERSE FOR THEOREMS 2 AND 3

As before, we first address the converse for Theorem 3.
The converse for Theorem 2 will follow. We start by pre-
senting an attack that Calvin may use to force the achievable
rate to at most , thereby demonstrating that
this is indeed an upper bound on the achievable rate. Let

be a set of edges that form a cut from Alice
to Bob. Calvin jams the edges in by adding
random errors on them. Furthermore, Calvin eavesdrops
on edges in . Let be the
random variable denoting Alice’s information. Let , ,
and be the random variables denoting the packets car-
ried by the jammed edges , eavesdropped
edges , and untouched edges

, respectively. Let be the
random variable denoting the packets received by Bob. Then

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Here, refers to the probability of error. Equation (4) follows
from the fact that Alice’s message is uniformly distributed over
, (5) from Fano’s inequality, (6) from the data processing in-

equality, (7) since in the worst case Calvin adds random noise on
the edges he jams and so is independent of , (8)
by the chain rule for mutual information, (9) from the fact that
information-theoretic secrecy is required and so
, (10) by the fact that conditioning reduces entropy and the
definition of mutual information, and finally (11) by the fact that
there are at most links corresponding to the random
variable and the alphabet-size upper bound on entropy. Re-
quiring as gives the required result.

A. Converse for Theorem 2

The converse for Theorem 2 follows directly from observing
that if Calvin may jam links in the min-cut of the network,
no more than rate can be robustly achievable.

VIII. ERRATA FOR [21]

We briefly reprise the scheme of [21] before demonstrating
the flaw in the proof. In what follows, all operations are over
.
In the scheme of [21], there exist two hash matrices and
that are chosen independently and uniformly at random

Vandermonde matrices , i.e., each column
of and is of the form ,

where the generator is chosen independently and uniformly
at random from . Both and are publicly known to all
parties, including Bob and Calvin.
Alice’s Encoder: Alice first chooses a random

length- row vector . Let
be the secret bit that Alice wishes to send to Bob. Alice
then constructs the length- row vector such that

. Note that such exists since the last rows
of form an invertible matrix. Finally, the vector is
rearranged into a matrix that is sent through
the network via random linear network coding.
Bob’s Decoder: After receiving the matrix ,

for each , Bob checks whether there exists
length- vectors such

that . If so, Bob decodes
the secret bit as . The idea is that if is Alice’s bit, such

exists for with high probability [7].
Calvin’s Successful Attack: When Calvin corrupts

edges, Calvin could mimic Alice’s behavior when she
wishes to transmit a particular bit, say 1. As a result, Bob would
always find length- row vectors such
that . In this case, Bob cannot
determine whether the bit 1 is from Alice or from Calvin.
Even if Calvin can only inject errors, if

, there is another successful attack for Calvin. To
see that, without loss of generality, let .
Since Calvin can eavesdrop on packets ,
he can carefully choose his injected error packets

so that . In this case,
Bob also always decodes its bit as 1. Thus, the scheme in [21]
only works for the case where , which does not
improve the result in [7].
Why Our Scheme Works: In our scheme in Section V, instead

of distinguishing the bit by the hash matrices, Alice hides her
secret in the rank of the bit matrix she transmits. In particular,
there is a rank gap between the bit matrix for bit 0 and
the one for bit 1. Thus, as long as , Calvin cannot
mimic Alice any more since he can only inject errors. As a
result, Bob can determine Alice’s bit by examining the rank of
the matrix he decodes.

IX. CONCLUSION

In this paper, we considered the problem of communicating
information secretly and reliably over a network containing a
malicious eavesdropping and jamming adversary. Under the
assumptions that vanishingly small probabilities of error and
block coding are allowed, we substantially improve on the best
achievable rates in prior work [26] and also prove the opti-
mality of our achievable rates. A key component of our code
design is a scheme that allows a small amount of information
to be transmitted secretly and reliably over the network, as long
as the total number of packets that the adversary can either
eavesdrop on or jam is less than the communication capacity of
the network. In proving this scheme, we correct an error in the
proof of prior work [21] by a subset of the authors of this work.
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