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Cross-Layer Optimization Frameworks for Multihop
Wireless Networks Using Cooperative Diversity

Long Le, Member, IEEE, and Ekram Hossain, Senior Member, IEEE

Abstract—We propose cross-layer optimization frameworks for
multihop wireless networks using cooperative diversity. These
frameworks provide solutions to fundamental relaying problems
of determining who should be relays for whom and how to
perform resource allocation for these relaying schemes jointly
with routing and congestion control such that the system per-
formance is optimized. We present a fully distributed algorithm
where the joint routing, relay selection, and power allocation
problem to minimize network power consumption is solved by
using convex optimization. Via dual decomposition, the master
optimization problem is decomposed into a routing subproblem
in the network layer and a joint relay selection and power
allocation subproblem in the physical layer, which can be
solved efficiently in a distributed manner. We then extend the
framework to incorporate congestion control and develop a
framework for optimizing the sum rate utility and power tradeoff
for wireless networks using cooperative diversity. The numerical
results show the convergence of the proposed algorithms and
significant improvement in terms of power consumption and
source rates due to cooperative diversity.

Index Terms—Cooperative diversity, multihop wireless net-
work, mesh network, convex optimization, cross-layer design,
network utility maximization, routing, power control.

I. INTRODUCTION

COOPERATIVE diversity has received significant atten-
tion recently as an efficient way to exploit diversity

in a wireless network via a virtual distributed antenna ar-
ray where each antenna belongs to a different node [1]-
[3]. Cooperative diversity was initially intended/proposed for
centralized wireless systems. In fact, decode-and-forward and
amplify-and-forward cooperative protocols were first proposed
in [1], [2] for cellular networks. Outage analysis for these
two cooperative protocols was conducted in [3] and coded
cooperation protocols were proposed in [4].

Cross-layer design for wireless networks has been another
active research area where by exploiting useful interactions
of protocols in different layers, the network performance
can be improved significantly. In [5], [6], analytical models
capturing the interactions between adaptive modulation and
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coding in the physical layer and ARQ retransmissions in the
link layer under different network conditions were developed
for centralized wireless networks. Analysis and optimization
of wireless systems using different scheduling policies were
conducted in [7], [8]. Cross-layer design and optimization for
emerging multihop networks such as wireless mesh networks
[9] or multihop cellular networks [10] is much more chal-
lenging [11]. In this paper, we tackle optimization problems
in multihop wireless networks using cooperative diversity.

Recently, some initial efforts have been made on higher
layer protocol design of wireless networks using cooperative
diversity. Cooperative medium access control (MAC) proto-
cols were designed in [12], [13]. The key idea behind co-
operative MAC problem is to opportunistically exploit relays
for transmission if relaying achieves higher throughput than
that due to direct transmission. In [11], the authors proposed
a MAC protocol for relay selection working with a single-
path routing protocol. This work considered transmission of
a single packet to destination nodes. However, these models
are difficult to extend for distributed implementation. An op-
timization framework for cooperative OFDMA-based cellular
networks was proposed in [14] where the problem of optimal
power allocation, relay and relay strategy selection was jointly
tackled. In [15], optimal power allocation solutions for outage
probability minimization were obtained for different coop-
eration strategies. Power allocation schemes for cooperative
multihop wireless networks using linear diversity combining
techniques and cluster-based routing were investigated in [16]
and [17], respectively.

The above works have one or several of the following
limitations. First, most of these works were proposed for
centralized wireless networks [14], [15]. Second, these works
mainly dealt with protocol design issues in one single layer
or investigate simple inter-layer interactions, which still lack
the system-wide insight [11], [12], [13]. Third, in a multihop
context, it was usually assumed that routing solutions are
known and also congestion control in the transport layer was
not considered [16], [17], [18]. A systematic approach to
cross-layer design of multihop wireless networks using co-
operative diversity is important to achieve the maximum gain
of cooperative diversity in the physical layer and harmonize
the interaction with higher layers in such a way that system
performance is optimized.

Over the past recent years, nonlinear optimization has
been proved to be an important tool for design and analysis
of distributed wireless protocols. In fact, dual decomposi-
tion technique in convex optimization has been used for
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reverse-engineering of popular protocols such as MAC [19],
TCP [20] and for optimal resource allocation and cross-
layer design [21], [22]. The work in [24] considered joint
congestion control and power control to maximize network
utility. In [23], an excellent survey on cross-layer design
using convex optimization was provided where several design
problems were succinctly presented.

These works, however, did not consider cooperative diver-
sity which can potentially enhance the network performance
considerably. In this paper, we apply nonlinear optimization
techniques to develop optimization frameworks for multihop
wireless networks using cooperative diversity. The first frame-
work is for joint routing and cooperative resource allocation
which minimizes the total power consumption. The second
framework incorporates congestion control through a utility
function to strike a balance between maximizing the sum rate
utility and minimizing total power consumption. Inspired by
the work in [25], where it was shown that the single “best”
relay can achieve the whole diversity-multiplexing tradeoff,
we allow only the best relay (if any) to be involved in the
relaying process. Note that, in general, cooperation can be
among a number of nodes where several nodes (relays) can
assist the transmission for each pair of nodes.

The rest of this paper is organized as follows. The system
models are presented in Section II. Section III presents the
joint routing and cooperative resource allocation framework
to minimize network power consumption. The optimization
framework for the utility-power tradeoff is presented in Sec-
tion IV. Section V presents the numerical results. The conclu-
sions are stated in Section VI.

II. SYSTEM MODEL

Consider a multihop wireless network as a directed graph
G = (V, L), where V is the set of nodes and L is the
set of directed links. There is a link between a pair of
nodes if the communication link can be established between
them. We denote the link from node i to node j as (i, j)
and the corresponding channel gain by g′(i, j). We define
O(i) as the set of links going out of node i and I(i) as
the set of links going into node i. For ease of referencing
and understanding of the paper, we abuse the notation a bit
by using the same notations for Lagrangian, dual function
and others in different problem formulations. However, the
notations should be unambiguous from the context they are
used.

A. Transmission Rate with Cooperative Diversity

We assume that transmissions on different links in a
common neighborhood use different channels (i.e., in code,
frequency or time domain). To forward data from node i to
node j on link (i, j), either direct transmission is used or
a particular node k helps node i to forward data to node
j using decode-and-forward (DF) cooperative diversity. We
assume that an available channel pool has been assigned
for different links such that simultaneous transmissions are
possible where transmission on one link causes very weak
interference to others. This assumption on simultaneous trans-
missions can be achieved, for example, by using different

spreading codes with low cross-correlation for different links
in a code-division multiple access (CDMA) network. The
code allocation algorithms for such a scenario are available
in the literature [26]. Another possible scenario justifying this
assumption is a multi-channel multi-radio wireless network
where orthogonal channels are allocated for simultaneous
transmissions on different links in each neighborhood using
separate radios in each node [27]. When there is only one
or only few channels available, a collision-free transmission
schedule should be constructed which is an NP-hard problem
even without node cooperation and under a simple one or two-
hop interference model [31], [32]. Construction of efficient
transmission schedule under SINR interference model (i.e.,
physical interference model [30]) is even more challenging.
Due to the complexity of the underlying problem and space
constraint, we leave the investigation of cooperative network
design under general interference models for future work.

We develop distributed algorithms for optimizing different
design objectives as will be mentioned in the next subsection.
These algorithms are run when traffic patterns or topology of
the network changes. This happens when some network nodes
begin or finish transmitting data to their desired destinations
or the network topology changes due to node mobility. In
essence, the frequent activation of these algorithms offsets
the network design parameters (e.g., link flows, power) to
compensate for network changes. We assume that total in-
terference and noise power at the receiving end of each
link remains static during the running time of the algorithm.
This assumption holds when traffic and network topology
change slowly [28], [29] and orthogonal channel allocation
for simultaneous transmissions in each common neighborhood
is performed. In addition, interference and noise power is
assumed to be estimated by the receiving nodes and fed back
to the transmitting nodes periodically.

Let the transmission power for direct transmission on link
(i, j) be Pd(i, j), and the total interference and AWGN noise
at the receiving side of this link beN0(i, j). Then, the achieved
rate (b/s/Hz) for direct transmission is

rd(i, j) = log2

(
1 +

g′(i, j)Pd(i, j)
ΓN0(i, j)

)
(1)

where Γ is the gap to capacity. For notational convenience,
we will absorb ΓN0(i, j) into g′(i, j) and denote the corre-
sponding quantity as g(i, j). Thus, we can write

rd(i, j) = log2 (1 + g(i, j)Pd(i, j)) . (2)

For the assumed DF cooperative diversity scheme, time is
slotted and node i transmits data packets in the first time slot
which are received by node j and relay node k. Relay node k
decodes the packets and forward them to node j in the second
time slot. Let Pr,(i,j)(k, j) be the power used by relay node
k to forward packets to node j for direct link (i, j). At node
j, for decoding, the received signal in the second time slot
will be combined with that in the first time slot. The achieved
data rate at relay node k in the first time slot and at node j
in the second time slot after using maximum ratio combining
are given, respectively, by

rr(i, k) = log2 (1 + g(i, k)Pd(i, j)) (3)
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Fig. 1. Cooperative diversity and useful cooperative region.

rc(i, j) = log2

(
1 + g(i, j)Pd(i, j) + g(k, j)Pr,(i,j)(k, j)

)
.
(4)

Note that for relaying to be useful, the achieved rate at relay
node k must be higher than that due to direct transmission.
This condition can be easily found to be g(i, j) < g(i, k)
which will be used to limit the search for the best relay node
of each link. To illustrate the useful cooperative region we
assume that channel gains are simply due to large-scale path
loss. Only nodes inside the circle illustrated in Fig. 1 are useful
relays for the considered wireless link. It is also intuitive that
wireless nodes in the forward direction toward the receiving
node are potentially good relays for the link. Note that the
assumption of large-scale path loss in this figure only helps
to visualize the useful cooperation region. The cross-layer
design frameworks developed later in this paper can be used
for any other channel models (e.g., with small-scale fading,
shadowing, etc). For energy-efficient communications, we
would allocate the right amount of power to relay node k
to forward data to destination node j such that

rc(i, j) = rr(i, k). (5)

Using (3) and (4), this condition is equivalent to

g(i, k)Pd(i, j) = g(i, j)Pd(i, j) + g(k, j)Pr,(i,j)(k, j). (6)

Let the maximum achievable data rate on link (i, j) be
r(i, j). This achievable rate on each link depends on the
transmission power, link gain, and the transmission strategy
(i.e., direct or cooperative transmission through a relay node).
Thus, physical layer design goals considered in this paper are
to choose the optimal transmission strategy for each link and to
allocate the optimal transmission power level for the chosen
strategy such that the system performance captured through
appropriate objective functions is optimized. From the above
analysis, the achievable transmission rate on link (i, j) for
different transmission strategies can be written as

r(i, j) =
{
rd(i, j), for direct transmission
rc(i,j)

2 = rr(i,j)
2 , for cooperative transmission.

(7)
Note that the actual data rate achieved by cooperative

diversity is rc(i, j)/2 because two time slots are required to

transmit the data. For the same reason, the average total power
used for cooperative transmission can be written as

Pt(i, j) = (Pd(i, j) + Pr,(i,j)(k, j))/2. (8)

Note that transmission power for the case of direct transmis-
sion is simply Pt(i, j) = Pd(i, j). Now, in the following
subsection we define the network flow concept and utility
function to construct the objective functions.

B. Network Flow and Utility Function

We use a network flow model for routing data to a single
node in a network such as an access point in a wireless LAN
or a data sink in a wireless sensor network. In this model,
each node i �= d generates data with an average rate of Si to
destination d. The total data rate received at destination node
d is, therefore, Sd = −∑

i�=d Si. We assume that a multi-path
routing protocol is used in the network layer where traffic
from each source node is split into several flows which follow
different multihop paths to reach the desired destination.
Define link flow x(i, j) to be the average aggregate traffic rate
on link (i, j). The aggregate data transmitted on each link may
come from different source nodes under the multipath routing
assumption. For flow conservation, the total flow going into a
node is the same as total flow going out of that node. Hence,∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i) = Si, i ∈ V. (9)

The flow on any link (i, j) should be smaller than its
transmission rate

x(i, j) ≤ r(i, j), (i, j) ∈ L. (10)

Different objective functions can be optimized depending
on the application context. In wireless networks, power mini-
mization is usually one of the biggest concerns because mobile
devices (e.g., sensors) are energy-limited and also transmitted
energy by a user causes interference to other users. Recall
that Pt(i, j) is the total consumed power to transmit data on
link (i, j). When power consumption is the major concern, the
objective function can be min

∑
(i,j)∈L Pt(i, j).

Another objective can be to maximize the sum utility of
source rates. In this case, the objective function can be written
as max

∑
i∈V Ui(Si), where different utility functions Ui(Si)

as in [20] for congestion avoidance and fairness control of
different data sessions can be used. Another possible objective
can be to strike a balance between maximizing sum utility
of source rates and minimizing power consumption. For con-
venience, we will denote the link and node quantities such
as link power, link flow, source rate for all links (nodes) in
the network into the corresponding vectors. For example, the
vector of link flows will be denoted as x whose element x(i, j)
is the link flow for link (i, j).

III. JOINT ROUTING AND COOPERATIVE RESOURCE

ALLOCATION

In this section, we present a distributed solution to the joint
routing and cooperative resource allocation problem. For this
problem, the source rates Si are assumed to be fixed and the
optimization problem, in essence, is the joint routing, relay
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selection, and power allocation in a multihop wireless network.
The goals are to find optimal transmission strategy for each
link (i.e., either direct or cooperative transmission), the optimal
power allocation for the chosen strategy, and the link flow to
route data generated by source nodes to the corresponding
destination node. This is a cross-layer design problem for
both physical layer (i.e., relay selection, power allocation) and
network layer (i.e., routing of traffic flows). The problem can
be stated as follows:

minimize
∑

(i,j)∈L Pt(i, j)
subject to

∑
j∈O(i) x(i, j) −

∑
j∈I(i) x(j, i) = Si, i ∈ V

x(i, j) ≤ r(i, j), (i, j) ∈ L
x � 0, Pmin � P � Pmax

(11)
where �, � denote component-wise inequalities, x is the vec-
tor of link flows, Pmin (Pmax) denotes the lower (upper) limit
for the power vector with element Pmin(i, j) (Pmax(i, j))
being the minimum (maximum) allowed power to transmit
or relay packets on link (i, j). We assume that this problem
is feasible. The feasibility is assumed to be maintained by an
appropriate admission control algorithm.

We will form the dual problem by introducing the Lagrange
multipliers for constraints in (9) and (10). The corresponding
Lagrangian can be written as

L(x,P,λ,μ)

=
∑

(i,j)∈L

Pt(i, j) +
∑

(i,j)∈L

λ(i,j) [x(i, j) − r(i, j)]

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i) − Si

⎤
⎦ (12)

where x is the vector of link flows, P is the vector of allocated
powers, λ and μ are the vectors of Lagrange multipliers. The
elements of these vectors for each link (i, j) and node i (i.e.,
x(i, j), P (i, j), λ(i,j), and μi) are maintained at node i. From
this Lagrangian, we can define the dual function D(λ, μ) as
follows:

D(λ,μ) = min{x,P}L(x,P,λ,μ). (13)

The optimization problem defined in (11) is a convex one
where the strong duality holds, and therefore, the duality gap is
zero [33]. The original optimization problem in (11) is called
a primal problem and its solution can be recovered via what
is called a dual problem which can be written as

maximize D(λ,μ)
subject to λ � 0 (14)

where the Lagrange multipliers for the inequality constraints in
(10) are constrained to be non-negative. The decision variables
for the primal and dual problems are called primal variables
(x and P) and dual variables (λ and μ), respectively.

Thus, the underlying optimization problem can be solved
directly (i.e., by solving the primal problem (11)) or its solu-
tion can be obtained through solving the dual problem (14).
Solving the primal problem usually results in a centralized
algorithm where all network information such as link gains,
interference and noise powers at receiving ends of all links
should be sent to a particular node to calculate the link flow

and allocated power solutions and these solutions should be
distributed to the corresponding nodes in the network. The
centralized algorithm, therefore, incurs huge communication
overhead and lack resilience to network changes. Tackling
the dual problem using a dual decomposition method leads
to distributed algorithms which are more useful for wireless
networks without infrastructure such as ad hoc networks.
In these distributed algorithms each node performs iterative
exchanges of variables with its immediate neighbors. The dual
decomposition method will be used to construct a distributed
routing algorithm in the following.

A. Dual Decomposition and Subgradient Method

Since the objective of the primal problem (11) is not strictly
convex, the primal variables (i.e., flow and power vectors x,
P) may not be immediately available from the dual problem
solutions. To handle this difficulty, we use the approaches in
[34] by adding a small regularization term ε

∑
(i,j)∈L x(i, j)

2

into the objective function in (11). By letting ε → 0, the
optimal solution to the regularized problem tends to that in
(11). The Lagrangian of the regularized primal problem can
be written as

L(x,P,λ,μ)

=
∑

(i,j)∈L

Pt(i, j) + ε
∑

(i,j)∈L

x(i, j)2

+
∑

(i,j)∈L

λ(i,j) [x(i, j) − r(i, j)]

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i) − Si

⎤
⎦

=

⎧⎨
⎩ε

∑
(i,j)∈L

x(i, j)2 +
∑

(i,j)∈L

λ(i,j)x(i, j)

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i)

⎤
⎦

⎫⎬
⎭

+

⎧⎨
⎩

∑
(i,j)∈L

Pt(i, j) −
∑

(i,j)∈L

λ(i,j)r(i, j)

⎫⎬
⎭ . (15)

The first term in the above equation depends only on the
primal flow variables x(i, j) and the second term depends only
on the primal power variables (because achievable rate r(i, j)
for link (i, j) depends on the power vector as modeled in
Section II.A). Thus, the dual function can be calculated by
decomposing the optimization problem in (13) into following
subproblems:

Dphy(λ) = min
P

⎧⎨
⎩

∑
(i,j)∈L

Pt(i, j) −
∑

(i,j)∈L

λ(i,j)r(i, j)

⎫⎬
⎭
(16)
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Dnet(λ,μ) = min
x�0

⎧⎨
⎩ε

∑
(i,j)∈L

x(i, j)2 +
∑

(i,j)∈L

λ(i,j)x(i, j)

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i)

⎤
⎦

⎫⎬
⎭
(17)

and the dual function can be written as

D(λ,μ) = Dnet(λ,μ) +Dphy(λ). (18)

Thus, given the dual variables (i.e., λ(i,j), μi), the dual
function can be calculated by solving the routing subproblem
in the network layer (i.e., in (17)) and the relay selection
and power allocation subproblem in the physical layer (i.e.,
in (16)). Since the dual function may not be differentiable,
we solve the dual problem using the subgradient projection
method [35], [36]. Now, we give the definition of sugradient
and find the subgradients of the dual function.

Definition: Given a convex function f : Rn → R, vector d
is the subgradient of f at x if f(y) ≥ f(x) + dT (y − x),
∀y ∈ Rn where (.)T denotes the transposition.

Lemma 1: Subgradient of −D(λ, μ) at λ(i,j) and μ(i) are

fi,j(λ(i,j)) = r∗(i, j) − x∗(i, j) and (19)

gi(μi) =
∑

j∈I(i)

x∗(j, i) −
∑

j∈O(i)

x∗(i, j) + Si (20)

respectively, where r∗(i, j), x∗(i, j) are optimal solutions in
(16), (17).

Proof: Let us find the subgradient for D1(λ,μ) = −D(λ,μ)
at λ(i,j). Consider function D1(., .) at two different values λ
and λ′. We have

D1(λ,μ) = −D(λ,μ) = max{x,P} {−L(x,P,λ,μ)}
(21)

D1(λ′,μ) = −D(λ′,μ) = max{x,P} {−L(x,P,λ′,μ)} .
(22)

Let the optimal values of x,P in (21) and (22) be x∗,P∗

and x∗′
,P∗′

, respectively. We have

D1(λ′,μ) −D1(λ,μ)

= −L(x∗′
,P∗′

,λ′,μ) + L(x∗,P∗,λ,μ)
≥ −L(x∗,P∗,λ′,μ) + L(x∗,P∗,λ,μ) (23)

= −
∑

(i,j)∈L

λ
′
(i,j) (x∗(i, j) − r∗(i, j))

+
∑

(i,j)∈L

λ(i,j) (x∗(i, j) − r∗(i, j)) (24)

=
∑

(i,j)∈L

(
λ

′
(i,j) − λ(i,j)

)
(r∗(i, j) − x∗(i, j)) (25)

where r∗(i, j) is the achievable rate on link (i, j)
with power vector P∗. Note that (23) holds because
−L(x∗′

,P∗′
,λ′,μ) ≥ −L(x∗,P∗,λ′,μ) and (24) holds due

to the definition of Lagrangian in (15). From the definition

of subgradient, the subgradient of D1(λ,μ) = −D(λ,μ) at
λ(i,j) is fi,j(λ(i,j)) = r(i, j) − x(i, j). The subgradient for
D1(λ,μ) at μ(i) can be obtained in a similar way. �

The subgradient projection method is similar to the gradient
projection method but the subgradient instead of the gradient
of the objective function is used in each iteration. Given the
locally optimal solutions x∗(t) and P∗(t) of the networking
and the physical layer subproblems, the subgradient projection
algorithm updates λ(i,j) and μ(i) as follows:

λ(i,j)(t+ 1) =
[
λ(i,j)(t) − β(t)fi,j(λ(i,j))

]+
(26)

μi(t+ 1) = μi(t) − β(t)gi(μi(t)) (27)

where [x]+ = max(0, x) and β(t) is the appropriate step-size
in iteration t.

In fact, the proposed algorithm iteratively updates the dual
variables (i.e., using (26), (27)) and primal variables (i.e., by
solving (16) and (17) ) until globally optimal solutions are
obtained. Specifically, the subgradients of the dual function
(i.e., fi,j(λ(i,j)) and gi(μi)) reflect the degree by which
the constraints in (9), (10) are violated. Updating the dual
variables based on the subgradient algorithm also has an
interesting economic interpretation where the dual variables
represent the shadow prices which strike a balance between
the supply (transmission power) and demand (link flow) in
such a way that globally optimal solutions can be achieved.
We will solve these two subproblems in the next subsection.
We will refer to λ(i,j) as the link price and μi as the node
price in the sequel.

B. Networking and Physical Subproblem Solutions

We will now solve the netwoking (i.e., routing) subproblem
in (17) and the physical layer subproblem in (16). The routing
subproblem in (17) can be rewritten as follows:

Dnet(λ,μ) =
∑

(i,j)∈L

Dnet(i, j) (28)

where

Dnet(i, j) = min
x(i,j)≥0

{
εx(i, j)2 + λ(i,j)x(i, j) + μix(i, j)

−μjx(i, j)} . (29)

The routing subproblem, therefore, can be decomposed into
multiple link subproblems. Given the link and node prices
λ(i,j), μi, μj (these variables are maintained at node i), node
i calculates the locally optimal link flow as

x∗(i, j) =
[
μj − μi − λ(i,j)

2ε

]+

. (30)

The physical layer subproblem in (16) is more difficult
to solve because it involves both relay selection and power
allocation. This problem can be also decomposed into multiple
link subproblems as

Dphy(λ) =
∑

(i,j)∈L

Dphy(i, j) (31)

where

Dphy(i, j) = min
P

{
Pt(i, j) − λ(i,j)r(i, j)

}
. (32)
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For each link (i, j), either direct transmission from node i to
node j or cooperative transmission with the help a particular
relay node k can be pursued. Here, given the link price λ(i,j)

for each link (i, j), we need to find the best transmission
strategy and the corresponding allocated power for it. From
(32), if direct transmission is pursued for link (i, j), we have

Dphy(i, j) = min
Pd(i,j)

{
Pd(i, j) − λ(i,j)r(i, j)

}
. (33)

Otherwise, if a neighboring node k is involved in the cooper-
ative transmission, we have

Dphy(i, j) = min
Pd(i,j),Pr,(i,j)(k,j)

{(Pd(i, j)

+Pr,(i,j)(k, j))/2 − λ(i,j)r(i, j)
}
. (34)

Given link price λ(i,j), the best transmission strategy is
the one which results in the smallest Dphy(i, j). Since node
i has a finite number of neighbors which can serve as a
relay for cooperative transmission on link (i, j), the best
transmission strategy can be easily searched for. Note that as
discussed in Section II.A, a possible relay node k must satisfy
g(i, k) > g(i, j) for relaying to be useful. This condition
limits the number of potential relay candidates. Now, we
show how to calculate the locally optimal allocated power for
direct transmission and for cooperative transmission. Based
on these possible transmission strategies, the best transmission
strategy can be easily found. For direct transmission, we have
r(i, j) = rd(i, j) = log2 (1 + g(i, j)Pd(i, j)). Therefore, the
optimal power can be easily found by setting the derivative of
the objective function in (33) to zero as

P ∗
d (i, j) =

[
λ(i,j)

ln 2
− 1
g(i, j)

]Pmax(i,j)

Pmin(i,j)

(35)

where [x]ba denotes the projection of x on [a, b]. For cooper-
ative transmission through relay node k, we have r(i, j) =
rr(i, k)/2 = 1/2 log2 (1 + g(i, k)Pd(i, j)). By setting the
derivative of the objective function in (34) to zero and using
condition (6), the locally optimal allocated powers can be
obtained as

P ∗
d (i, j) =

[
λ(i,j)g(k, j)

ln 2 (g(i, k) + g(k, j) − g(i, j))

− 1
g(i, k)

]Pmax(i,j)

Pmin(i,j)

(36)

P ∗
r,(i,j)(k, j) =

[
g(i, k) − g(i, j)

g(k, j)
P ∗

d (i, j)
]Pmax(k,j)

Pmin(k,j)

. (37)

We now summarize the solution for the physical layer sub-
problem. The optimal allocated power for direct transmission
is given in (35). For cooperative transmission through relay
node k, the optimal allocated powers for transmitter node i and
for relay node k are given in (36) and (37), respectively. Given
the optimal power solutions for these possible transmission
strategies on link (i, j), the corresponding Dphy(i, j) can
be calculated by using (33) for direct transmission and (34)
for cooperative transmission. Then, the transmission strategy
achieving the smallest Dphy(i, j) is chosen and the corre-
sponding transmission rate r(i, j) is used to calculate subgra-
dient fi,j in the subgradient algorithm. The joint routing and

cooperative resource allocation algorithm is summarized in
Algorithm 1. The convergence of the algorithm is summarized
in Property 1 the proof of which can be found, for example,
in [35].

Note that we have assumed multiple simultaneous trans-
missions can occur on each link by using different spreading
codes (i.e., transmission of the underlying link and cooperative
transmissions assisting other neighboring links). If simultane-
ous transmissions on each link are not allowed, then a busy
node can simply be removed from the list of potential relays
of its neighboring links. In the worst case, if a link could not
find any neighbor to serve as a relay, it simply adopts direct
transmission as the “best” strategy.

Property 1: Given that the sequence for the step-size β(t) is
chosen to be nonsummable diminishing which satisfies

lim
t→∞β(t) = 0,

∞∑
t=1

β(t) = ∞ (38)

Algorithm 1 converges to the globally optimal solution.

Algorithm 1: Joint Routing and Cooperative Resource
Allocation

1) Each node i initializes its node price μi(0) and link
price λ(i,j)(0), link flow x(i, j)(0), transmission power
Pd(i, j)(0) for outgoing link (i, j).

2) Given λ(i,j)(t) and μi(t), each node i solves the
networking and physical subproblems for its outgo-
ing link (i, j) to obtain the locally optimal link
flow x∗(i, j)(t), transmission strategy, allocated pow-
ers for itself P ∗

d (i, j)(t) and for its relay partner
P ∗

r,(i,j)(k, j)(t) if cooperative transmission through
node k is the best strategy. Node i then transmits the
link flow value x∗(i, j)(t) to node j and relay power
P ∗

r,(i,j)(k, j)(t) to its relay partner k.
3) Given the locally optimal link flow, transmission strat-

egy, and allocated powers, each node i updates the link
and node prices λ(i,j)(t+1), μi(t+1) using (26), (27).
Node i transmits μi(t+ 1) to all neighboring nodes j.

4) Return to 2) until the algorithm converges.

We observe that Algorithm 1 is fully distributed because
each node i in the network performs all its calculations
using only variables which are available from its immediate
neighbors. Specifically, node i finds the optimal transmission
strategy and optimal transmission powers using (35) (for
direct transmission strategy) and (36), (37) (for cooperative
transmission through node k). These calculations require
g′(i, j), g′(i, k), g′(k, j) and the corresponding interference
and noise powers (recall that we have absorbed these values
into the corresponding channel gains) which can be made
available at node i through some estimation technique and
local message exchanges. Similarly, calculations of link flow
x(i,j)(t) require variables which are available through message
exchange operations in steps 2, 3 of the proposed algorithm.

Note that, a similar amount of computational complexity is
involved when no user cooperation is employed if distributed
implementation is adopted. The only difference between these
two cases is that without user cooperation, each node al-
ways chooses direct transmission strategy while with user
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cooperation, each node chooses the best transmission strategy
(i.e., can be direct or cooperative transmission via a another
relay) for outgoing links in each iteration. The amount of
message passing is similar for both cases. The nodes would
test the convergence by calculating the difference of node/link
prices in two consecutive iterations. The algorithm should be
terminated if this difference becomes smaller than a predefined
value (e.g., 10−6).

As will be seen from numerical results in Section V, the
proposed algorithm takes some time to converge under arbi-
trary initial conditions. Therefore, the proposed algorithm can
be used only in slowly mobile or stationary wireless networks
(e.g., stationary wireless mesh networks) where partner selec-
tion and algorithm activation from arbitrary initial conditions
are not frequently performed. Note that if cooperative partners
have been selected for all links, the algorithm can quickly
converge to its new optimal solution to track small changes in
topology and/or channel gains in successive algorithm runs.

IV. UTILITY-POWER TRADEOFF WITH COOPERATIVE

RESOURCE ALLOCATION

In this section, we extend the presented algorithm to incor-
porate congestion control. In essence, the objective function
under consideration strikes a balance between maximizing the
sum rate utility and minimizing total power consumption.
Note that source rates Si are variables here. The utility
function Ui(Si) is assumed to be continuously differentiable,
increasing, and strictly concave. In order to recover optimal
solution for the primal variables, we add a regularization
term into the objective function as before. The optimization
problem is given as

maximize γ1

∑
i∈V Ui(Si) − γ2

∑
(i,j)∈L Pt(i, j)

−ε∑
(i,j)∈L x(i, j)

2

subject to
∑

j∈O(i) x(i, j) −
∑

j∈I(i) x(j, i) = Si, i ∈ V

x(i, j) ≤ r(i, j), (i, j) ∈ L
x � 0, S � 0, Pmin � P � Pmax

(39)
where S is the vector of source rates with elements Si being
the average data rate generated by node i and γ1, γ2 are the
parameters controlling the tradeoff. Note that, only the ratio
of γ1 and γ2 (i.e., γ1/γ2) determines the tradeoff because the
objective function is the weighted sum of sum rate utility and
network transmission power. In particular, for a fixed value of
γ2 (e.g., γ2 = 1), a larger value of γ1 results in larger sum rate
utility (and hence transmission rate) as well as transmission
power in the network.

A. Dual Decomposition and Subgradient Method

Proceeding in the same line as in the previous section, we
form the following Lagrangian

L(x,P,S,λ,μ)

= γ1

∑
i∈V

U(Si) − γ2

∑
(i,j)∈L

Pt(i, j)

−ε
∑

(i,j)∈L

x(i, j)2 −
∑

(i,j)∈L

λ(i,j) [x(i, j) − r(i, j)]

−
∑
i∈V

μi

⎡
⎣ ∑

j∈I(i)

x(j, i) −
∑

j∈O(i)

x(i, j) + Si

⎤
⎦

=

{∑
i∈V

γ1Ui(Si) − μiSi

}

+

⎧⎨
⎩

∑
(i,j)∈L

λ(i,j)r(i, j) − γ2

∑
(i,j)∈L

Pt(i, j)

⎫⎬
⎭

+

⎧⎨
⎩−ε

∑
(i,j)∈L

x(i, j)2 −
∑

(i,j)∈L

λ(i,j)x(i, j)

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i)

⎤
⎦

⎫⎬
⎭

(40)

where besides the vector of link flows x and the allocated
power vector P, the source rate vector S is introduced into
the Lagrangian. The dual function is given by

D(λ,μ) = max{x,P,S}L(x,P,S,λ,μ). (41)

This dual function can be calculated by decomposing the
optimization problem in (41) into the following subproblems:

Dcon(μ) = max
S�0

{∑
i∈V

γ1Ui(Si) − μiSi

}

=
∑
i∈V

max
Si≥0

{γ1Ui(Si) − μiSi} (42)

Dnet(λ, μ) = max
x�0

⎧⎨
⎩−ε

∑
(i,j)∈L

x(i, j)2 −
∑

(i,j)∈L

λ(i,j)x(i, j)

+
∑
i∈V

μi

⎡
⎣ ∑

j∈O(i)

x(i, j) −
∑

j∈I(i)

x(j, i)

⎤
⎦

⎫⎬
⎭

=
∑

(i,j)∈L

max
x(i,j)≥0

{−εx(i, j)2 − λ(i,j)x(i, j)

+μix(i, j) − μjx(i, j)}
(43)

Dphy(λ) = max
P

⎧⎨
⎩

∑
(i,j)∈L

λ(i,j)r(i, j) − γ2

∑
(i,j)∈L

Pt(i, j)

⎫⎬
⎭

=
∑

(i,j)∈L

max
P�0

{
λ(i,j)r(i, j) − γ2Pt(i, j)

}
(44)

and the dual function can be rewritten as D(λ,μ) =
Dcon(μ) + Dnet(λ,μ) + Dphy(λ). Again, the optimization
problem defined in (39) is a convex one where the strong
duality holds, and therefore, the duality gap is zero. Thus,
solutions of the primal problem in (39) can be recovered via
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its dual problem which can be written as minλ�0
D(λ,μ).

We solve the dual problem using the subgradient projection
method. The subgradients of the dual function at λ(i,j) and μi

are given in the following Lemma.

Lemma 2: The subgradient of D(λ, μ) at λ(i,j) and μi can
be shown to be

φi,j(λ(i,j)) = r∗(i, j) − x∗(i, j) (45)

ψi(μi) =
∑

j∈O(i)

x∗(i, j) −
∑

j∈I(i)

x∗(j, i) − S∗
i (46)

where S∗
i , x

∗(i, j), r∗(i, j) are optimal solutions in (42), (43),
(44).

Proof: The proof is similar to that for Lemma 1. �
Given the locally optimal solutions S∗(t), x∗(t), and P∗(t)

for the congestion control, networking and physical layer
subproblems, the algorithm updates λ(i,j) and μ(i) as follows:

λ(i,j)(t+ 1) =
[
λ(i,j)(t) − β(t)φi,j(λ(i,j))

]+
(47)

μi(t+ 1) = μi(t) − β(t)ψi(μi) (48)

where β(t) is the appropriate step-size in iteration t.
Similar to the algorithm presented in Section III, the algo-

rithm for the optimization problem in (39) iteratively updates
the dual variables (i.e., using (47), (48)) and solves the con-
gestion control subproblem in (42), networking subproblem in
(43), and physical layer subproblem in (44) until the globally
optimal solutions are achieved. We present how to solve these
subproblems in the following subsection.

B. Solutions of Congestion Control, Networking, and Physical
Subproblems

The congestion control subproblem in (42) and networking
subproblem in (43) can be decomposed into multiple node and
link subproblems, respectively. Given the node and link prices
μi, λ(i,j), the optimal solutions for these subproblems can be
written, respectively, as

S∗
i =

[
U

′−1
i

(
μi

γ1

)]+

(49)

x∗(i, j) =
[
μi − μj − λ(i,j)

2ε

]+

(50)

where U
′−1
i is the inverse function of derivative of utility

function Ui.
As in the previous section, the physical layer subproblem

involves both relay selection and power allocation. The op-
timization problem in (44) can be decomposed into multiple
link subproblems, where each link searches for the best relay
and the corresponding allocated power. The optimal amount
of power allocated, if direct transmission is pursued, can be
written as

P ∗
d (i, j) =

[
λ(i,j)

γ2 ln 2
− 1
g(i, j)

]Pmax(i,j)

Pmin(i,j)

. (51)

For cooperative transmission through relay node k, the optimal
allocated powers can be written as

P ∗
d (i, j)

=

[
λ(i,j)g(k, j)

γ2 (g(i, k) + g(k, j) − g(i, j)) ln 2
− 1

g(i, k)

]Pmax(i,j)

Pmin(i,j)

(52)

P ∗
r,(i,j)(k, j) =

[
g(i, k) − g(i, j)

g(k, j)
P ∗

d (i, j)

]Pmax(k,j)

Pmin(k,j)

. (53)

Given the link price λ(i,j), channel gains, and interference
plus noise powers, the strategy resulting in the largest

Dphy(i, j) = max
P�0

⎧⎨
⎩λ(i,j)r

∗(i, j) − γ2

∑
(i,j)∈L

P ∗
t (i, j)

⎫⎬
⎭

will be chosen as the best strategy and the optimal solutions for
this strategy are used to update the subgradients in (45) and
(46). The joint congestion control, routing, and cooperative
resource allocation algorithm to solve (39) is summarized
in Algorithm 2. As before, the proof of convergence of
this algorithm under the nonsummable diminishing step-size
condition can be found in [35].

Algorithm 2: Joint Congestion Control, Routing and Co-
operative Resource Allocation for Utility-Power Tradeoff

1) Each node i initializes its node price μi(0) and link
price λ(i,j)(0), source rate Si(0), link flow x(i, j)(0),
transmission power Pd(i, j)(0) for each outgoing link
(i, j).

2) Given λ(i,j)(t) and μi(t), each node i solves the con-
gestion control subproblem to obtain the locally optimal
source rate S∗

i (t), solves the networking (i.e., routing),
and physical subproblems for its outgoing link (i, j) to
obtain the locally optimal link flow x∗(i, j)(t), trans-
mission strategy, allocated power for itself P ∗

d (i, j)(t)
and for its relay partner P ∗

r,(i,j)(k, j)(t) if cooperative
transmission through node k is the best strategy. Node
i then transmits the link flow x∗(i, j)(t) to node j and
relay power P ∗

r,(i,j)(k, j)(t) to its relay partner k.
3) Given the locally optimal source rate, link flow, trans-

mission strategy, and allocated powers, each node i
updates the link and node prices λ(i,j)(t+ 1), μi(t+ 1)
as in (47), (48). Node i transmits μi(t + 1) to all
neighboring nodes j.

4) Return to 2) until the algorithm converges.

The presented algorithm for the utility-power tradeoff is also
fully distributed. Besides routing and power allocation, which
are performed by using local information only, the congestion
control solution in (49) for node i requires node price μi of
itself which is immediately available.

V. NUMERICAL RESULTS

We consider a wireless network with 25 nodes distributed
in an area of 200m × 200m. We investigate two topologies,
namely, grid topology (Fig. 2) and random topology (Fig. 3).
For the random topology, we fix 4 nodes at four corners and
one node at the center of the area; the other 20 nodes are po-
sitioned randomly with 5 nodes in each area of 100m × 100m
as indicated in Fig. 3. There are two source nodes generating
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Fig. 2. Grid topology for 25 nodes with a routing path from a source node
to the destination node.

data to the single destination node as shown in Figs. 2-3. To
show the convergence of the proposed algorithms, we show
link flows for a routing path as indicated in Fig. 2. To limit
the number of links, we assume that a link exists between a
pair of nodes if the distance between them is less than 150m.
The power limits on each link (i, j) are Pmin(i, j) = 0 mW,
Pmax(i, j) = 50 mW for transmissions from both source nodes
and relay nodes.

In order to obtain the numerical results, we run the
proposed algorithms with stepsize chosen to be β(t) =
max(0.2/

√
t, 0.001). The initial value of ε is chosen to be

0.1. Then it decreases exponentially until it reaches a certain
value (e.g., ε0 = 0.05) after which it remains the same.
There is a tradeoff between the convergence speed and the
accuracy of the achieved solution: the higher the ε0, the
faster the convergence but the less accurate the achieved
results are. The channel gain for link (i, j) is modeled as
g(i, j) = K × d(i, j)−3, where K = 106 and d(i, j)
is the distance between node i and j in meter. Note that
we have absorbed ΓN0(i, j) into these channel gains. The
utility function is chosen to be Ui(Si) = ln(Si) for the two
sources. This utility function provides proportional fairness
for the source rates. We compare the network performance
with and without cooperative diversity implementation. When
cooperative diversity is not employed, direct transmission on
each link is always chosen.

The link flows for the routing path indicated in Fig. 2
are shown in Fig. 4. This figure shows the convergence of
Algorithm 1. The optimal flows show that data from both
sources one and two are actually split into multiple paths
to reach the destination node (because the link flows along
this routing path are smaller than the source rate which is 4
b/s/Hz). This implies that a cross-layer framework is necessary
to obtain the optimal multipath routing solution. The proposed
algorithm actually exploits both cooperative diversity gain
from the physical layer and network topology to perform load
balancing such that the optimal solution can be achieved.

The total power consumed versus the source rate for both
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Fig. 3. Random topology for 25 nodes.
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Fig. 4. Link flows for a routing path from source node one to the destination
node with cooperative diversity for the grid topology (for S1 = S2 = 4
b/s/Hz).

the network topologies with and without cooperative diversity
implementation is shown in Fig. 5 (denoted by “cooperation”
and “non-cooperation”, respectively). For the random topol-
ogy, the total power is obtained by averaging over 20 simula-
tion runs. This figure shows that the random topology actually
requires a bit higher power consumption than the grid topology
for these particular source-sink pairs. The performance gain
resulting from cooperative diversity is very significant which
is about 40% for both the topologies. This performance gain
is achieved without sacrificing the distributed nature of the
proposed algorithm because only local information is needed
to search for the best relay together with the optimal power
allocation and routing solution.

To obtain the numerical results for Algorithm 2, we fix
γ2 = 1 and vary γ1 to achieve the solutions for different
utility-power tradeoff. The link flows for the routing path from
source node one to the sink node are shown in Fig. 6. This fig-
ure confirms the convergence of Algorithm 2. The total power
consumption for utility-power tradeoff optimization is shown
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Fig. 5. Total power consumption versus source rate with and without
cooperative diversity.
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Fig. 6. Link flow with utility and power tradeoff optimization with
cooperative diversity for γ2 = 1 and γ1 = 100.

in Fig. 7 for both topologies with and without cooperative
diversity implementation. Again cooperative diversity results
in a performance gain although the power gain is smaller
compared to that obtained in Fig. 5. This observation can be
explained by noticing that the optimization of utility-power
tradeoff results in higher total source rate for the cooperation
case (Fig. 8). This implies that the performance gain from
cooperative diversity is balanced between power and rate
gains.

VI. CONCLUSIONS

We have developed cross-layer design frameworks for
power efficient communications in multihop wireless networks
using cooperative diversity. The proposed distributed algo-
rithms converge to the globally optimal solution where the
best relay (if any) for each link and the allocated power
in the physical layer and the optimal routing solution can
be found in a distributed manner. Cross-layer optimization
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Fig. 7. Total power consumption versus γ1 for utility-power tradeoff
optimization.
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Fig. 8. Total source rate versus γ1 for utility-power tradeoff optimization.

frameworks have been developed to minimize the total power
consumption or to maximize the utility-power tradeoff. For
the latter case, the optimal solutions are found to balance
performance gain for both power consumption and achieved
source rates. The proposed algorithms are very appealing to
achieve the cooperative diversity gain, which has been shown
to be very significant in this paper.
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