
1

Delay Analysis of Maximum Weight Scheduling in
Wireless Ad Hoc Networks

Long Bao Le, Krishna Jagannathan, and Eytan Modiano

Abstract—This paper studies delay properties of the well-
known maximum weight scheduling algorithm in wireless ad
hoc networks. We consider wireless networks with either one-
hop or multi-hop flows. Specifically, this paper shows that the
maximum weight scheduling algorithm achieves order optimal
delay for wireless ad hoc networks with single-hop traffic flows
if the number of activated links in one typical schedule is of
the same order as the number of links in the network. This
condition would be satisfied for most practical wireless networks.
This result holds for both i.i.d and Markov modulated arrival
processes with two states. For the multi-hop flow case, we also
derive tight backlog bounds in the order sense.

Index Terms—Maximum weight scheduling, backlog/delay
bounds, capacity region, order optimal delay

I. INTRODUCTION

Wireless scheduling has been known to be a key problem

for throughput/capacity optimization in wireless networks. The

well-known maximum weight scheduling algorithm has been

proposed by Tassiulas in his seminal paper [1] where he

proved its throughput optimality. Latter developments in this

area include extension of this maximum weight scheduling

algorithm to wireless networks with rate/power control [2],

[3], network control when offered traffic is outside the ca-

pacity region [4], and other scheduling policies with lower-

complexity [5]-[8]. While most existing works in the area

of stochastic network control focused on throughput perfor-

mance of optimal and suboptimal scheduling policies, delay

properties of most scheduling policies proposed for wireless

ad hoc networks remain unknown. In this paper, we study

backlog/delay properties of the maximum weight scheduling

algorithm in wireless ad hoc networks.

There are some recent works which investigated back-

log/delay bounds for the supoptimal maximal scheduling al-

gorithm in wireless ad hoc networks and maximum weight
scheduling algorithm in the downlink/uplink of cellular net-

works. Specifically, in [13] Neely showed that maximal

scheduling achieves delay scaling of O (1/(1 − ρ)) for traffic

inside the reduced stability region derived in [8]. This reduced

stability region can be as small as 1/I of the capacity

region, where I is the maximum number of links in any link

interference set which do not interfere with one another. In

[14], [15], Neely also proved the “order optimal” delay for

the maximum weight scheduling algorithm in the wireless

cellular uplink/downlink with ON/OFF wireless links. Note

that the capacity region in the cellular setting can be explicitly
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described which significantly eases the backlog/delay analysis.

Average backlog bounds were derived for maximum weight

scheduling in several works [2], [4], [10], [9]. These backlog

bounds were obtained by bounding the maximum transmission

rates and the number of arrivals in each time slot which are,

therefore, not tight in general. There are some other works

which investigate exponents for the tails of queue backlogs in

the wireless cellular setting [11], [12].

In this paper, we consider a wireless ad hoc network with

either one-hop and multi-hop traffic flows. We show that

average delay for the case of one-hop traffic flows scales as

O (1/(1 − ρ)) if we can construct a set of distinct schedules

to cover the network where the number of activated links in

each of these schedules is of the same order as the number

of network links. This condition would be satisfied for most

practical large-scale wireless networks. This delay scaling

holds for both i.i.d and Markov modulated traffic arrival

processes with at most two states. These results are stated

in Propositions 4 and 5 of the paper. To the best of our

knowledge, these are the first delay optimal results for the

maximum weight scheduling algorithm in wireless ad hoc

networks. For wireless ad hoc networks with multihop traffic

flows, we also derive a tight backlog bound which scales as

O (N/(1 − ρ)) where N is the number of wireless nodes.

The remaining of this paper is organized as follows. Delay

analysis for single-hop traffic flows is presented in section II.

In section III, we derive backlog bounds for wireless networks

with multihop traffic flows.

II. ANALYSIS OF SINGLE-HOP FLOW CASE

A. System Models and Assumptions

We model a wireless ad hoc network as directed graph G =
(V, E) where V is the set of wireless nodes and E is the set

of wireless links. Suppose the cardinalities of V and E are

N and L, respectively. We consider single-hop traffic flows in

this section. Data from all flows traversing a particular link l is

buffered at the corresponding transmitter of the link. Assume

time is slotted with fixed-size slot intervals. For now, traffic

arriving to source nodes of single-hop flows is assumed to be

independent and identically distributed (i.i.d) over time.

Assume that packets arriving during time slot t can only be

transmitted from time slot t + 1 at the earliest. Let denote by

Al(t) the number of packets arriving at link l in time slot t and

μl(t) the number of packet transmitted on link l in time slot

t. For simplicity, assume that μl(t) = 1 if link l is scheduled

in time slot t, otherwise μl(t) = 0. In the remaining of this

paper, we will use �r to describe a column vector with elements

rl denoting quantities such as queue length, scheduled links,
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etc. The queue evolution for the flow at link l can be written

as follows:

Ql(t + 1) = Ql(t) − μl(t) + Al(t). (1)

Assume that only backlogged links are scheduled, it can be

verified that this queue evolution equation holds for arbitrary

Ql(t) and μl(t). Regarding the scheduling, we consider the

well-known maximum weight scheduling algorithm which is

known to achieve the capacity region [1]. The maximum

weight scheduling algorithm determines the optimal schedule

�μ∗(t) based on the link queue backlogs as follows:

�μ∗(t) = argmax
�μ(t)∈S

L∑
l=1

Ql(t)μl(t) (2)

where S denotes the set of all possible feasible schedules

according some interference constraints. In this section, we

are going to derive the delay bound for this scheduling policy

assuming that arrival traffic is strictly within the capacity

region so that the maximum weight scheduling algorithm will

stabilize the network [1]-[3].

B. Backlog/Delay Analysis for i.i.d Arrival Traffic

In this subsection, we obtain a delay bound for the afore-

mentioned scheduling scheme using the Lyapunov drift tech-

nique [1]-[3]. Traffic arriving to a transmitting buffer of

wireless link l is assumed to be i.i.d over time with average

arrival rate λl. In the following, we use a result which was

stated in [13].

Lemma 1: (Theorem 1 from [13]) Let �Q(t) be the queue

backlog vector in time slot t and L( �Q(t)) be a Lyapunov

function. Also, define a one-step Lyapunov drift as follows:

Δ(t)
�
= E

{
L( �Q(t + 1)) − L( �Q(t))

}
(3)

where the expectation E(.) is taken over the randomness of

queue backlogs �Q(t) and system dynamics given the queue

backlogs �Q(t). If the Lyapunov drift satisfies

Δ(t) ≤ E {g(t)} − E {f(t)} (4)

then we have

lim sup
t→∞

1
t

t−1∑
τ=0

E {f(t)} ≤ lim sup
t→∞

1
t

t−1∑
τ=0

E {g(t)} . (5)

Now, consider the following quadratic Lyapunov function

L( �Q(t))
�
=

L∑
l=1

Q2
l (t). (6)

We have the following result for the Lyapunov drift.

Proposition 1: The Lyapunov drift satisfies the following

relation for any time slot t:

Δ(t) = E {B(t)} + 2
L∑

l=1

E {Ql(t) (Al(t) − μl(t))} (7)

where

B(t)
�
= [Al(t) − μl(t)]

2 = Al(t)2 + 2Al(t)μl(t) + μl(t)2. (8)

The proof of this proposition follows directly by applying

the queue evolution relation in (1), and is omitted for brevity.

As shown in [1], the capacity region coincides with the convex

hull of all possible feasible schedules. Let S =
{

�Ri

}
be the

set of all possible schedules where one particular schedule �Ri

is a column vector of dimension L with the l-th element equal

1 if link l is scheduled and equal 0 otherwise. For any arrival

rate vector �λ strictly inside the capacity region, we have

�λ ≤
|S|∑
i=1

βi
�Ri (9)

where |S| denotes the cardinality of set S,
∑|S|

i=1 βi < 1 and

” <,≤ ” denotes both a regular inequality and an element-

wise inequality. We have the following relation

N∑
l=1

Qlλl = �Qtr�λ ≤
|S|∑
i=1

βi
�Qtr �Ri ≤ �Qtr�μ∗

|S|∑
i=1

βi < �Qtr�μ∗

(10)

where [.]tr denotes the vector transposition and �μ∗ is the

optimal scheduled vector given backlog vector �Q. It can be

verified that these results hold by using the relations in (9)

and (2). Now, we state a bound on the total queue backlogs

for i.i.d. arrival traffic in the following proposition.

Proposition 2: Assume that the arrival rate vector �λ is strictly

inside the capacity region so that there exists a vector �ε such

that �λ+�ε is inside the capacity region where �ε is a vector with

all elements equal to ε. Also, assume that all arrival processes

on all wireless links have bounded second moments. Then, the

network is stable and the total average queue backlog can be

bounded as

L∑
l=1

Ql ≤
λtot +

∑L
l=1 E

{
Al(t)2

} − 2
∑L

l=1 λ2
l

2ε
(11)

where λtot
�
=

∑L
l=1 λl is the total link arrival rates.

Proof: Using (10) for backlog vector �Q(t), we have

[
�Q(t)

]tr [
�λ + �ε

]
≤

[
�Q(t)

]tr

�μ∗(t). (12)

Hence, [
�Q(t)

]tr
�λ −

[
�Q(t)

]tr

�μ∗(t) ≤ −
[
�Q(t)

]tr

�ε. (13)

Note that the second term of (7) can be written as

2
L∑

l=1

E {Ql(t) (Al(t) − μl(t))}

= 2
L∑

l=1

E {Ql(t) (λl − μl(t))}

= 2E

{[
�Q(t)

]tr (
�λ − �μ(t)

)}
. (14)

Using (13) and (14) in (7) with �μ(t) representing an optimal

scheduled vector, we have

Δ(t) ≤ E {B(t)} − 2
[
�Q(t)

]tr

�ε
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= E {B(t)} − 2ε
L∑

l=1

E {Ql(t)} . (15)

Using the result in Lemma 1 in (15), we have

lim sup
t→∞

1
t

t−1∑
τ=0

L∑
l=1

E {Ql(τ)} ≤ B

2ε
(16)

where B
�
= lim supt→∞

1
t

∑t−1
τ=0 E {B(τ)} .

From (8), using the fact that μl(t) ≤ 1 and arrival pro-

cesses have bounded second moments, we have B < ∞.

Therefore, the queueing network is strongly stable. Because it

evolves according to an ergodic Markov chain with countable

state space, the limiting time averages of queue backlogs

equal to the corresponding steady state averages. To calcu-

late B, we note that under the stability condition we have

lim supt→∞
1
t

∑t−1
τ=0 μl(τ) = λl. Also, note that μl(t)2 =

μl(t) because μl(t) = {0, 1} depending on whether link l
is scheduled in time slot t or not. As a consequence, B can

be written as

B =
L∑

l=1

E
{
Al(t)2

} − 2
L∑

l=1

λ2
l +

L∑
l=1

λl

= λtot +
L∑

l=1

E
{
Al(t)2

} − 2
L∑

l=1

λ2
l . (17)

Because time average limits of queue backlogs are equal to

their steady state averages, using (17) the inequality (16) can

be rewritten as

L∑
l=1

Ql ≤
λtot +

∑L
l=1 E

{
Al(t)2

} − 2
∑L

l=1 λ2
l

2ε
. (18)

Hence, the proposition is proved.

1) Delay Bound: Applying Little’s law to (11), we can

obtain a delay bound as follows:

W ≤ 1 + 1
λtot

∑L
l=1

[
E

{
Al(t)2

} − 2λ2
l

]
2ε

. (19)

Now, in order to understand the scaling of this delay bound,

we need to determine the relationship between the “traffic

loading factor” ρ and the parameter ε. Let us denote by

Λ the capacity region. Assume that the arrival rate vector
�λ = (λ1, λ2, · · · , λL)tr

is strictly inside the capacity region

Λ, then there exists a loading factor ρ < 1 such that

�λ ∈ ρΛ. (20)

In the following, we state a delay bound by choosing a straight-

forward loading factor ρ as a function of ε.

Proposition 3: If arrival rate is in ρ-scaled capacity region as

described in (20), the average total delay can be bounded as

W ≤
L

[
1 + 1

λtot

∑L
l=1

[
E

{
Al(t)2

} − 2λ2
l

]]
2 (1 − ρ)

. (21)

In the special case where the arrival process on each wireless

link is Poisson, we have

W ≤ L(1 − 1
2λtot

∑L
l=1 λ2

l )
1 − ρ

. (22)

Proof: The proof follows by using the fact that we can

choose �ε = (1−ρ)
L 1L where 1L is an all-one vector with

dimension L such that �λ+�ε ∈ Λ for any �λ ∈ ρΛ. Specifically,

by plugging ε = (1−ρ)
L into the delay bound in (19), we can

obtain (21). Now, we show that �λ+�ε ∈ Λ for ε = (1−ρ)
L . Note

that for any �λ ∈ ρΛ, we can write �λ = ρ
∑|S|

i=1 βi
�Ri where∑|S|

i=1 βi < 1. Define �ei be a vector of dimension L with all

zeros except a one at the i-th position. It can be easily seen

that any �ei (i = 1, 2, · · · , L) represents a feasible schedule

(with link i being activated). Also, note that
∑L

i=1 �ei = 1L.

Hence, we have the following result

1 − ρ

L
1L+ρ

|S|∑
i=1

βi
�Ri =

1 − ρ

L

L∑
i=1

�ei+ρ

|S|∑
i=1

βi
�Ri ∈ Λ. (23)

When the arrival processes are Poisson, we have

E
{
Al(t)2

}
= λl + λ2

l . Using this relationship in the

delay bound (21), we obtain (22).

Note that the term 1
λtot

∑
l∈E E

{
Al(t)2

}
is typically O(1)

for any traffic satisfying Al(t) ≤ Amax. In fact, in such cases

we have 1
λtot

∑
l∈E E

{
Al(t)2

} ≤ Amax. Hence, the delay

bound stated in Proposition 3 is typically O(L/(1 − ρ)).

C. Tighter Delay Bound

In the following, we state a tighter delay bound under

specific assumptions which can be achieved by exploiting

underlying interference constraints and network topology.

Proposition 4: Assume that the arrival rate is in the ρ-

scaled capacity region as described in (20). Also, assume

that we can find a set of feasible schedules, namely Ψ =
{�si, i = 1, 2, · · · , T}, satisfying the following assumptions

• For any schedule �si ∈ Ψ, if link l is activated in �si then

link l is not activated in any other �sj ∈ Ψ for j �= i (i.e.,

any link should belong to one and only one schedule in

the set Ψ).

• Let E∗ be the set of links activated by all schedules in Ψ,

then E∗ = E where recall that E is the set of all network

links (i.e., the union of activated links by all schedules

covers the whole network).

Let Ki denote the number of activated links in schedule �si and

Kmin = mini Ki. Then, we have the following delay bound

W ≤ 1 + 1
λtot

∑L
l=1

[
E

{
Al(t)2

} − 2λ2
l

]
2Kmin (1 − ρ) /L

. (24)

Before proving this proposition, we note that for wireless

networks such that Kmin = O(L), proposition 4 implies that

the network delay typically scales as O(1/(1 − ρ)). This

condition would hold if the network topology is sufficiently

sparse and uniform so that the most balanced set of schedules

Ψ (i.e., almost all schedules in Ψ have the same number of

activated links in the order sense) satisfies Kmin = O(L).
Note that this condition would be satisfied for most practical

wireless networks because a typical schedule would activate

most links in the network. We will provide one such network

example after the proof.

Proof: The proof for this proposition follows the same

line as that for proposition 3. However, a tighter delay bound
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is achieved in this proposition by constructing �ε from the set of

schedules Ψ each of which has at least Kmin activated links.

Now, consider the following linear combination of feasible

schedules whose outcome lies inside the capacity region

(1 − ρ)
T∑

i=1

Ki∑T
j Kj

�si + ρ

|S|∑
i=1

βi
�Ri ∈ Λ. (25)

Therefore, the result stated in proposition 4 follows by plug-

ging ε = (1 − ρ) Kmin

L into the delay bound (19).

In the following, we provide a simple example where the

assumptions of the proposition hold.

Example: Consider a grid network and one-hop (primary)

interference model for the sake of simplicity as being shown

in Fig. 1. In this figure, we also show how to construct a set

of feasible schedules Ψ that covers the whole network graph

(again, each schedule has the same link pattern). To analyze its

delay bound, assume that the size in one dimension of the grid

network is H links, then it can be verified that L = 2H(H+1).
From the constructed set of schedules Ψ as shown in this

figure, we have Kmin = (H + 1) �H/2�. Therefore, using the

result in proposition 4, the delay can be bounded as

W ≤
2H(H + 1)

[
1 + 1

λtot

∑L
l=1

[
E

{
Al(t)2

} − 2λ2
l

]]
2(H + 1) �H/2� (1 − ρ)

≈
2

[
1 + 1

λtot

∑L
l=1

[
E

{
Al(t)2

} − 2λ2
l

]]
(1 − ρ)

which scales typically as O(1/(1 − ρ)).

Fig. 1. Grid networks with one-hop (primary) interference model.

D. Analysis for Time-Correlated Arrivals with Two States

Here, assume that arrival process Al(t) for links l is either

i.i.d. or modulated by a discrete time stationary and ergodic

Markov chain Zl(t) having two states (i.e., states 1 and 2).

Let σl and δl be transition probabilities from state 1 to state 2

and from state 2 to state 1, respectively. For each link l, define

the conditional average arrival rates λ
(m)
l as follows:

λ
(m)
l

�
= E {Al(t)|Zl(t) = m} .

Now, let denote by E1 ⊂ E as the set of links with time-

correlated arrivals where λ
(1)
l �= λ

(2)
l . Also, assume that arrival

traffic to any other links in E2 = E − E1 is either i.i.d or

time-correlated with two states satisfying λ
(1)
l = λ

(2)
l . Assume

that the modulating Markov chains of all arrival processes are

stationary so that for all links l we have E {Al(t)} = λl for

all time t. In order to obtain delay bound for this case, we will

use one result proved in [13] which is stated in the following

lemma.

Lemma 2: (from section V.A of [13]) Define Cl =
E {Al(t − 1)Al(t)} for l ∈ E1 and Cl = 0 for l ∈ E2. For

all link l, we have

E {Ql(t)Al(t)} ≤ E {Ql(t)}λl +
Cl

δl + σl
.

Now, we state delay bounds for the case of time-correlated

arrivals in the following proposition.

Proposition 5: If the arrival traffic is within the ρ-scaled

capacity region and the assumptions in proposition 4 are

satisfied, then the network is stable and the average delay can

be bounded as

W ≤ B̃ + C̃

2Kmin(1 − ρ)/L
. (26)

where

B̃
�
= 1 +

1
λtot

∑
l∈E

E
{
Al(t)2

}
, C̃

�
=

1
λtot

∑
l∈E1

Cl

σl + δl
. (27)

The proof follows by using results in Lemma 2 and

Proposition 1 so it is omitted for brevity. The term
1

λtot

∑
l∈E E

{
Al(t)2

}
is typically O(1) for any traffic sat-

isfying Al(t) ≤ Amax. In fact, in such cases we have

B̃ ≤ 1 + Amax. It is not very difficult to see that for l ∈ E1,

we have Cl ≤ λlλmax where λmax < 1 is the maximum

conditional rate over all links and states. Hence, we can obtain

the following delay bound

W ≤ 1 + Amax + maxl∈E1 {λmax/(σl + δl)}
2Kmin(1 − ρ)/L

(28)

which scales as O(1/(1 − ρ)) for Kmin = O(L).

III. ANALYSIS OF MULTIHOP FLOW CASE

A. System Models and Assumptions

We consider the same network model as section II. We

assume that there is set of multihop flows F where flow f ∈ F
has a fixed route from a source node s(f) to a destination

node d(f). We denote the set of links and nodes on the route

of flow f as L(f) and R(f), respectively. For simplicity, we

assume that packet arrivals to source nodes of all flows are

i.i.d stochastic processes.

We denote the queue length of flow f at node n at the

beginning of time slot t as Qf
n(t) and the number of packets

arriving at the source node of flow f as Af
s(f)(t). Note that

data packets of any flow are delivered to the higher layer upon

reaching the destination node, so Qf
d(f)(t)=0. In addition, let

μf
n(t) be the number of packets of flow f transmitted from

node n along link (n,m) of its route which is buffered at

node m if m �= d(f). Again, we assume that μf
n(t) = 1 if

we activate link (n,m) on the route of flow f and μf
n(t) = 0,

otherwise. Given the routes for all flows, the maximum weight

scheduling algorithm is used for data delivery [1]. Specifically,

the scheduling is performed in every time slot as follows:
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• Each link (n,m) finds the maximum differential backlogs

as follows:

wnm(t) = max
f :(n,m)∈L(f)

{
Qf

n(t) − Qf
m(t)

}
. (29)

• Based on calculated link weights, a maximum weight

schedule is found as

�μ∗(t) = argmax
�μ(t)∈S

∑
(n,m)

wnm(t)μnm(t). (30)

• For any scheduled link, one packet is transmitted from

the buffer of the flow achieving the maximum differential

backlog.

The queue evolutions can be written as

Qf
n(t + 1) = Qf

n(t) − μf
n(t) + πf

n(t) (31)

where this equation holds because μf
n(t) = 1 only if Qf

n(t) ≥
1 (i.e., we do not schedule links with empty queues). Also,

πf
n(t) is the number of packets arriving to queue Qf

n(t) in

time slot t which can be written as

πf
n(t) =

{
Af

n(t), if n = s(f)
μf

n−1(t), otherwise.
(32)

B. Backlog Bound
The queue backlog bound is stated in the following propo-

sition. The tighter backlog bound will be developed after that.

Proposition 6: Assume that arrival processes for all flows

are i.i.d over slots and have bounded second moments. Also,

assume that arrival rate lies within the ρ-scaled capacity

region. Then,
1) The total average queue backlogs can be bounded as

|F |∑
f=1

∑
n∈R(f)

Q
f

n(t) ≤ LθmaxLmax (N + D)
2(1 − ρ)

.

where ρ is a loading factor, Lmax
�
= max{f∈F} |L(f)|, θmax

is the maximum number of flows traversing any link in the

network, N is total number of network nodes, and

D
�
=

|F |∑
f=1

E

{(
Af

s(f)(t)
)2

− 2λ2
f + λf

}
. (33)

2) For Poisson arrival process, the backlog can be bounded as

|F |∑
f=1

∑
n∈R(f)

Q
f

n(t) ≤
LθmaxLmax

(
N + 2λtot −

∑
f∈F λ2

f

)
2(1 − ρ)

where λtot =
∑

f∈F λf .
Proof: Consider the following Lyapunov function

L
(

�Q(t)
) �

=
|F |∑
f=1

∑
n∈R(f)

(
Qf

n(t)
)2

(34)

where again the expectation E(.) is taken over the randomness

of queue backlogs �Q(t) and system dynamics given the queue

backlogs �Q(t). The Lyapunov drift can be written as follows:

Δ(t) = E

⎧⎨
⎩

|F |∑
f=1

∑
n∈R(f)

[(
Qf

n(t + 1)
)2 − (

Qf
n(t)

)2
]⎫⎬
⎭

= E

⎧⎨
⎩

|F |∑
f=1

∑
n∈R(f)

[
πf

n(t) − μf
n(t)

]2
⎫⎬
⎭ (35)

+2E

⎧⎨
⎩

|F |∑
f=1

∑
n∈R(f)

Qf
n(t)

[
πf

n(t) − μf
n(t)

]
⎫⎬
⎭ .(36)

Now, consider (35) we have

E

⎧⎨
⎩

|F |∑
f=1

∑
n∈R(f)

[
πf

n(t) − μf
n(t)

]2
⎫⎬
⎭ ≤ N + B1(t) (37)

where B1(t)
�
=

∑|F |
f=1 E

{[
Af

s(f)(t) − μf
s(f)(t)

]2
}

.

This inequality holds because we have∑
f∈F,s(f) �=n

[
πf

n(t) − μf
n(t)

]2 ≤ 1. Now, using (32),

we can manipulate (36) as follows:

2E

⎧⎨
⎩

|F |∑
f=1

∑
n∈R(f)

Qf
n(t)

[
πf

n(t) − μf
n(t)

]
⎫⎬
⎭

= −2
∑

(n,m)∈E

μ∗
nm(t)w∗

nm + 2
|F |∑
f=1

Qf
s(f)(t)λf (38)

where μ∗
nm(t) corresponds to the maximum

weight schedule with queue backlogs �Q(t) and

w∗
nm = maxf :(n,m)∈L(f)

[
Qf

n(t) − Qf
m(t)

]+
. Note that

we have written down
[
Qf

n(t) − Qf
m(t)

]+
instead of[

Qf
n(t) − Qf

m(t)
]

because links with negative weight will not

be scheduled by the maximum weight scheduling algorithm.

Note that we can rewrite
∑|F |

f=1 Qf
s(f)(t)λf as follows:

2
|F |∑
f=1

Qf
s(f)(t)λf = 2

|F |∑
f=1

∑
(n,m)∈L(f)

λf

[
Qf

n(t) − Qf
m(t)

]

≤ 2
∑

(n,m)∈E

⎛
⎝ ∑

f :(n,m)∈L(f)

λf

⎞
⎠

× max
f :(n,m)∈L(f)

[
Qf

n(t) − Qf
m(t)

]+
.(39)

Suppose that �λ = (λf )f∈F is strictly inside the capacity

region. Then, there exists a vector �ε such that �λ+�ε is still inside

the capacity region. This implies that there exists a vector of

link rates (μnm)(n,m)∈E ∈ Co(S) such that [1]∑
f :(n,m)∈L(f)

(λf + ε) =
∑

f :(n,m)∈L(f)

λf + θnmε ≤ μnm (40)

where Co(S) represents the convex hull of all feasible link

schedules and θnm denotes the number of flows traversing

link (n,m). Using (38), (39), (40), we can rewrite (36) as

(36) ≤ 2
∑

(n,m)∈E

⎛
⎝−μ∗

nm(t) +
∑

f :(n,m)∈L(f)

λf

⎞
⎠ w∗

nm

≤ 2
∑

(n,m)∈E

(−μ∗
nm(t) + μnm − θnmε)w∗

nm

≤ −2ε
∑

(n,m)∈E

θnmw∗
nm. (41)
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Now, we have the following∑
(n,m)∈L(f)

Qf
n(t) ≤ |L(f)|

∑
(n,m)∈L(f)

[
Qf

n(t) − Qf
m(t)

]+

≤ |L(f)|
∑

(n,m)∈L(f)

w∗
nm. (42)

Note that a similar bounding technique for
∑

(n,m)∈L(f) Qf
n(t)

used in the above inequality has been employed in [16] to

prove the network stability. We instead aim at obtaining a tight

upper-bound of queue backlogs as a function of the loading

factor ρ, so the Lyapunov drift analysis in this paper is very

different from that in [16]. Using (42), we have

|F |∑
f=1

∑
(n,m)∈L(f)

Qf
n(t) ≤

|F |∑
f=1

|L(f)|
∑

(n,m)∈L(f)

w∗
nm

≤ Lmax

|F |∑
f=1

∑
(n,m)∈L(f)

w∗
nm = Lmax

∑
(n,m)∈E

θn,mw∗
nm. (43)

where Lmax = max{f∈F} |L(f)|. Using (37), (41) and (43),

the Lyapunov drift can be bounded as

Δ(t) ≤ N + B1(t) − 2ε

Lmax

|F |∑
f=1

∑
n∈R(f)

Qf
n(t). (44)

If the arrival processes for all flows have bounded second

moments then B1(t) is bounded. Under this condition, the

Lyapunov drift will be negative when the total backlog be-

comes large enough. Hence, the network is stable and the time

average limits of queue backlogs are equal to their steady-

state averages. Also, it is not very difficult to see that the

time average limit of B1(t) is equal to D. Therefore, by

using Lemma 1 and substituting time average limits of queue

backlogs by their steady-state averages, we have

|F |∑
f=1

∑
n∈R(f)

Q
f

n ≤ Lmax(N + D)
2ε

. (45)

Now, to understand the scaling of this backlog bound, we

need to find ε as a function of the loading factor ρ as before.

Suppose arrival rate vector �λ is inside the ρ-scaled capacity

region, and let �λ′
be a vector with (n,m)-th elements equal

λ
′
nm =

∑
f :(n,m)∈L(f) λf . Then, we have

�λ′ = ρ

|S|∑
i=1

βi
�Ri (46)

for some non-negative βi such that
∑|S|

i=1 βi < 1. Let

θmax = max{(n,m)∈E} θnm where recall that θnm is the

number of flows traversing link (n,m). We will show that
�λ(1) = �λ + �ε ∈ Λ for ε = (1 − ρ)/(Lθmax). Now, let us

construct a vector �λ(2) with its (n,m)-th elements equal to
�λ

(2)
nm =

∑
f :(n,m)∈L(f) λ

(1)
f . Then, we have

�λ(2) = �λ′ +
(

1 − ρ

Lθmax
θnm

)
(n,m)∈E

≤ ρ

|S|∑
i=1

βi
�Ri +

1 − ρ

L

∑
(n,m)∈E

�enm ∈ Λ (47)

where
(

1−ρ
Lθmax

θnm

)
(n,m)∈E

denotes a vector with (n,m)-th

elements equal to the quantity inside the bracket.

Substitute ε = (1−ρ)/(Lθmax) into (45), we can obtain part

1) of the proposition. To prove part 2) of the proposition, we

need some manipulation of D for the Poisson arrival process.

Specifically, for Poisson process we have E

{(
Af

s(f)(t)
)2

}
=

λf + λ2
f . Substitute this into (33), we have D = 2λtot −∑|F |

f=1 λ2
f . Plug this into the bound in part 1), we obtain part

2) of the proposition.

It can be shown that the average backlogs derived in this

proposition scale as O(LN/(1−ρ)) for Lmax = O(1). In fact,

using the similar idea as that of proposition 4, a tighter backlog

bound can be obtained. Specifically, if the arrival processes

satisfy assumptions in proposition 6 and the assumptions of

proposition 4 hold, then the total queue backlogs can be

bounded as

|F |∑
f=1

∑
n∈R(f)

Q
f

n ≤ θmaxLmax (N + D)
2Kmin(1 − ρ)/L

. (48)

This backlog bound typically scales as O(N/(1 − ρ)) for

Lmax = O(1) and Kmin = O(L).
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