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Abstract 

In multihop wireless systems, such as ad-hoc and sensor networks, the need for cooperation among nodes to 

relay each other’s packets exposes them to a wide range of security attacks. A particularly devastating attack is 

known as the wormhole attack, where a malicious node records control and data traffic at one location and tunnels 

it to a colluding node, which replays it locally. This can have an adverse effect in route establishment by 

preventing nodes from discovering routes that are more than two hops away. In this paper, we present a 

lightweight countermeasure for the wormhole attack, called LITEWORP, which does not require specialized 

hardware. LITEWORP is particularly suitable for resource-constrained multihop wireless networks, such as sensor 

networks. In this paper, we present a detailed description of LITEWORP for static networks, and discuss extensions 

to mobile networks. Our solution allows detection of the wormhole, followed by isolation of the malicious nodes. 

Simulation results show that every wormhole is detected and isolated within a very short period of time over a 

large range of scenarios. The results also show that the fraction of packets lost due to the wormhole when 

LITEWORP is applied is negligible compared to the loss encountered when the method is not applied. 

Keywords: Wireless sensor and ad-hoc networks, neighbor watch, wormhole attack, compromised node 

detection, compromised node isolation. 

1 Introduction 

Ad-hoc and sensor networks are emerging as a promising platform for a variety of application areas in both 

military and civilian domains. These networks are especially attractive for scenarios where it is infeasible or 

expensive to deploy significant networking infrastructure. Initial research efforts have focused on the realization 

and practical implementation of these networks by focusing on their functional attributes such as data aggregation 
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protocols and routing protocols. However, the open nature of the wireless communication channels, the lack of 

infrastructure, the fast deployment practices, and the hostile environments where they may be deployed, make 

them vulnerable to a wide range of security attacks. These attacks could involve eavesdropping, message 

tampering, or identity spoofing, that have been addressed by customized cryptographic primitives in the wired 

domain. Alternately, the attacks may be targeted to the control or the data traffic in wireless networks, such as the 

blackhole attack [12] and the rushing attack [16]. Since many multihop wireless environments are resource-

constrained (e.g., bandwidth, power, or processing), providing detection and countermeasures to such attacks 

often turn out to be more challenging than in wired networks. 

A particularly severe security attack, called the wormhole attack, has recently been introduced in the context of 

ad-hoc networks [12], [14], [15]. During the attack, a malicious node captures packets from one location in the 

network, and “tunnels” them to another malicious node at a distant point, which replays them locally. The tunnel 

can be established in many different ways, such as through an out-of-band hidden channel (e.g., a wired link), 

packet encapsulation, or high powered transmission. This tunnel makes the tunneled packet arrive either sooner or 

with lesser number of hops compared to the packets transmitted over normal multihop routes. This creates the 

illusion that the two end points of the tunnel are very close to each other. A wormhole tunnel can actually be 

useful if used for forwarding all the packets. However, in its malicious incarnation, it is used by attacking nodes 

to subvert the correct operation of ad-hoc and sensor network routing protocols. The two malicious end points of 

the tunnel may use it to pass routing traffic to attract routes through them. They can then launch a variety of 

attacks against the data traffic flowing on the wormhole, such as selectively dropping the data packets. The 

wormhole attack can affect network routing, data aggregation and clustering protocols, and location-based 

wireless security systems. Finally, it is worth noting that the wormhole attack can be launched even without 

having access to any cryptographic keys or compromising any legitimate node in the network.  

In this paper, we present a simple lightweight protocol, called LITEWORP, to detect and mitigate wormhole 

attacks in ad-hoc and sensor wireless networks. LITEWORP uses secure two-hop neighbor discovery and local 

monitoring of control traffic to detect nodes involved in the wormhole attack. It provides a countermeasure 

technique that isolates the malicious nodes from the network thereby removing their ability to cause future 

damage. We provide a novel taxonomy of the different ways in which wormhole attacks can be launched and 
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show how LITEWORP can be used to handle all but one of these attack modes. LITEWORP has several features that 

make it especially suitable for resource-constrained wireless environments, such as sensor networks. LITEWORP 

does not require any specialized hardware, such as directional antennas or fine granularity clocks. It does not 

require any time synchronization between the nodes in the network. It does not increase the size of the network 

traffic, and incurs negligible bandwidth overhead, only at initialization and on detection of a wormhole. The 

lightweight feature of LITEWORP is in contrast to other countermeasures for wormhole attacks, which have 

requirements (e.g. directional antennas [15],  highly accurate time measurement [28], and clock synchronization 

[14]) that often make them impractical for sensor networks and infeasible for many classes of ad-hoc networks.  

In this paper, we present a coverage analysis of LITEWORP and show the relation between the number of nodes 

required for local monitoring, called the guards, and the probability of false or missed detection. Also, we build a 

simulation model for LITEWORP using the network simulator ns-2 and perform comparative evaluation of a 

network with and without the technique. The results show that LITEWORP can achieve 100% detection of the 

wormholes for a wide range of network densities. They also show that detection and isolation of the nodes 

involved in the wormhole can be achieved in a negligible time after the attack starts, and that the cumulative 

number of lost packets and malicious routes established do not grow because wormholes are identified and 

isolated. Finally, we provide analysis for the storage, computational, and bandwidth overheads incurred by 

LITEWORP, and demonstrate its lightweight nature. 

The rest of the paper is organized as follows. Section 2 presents related work in the field of wormhole 

detection and mitigation. Section 3 describes a taxonomy of the wormhole attack modes. Section 4 describes the 

LITEWORP protocol and its defenses against the various modes of the wormhole attack. Section 5 presents 

coverage and cost analysis of LITEWORP. Section 6 presents simulation results. Finally, Section 7 discusses some 

extensions and concludes the paper. 

2 Related Work 

The wormhole attack in wireless networks was independently introduced by Dahill [1], Papadimitratos [4], and 

Hu [14]. Initial proposals to thwart wormhole attacks suggest using secure modulation of bits over the wireless 

channel that can be demodulated only by authorized nodes. This only defends against outside attackers who do 
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not possess cryptographic keys.  A similar approach called RF watermarking [24] modulates the radio waveform 

in a specific pattern and any change to the pattern is used as the trigger for detection. This mechanism will fail to 

prevent a wormhole if the waveform is accurately captured at the receiving end of the wormhole and exactly 

replicated at the transmitting end. 

Hu et al. [14] introduce the concept of geographical and temporal packet leashes for detecting wormholes. 

They define a leash to be any added information to the packet for the purpose of defending against the wormhole. 

The geographical leashes ensure that the recipient of the packet is within a certain distance from the sender. They 

require each node to know its own location, and require all the nodes to have loosely synchronized clocks. When 

sending a packet, the sending node includes in the packet an authenticated version of its own location and the time 

at which it sent the packet. The receiving node uses these values, in addition to its own location and the time at 

which it receives the packet, to compute an upper bound on the distance to the sender. The temporal leashes 

ensure that the packet has an upper bound on its lifetime, which restricts the maximum travel distance. They 

require that all nodes have tightly synchronized clocks. The sender includes in each packet an authenticated 

version of the time of sending. The receiver compares this value to the time at which it received the packet. Based 

on the time delay and the speed of light, the receiver can determine if the packet has traveled too far. An implicit 

assumption is that packet processing, sending, and receiving delays are negligible. Both geographical and 

temporal leashes need to add authentication data to each packet to protect the leash, which add processing and 

communication overhead. In addition a large amount of storage is needed at each node since a hash tree based 

authentication scheme is used [32]. If only loose time synchronization is possible, the smallest packet size that can 

be authenticated becomes large (e.g., 4900 bytes with 1 s synchronization). Perhaps, more importantly, packet 

leashes do not nullify the capacity of the compromised nodes from launching attacks in the future.  

Capkun et al. [28] present SECTOR, a set of mechanisms for the secure verification of the time of encounters 

between nodes in multihop wireless networks. They show how to detect wormhole attacks without requiring any 

clock synchronization through the use of MAD (Mutual Authentication with Distance-Bounding). Each node u 

estimates the distance to another node v by sending it a one bit challenge, which node v responds to 

instantaneously. Using the time of flight, node u detects if node v is a neighbor or not. The approach uses special 

hardware for the challenge request-response and accurate time measurements. 
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Hu and Evans [15] use directional antennas [25],[26] to prevent the wormhole attack. To thwart the wormhole, 

each node shares a secret key with every other node and maintains an updated list of its neighbors. To discover its 

neighbors, a node, called the announcer, uses its directional antenna to broadcast a HELLO message in every 

direction. Each node that hears the HELLO message sends its identity and an encrypted message, containing the 

identity of the announcer and a random challenge nonce, back to the announcer.  Before the announcer adds the 

responder to its neighbor list, it verifies the message authentication using the shared key, and that it heard the 

message in the opposite directional antenna to that reported by the neighbor. This approach is suitable for secure 

dynamic neighbor detection. However, it only partially mitigates the wormhole problem. Specifically, it only 

prevents the kind of wormhole attacks in which malicious nodes try to deceive two nodes into believing that they 

are neighbors. This is only one of the five wormhole attack modes that we describe in Section 3. The requirement 

of directional antennas on all nodes may be infeasible for some deployments. Finally, the protocol may degrade 

the connectivity of the network by rejecting legitimate neighbors in their conservative approach to prevent 

wormholes from materializing. Awerbuch et al. [27] present a protocol called ODSBR that does not prevent the 

wormhole from happening but tries to mitigate its consequences through discovery and avoidance. The technique 

suffers from the drawback that every single packet needs to be acknowledged by the destination and many packets 

could be lost before the wormhole is discovered.  

3 Wormhole Attack Modes 

In this section we classify the wormhole attack based on the techniques used for launching it. 

3.1 Wormhole using Encapsulation 

Wormhole attacks are particularly severe against many ad-hoc and sensor network routing protocols, such as 

the two ad-hoc on-demand routing protocols DSR [10] and AODV [21], and the sensor TinyOS beaconing routing 

protocol [12]. First, we demonstrate how a generic wormhole attack is launched against such routing protocols, 

using DSR as an example. In DSR, if a node, say S, needs to discover a route to a destination, say D, S floods the 

network with a route request packet. Any node that hears the request packet transmission processes the packet, 

adds its identity to the source route, and rebroadcasts it. To limit the amount of flooding through the network, 

each node broadcasts only the first route request it receives and drops any further copies of the same request. For 
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each route request D receives, it generates a route reply and sends it back to S.   The source S then selects the best 

path from the route replies; the best path could be either the path with the shortest number of hops or the path 

associated with the first arrived reply. However, in a malicious environment, this protocol will fail. When a 

malicious node at one part of the network hears the route request packet, it tunnels it to a second colluding party 

at a distant location near the destination. The second party then rebroadcasts the route request. The neighbors of 

the second colluding party receive the route request and drop any further legitimate requests that may arrive later 

on legitimate multihop paths. The result is that the routes between the source and the destination go through the 

two colluding nodes that will be said to have formed a wormhole between them. This prevents nodes from 

discovering legitimate paths that are more than two hops away. 

One way for two colluding malicious nodes can involve themselves in a route is by simply giving the false 

illusion that the route through them is the shortest, even though they may be many hops away. Consider Figure 1 

in which nodes A and B try to discover the shortest path between them, in the presence of the two malicious nodes 

X and Y. Node A broadcasts a route request (REQ), X gets the REQ and encapsulates it in a packet destined to Y 

through the path that exists between X and Y (U-V-W-Z). Node Y demarshalls the packet, and rebroadcasts it 

again, which reaches B. Note that due to the packet encapsulation, the hop count does not increase during the 

traversal through U-V-W-Z. Concurrently, the REQ travels from A to B through C-D-E. Node B now has two 

routes, the first is four hops long (A-C-D-E-B), and the second is apparently three hops long (A-X-Y-B). Node B 

will choose the second route since it appears to be the shortest while in reality it is seven hops long. So X and Y 

succeed in involving themselves in the route between A and B. Any routing protocol that uses the metric of 

shortest path to choose the best route is vulnerable to this mode of wormhole attack. 
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Figure 1: Wormhole through packet encapsulation 
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Figure 2: Wormhole through out-of-band channel
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This mode of the wormhole attack is easy to launch since the two ends of the wormhole do not need to have 

any cryptographic information, nor do they need  any special capabilities, such as a high speed wireline link or a 

high power source. A simple way of countering this mode of attack is a by-product of the secure routing protocol 

ARAN [17], which chooses the fastest route reply rather than the one which claims the shortest number of hops. 

This was not a stated goal of ARAN, whose motivation was that a longer, less congested route is better than a 

shorter and congested route. 

3.2 Wormhole using Out-of-Band Channel 

This mode of the wormhole attack is launched by having an out-of-band high-bandwidth channel between the 

malicious nodes. This channel can be achieved, for example, by using a long-range directional wireless link or a 

direct wired link. This mode of attack is more difficult to launch than the previous one since it needs specialized 

hardware capability. Consider the scenario depicted in Figure 2. Node A is sending a route request to node B, 

nodes X and Y are malicious having an out-of-band channel between them.  Node X tunnels the route request to Y, 

which is a legitimate neighbor of B. Node Y broadcasts the packet to its neighbors, including B. Node B gets two 

route requests — A-X-Y-B and A-C-D-E-F-B. The first route is both shorter and faster than the second, and is thus 

chosen by B. This results in a wormhole being established between X and Y on the route between A and B. 

3.3 Wormhole using High Power Transmission 

 In this mode, when a single malicious node gets a route request, it broadcasts the request at a high power 

level, a capability which is not available to other nodes in the network. Any node that hears the high-power 

broadcast, rebroadcasts it towards the destination. By this method, the malicious node increases its chance to be in 

the routes established between the source and the destination even without the participation of a colluding node. A 

simple method to mitigate this attack is possible if each node can accurately measure the received signal strength 

and has models for signal propagation with distance. In that case, a node can independently determine if the 

transmission it receives is at a higher than allowable power level. However, this technique is approximate at best 

and dependent on environmental conditions. The local monitoring approach used in LITEWORP provides a more 

feasible defense against this mode. 
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3.4 Wormhole using Packet Relay 

  In this mode of the wormhole attack, a malicious node relays packets between two distant nodes to convince 

them that they are neighbors. It can be launched by even one malicious nodes. Cooperation by a greater number of 

malicious nodes serves to expand the neighbor list of a victim node to several hops. For example, assume that 

node A and node B are two non-neighbor nodes with a malicious neighbor node X. Node X can relay packets 

between nodes A and B to give them the illusion that they are neighbors. 

3.5 Wormhole using Protocol Deviations 

 Some routing protocols, such as ARAN [17], choose the route with the shortest delay in preference to the one 

with the shortest number of hops. During the route request forwarding, the nodes typically back off for a random 

amount of time before forwarding. This is motivated by the fact that the request forwarding is done by 

broadcasting and hence, reducing MAC layer collisions is important. A malicious node can create a wormhole by 

simply not complying with the protocol and broadcasting without backing off. The purpose is to let the request 

packet it forwards arrive first at the destination. This increases the probability that the route between the source 

and the destination will include the malicious node. This is a special form of the rushing attack described in [16].  

Mode name Minimum # of 
compromised 
nodes 

Special 
requirements 

Packet encapsulation Two None 
Out-of-band channel Two Out-of-band link 
High power transmission One High energy source 
Packet relay One None 
Protocol deviations One None 

Table 1: Summary of wormhole attack modes 

   Summarizing, the different modes of the 

wormhole attack along with the associated 

requirements are given in Table 1. Many 

applications in ad-hoc and sensor networks 

become vulnerable once a successful wormhole 

attack has been launched. Routing is an important example. As we discussed in Section 3, on demand ad-hoc 

routing protocols like DSR and AODV, and the sensor TinyOS routing protocol are highly vulnerable to the 

attack. Other routing protocols like SEAD [2], Ariadne [3], ARRIVE [11], directed diffusion [5], multipath 

routing [6], minimum cost forwarding [7], rumor routing [8], and even secure routing protocols presented in [4] 

and [13] are also vulnerable to wormhole attacks. For further details on the vulnerability of routing protocols, the 

reader may refer to [14]. Moreover, all the protocols that are used in building neighbor lists and, by extension, the 

routing protocols (e.g. DSDV [9], OLSR [22], and TBRPF [23]) that use these lists, are vulnerable as well.  



 9

4 Defenses 

In this section, we describe the method for wormhole detection in LITEWORP followed by the method for 

isolation of the malicious nodes. This is described in the context of static networks, while an extension to mobile 

wireless networks is briefly described in Section 7. 

4.1 System Model and Assumptions 

Attack Model: In the attack model that we consider, the wormhole is launched by a malicious node, which may be 

either an external node that does not have the cryptographic keys, or an insider node, that possesses the keys. The 

insider node may be created, for example, by compromising a legitimate node. All these malicious nodes can 

exhibit Byzantine behavior and can collude amongst themselves. The malicious node can be a powerful entity that 

can establish out-of-band fast channels or have high powered transmission capability. 

System assumption: We assume that the links are bi-directional, which means that if a node A can hear node B 

then B can hear A. We assume that there is a certain amount of time from a node’s deployment, called the 

compromise threshold time (TCT) that is minimally required to compromise the node. We have a protocol 

presented in Section 4.2.1 for discovery of first and second hop transmission neighbors of a node. We define the 

maximum time required for the neighbor discovery protocol to complete as TND (ND: Neighbor Discovery). Our 

assumption is that for a given node ni, all its first and second hop neighbors are deployed within TCT-2TND of the 

deployment of ni. This assumption implies that there can be no malicious insider node within two hops of ni 

within TND time units from its deployment. Note however, that this assumption allows external malicious nodes to 

exist anywhere in the network at any time of deployment. Further, insider malicious nodes, that are greater than 

two hops from ni are allowed. We assume that the network has a static topology, though the functional roles a 

node plays (e.g., cluster head, data aggregator, etc.) may change. Finally, LITEWORP requires a pre-distribution 

pair-wise key management protocol (e.g. [18] for ad-hoc networks and [19],[20] for sensor networks). The key 

management does not incur any overhead during the normal failure-free functioning of the network but only at 

initialization time and during isolation of a malicious node. From the point of view of LITEWORP, incremental 

deployment of a node in the network is identical to having a mobile node move to its location. This can be 

handled by augmenting LITEWORP with a dynamic neighbor discovery protocol as in [15],[16]. 
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4.2 Wormhole Defense using Local Monitoring 

4.2.1 Information Structures 

Building Neighbor Lists: As soon as a node, say A, is deployed in the field, it does a one-hop broadcast of a 

HELLO message. Any node, say B, that hears the message, sends back an authenticated reply to A, using the 

shared key. Node A accepts all the replies that arrive within a timeout. For each reply, A verifies the authenticity 

of the reply and adds the responder to its neighbor list RA. Then A does a one-hop broadcast of a message 

containing the list RA. This broadcast is authenticated individually by the shared key with each member in RA. 

When B hears the broadcast, it verifies the authenticity of RA, and stores RA if correctly verified. Hence, at the end 

of this neighbor discovery process, each node has a list of its direct neighbors and the neighbors of each one of its 

direct neighbors. Note that this requires a larger memory than simply keeping a list of first hop and second hop 

neighbors. This process is performed only once in the lifetime of a node and is secure because of the system 

model assumptions. Henceforth, a node will not accept a packet from a node that is not a neighbor nor forward to 

a node that is not a neighbor. Also, second hop neighbor information is used to determine if a packet is legitimate 

or not. If a node C receives a packet forwarded by B purporting to come from A in the previous hop, C discards 

the packet if A is not a second hop neighbor. After building its first and second hop neighbor list, node A activates 

local monitoring. 

Local Monitoring: A collaborative detection strategy for wormholes is used, where a node monitors the traffic 

going in and out of its neighbors. For a node, say a, to be able to watch a node say, b, two conditions are required: 

(i) each packet forwarder must explicitly announce the immediate source of the packet it is forwarding, i.e., the 

node from which it receives the packet, and (ii) a must be a neighbor of both b and the previous hop from b, say 

d. If the second condition is satisfied, we call a the guard node for the link from d to b. This implies that α is the 

guard node for all its outgoing links. For example, in Figure 3, nodes M, N, and X are the guard nodes of the link 

from X to A. Information from each packet sent from X to A is saved in a watch buffer at each guard. The 

information includes the packet identification and type, the packet source, the packet destination, the packet’s 

immediate sender (X), and the packet’s immediate receiver (A). The guards expect that A will forward the packet 

towards the ultimate destination, unless A is itself the destination. Each entry in the watch buffer is time stamped 
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with a time threshold,t, by which A must forward the packet. Each packet forwarded by A with X as a previous 

hop is checked for the corresponding information in the watch buffer. 

S DB X

M

N

A

AX

Y
The transmission range of node Y

 
Figure 3: X, M, and N are guards of the link from X 

to A  

A malicious counter (MalC(i,j)) is maintained at each 

guard node, i, for a node, j, at the receiving end of each 

link that i is monitoring. MalC(i,j) is incremented for 

any malicious activity of j that is detected by i. The 

increment to MalC depends on the nature of the 

malicious activity detected, e.g., Vf for fabricating and 

Vd for dropping a control packet. 

Now, we present the detection algorithm individually for each of the first four wormhole attack modes and 

show how existing approaches can be used to detect the fifth mode. However, prior to that, we give the isolation 

and the response algorithm that applies across all the attack modes 

4.2.2 Response and Isolation Algorithm 

(i) When MalC(a,A) crosses a threshold, Ct , a revokes A from its neighbor list, and sends to each neighbor of A, 

say D, an authenticated alert message indicating A is a suspected malicious node. This communication is 

authenticated using the shared key between a and D to prevent false accusations. Alternately, if the clocks of 

all the nodes in the network are loosely synchronized, a can do authenticated local two-hop broadcast as in 

[29] to inform the neighbors of A.  

(ii) When D gets the alert, it verifies the authenticity of the alert message, that a is a guard to A, and that A is D’s 

neighbor. It then stores the identity of a in an alert buffer associated with A.  

(iii) When D gets enough alert messages, γ, about A, it isolates A by marking A’s status as revoked in the neighbor 

list.  We call γ  the detection confidence index of D.   

(iv) After isolation, D does not accept or send any packet to a revoked node. Note that this isolation is performed 

locally within the neighbors of the malicious node. This makes the response process quick and lightweight, 

and has the desired effect of removing the malicious nodes from the network.  
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4.2.3 Detecting Different Modes of Wormhole Attacks 

Detecting out-of-band and packet encapsulation wormholes 

(i) A guard node a for a link, say from X to A,   saves information from the packet header of each control packet 

going over the link and time stamps it with the deadline t.  

(ii) a overhears every packet going out of the receiver end of the link, A. For all the packets that A claims has 

come from X, α looks up the corresponding entry in its watch buffer. 

(iii) If an entry is found, a drops that entry since the corresponding packet has been correctly forwarded. 

(iv) If an entry is not found, then A must have fabricated the packet. a increments MalC (a,A) by Vf. 

(v) If an entry for a packet sent from X to A stays in the watch buffer beyond t, then A is accused of dropping the 

corresponding packet. a increments MalC(a,A) by Vd. 

Consider the scenario in Figure 4. M1 and M2 are two malicious nodes wishing to establish a wormhole 

between the two nodes S and D. When M1 hears the REQ packet from S, it directs the packet to M2. Node M2 

rebroadcasts the REQ packet after appending the identity of the previous hop from which it got the REQ. Node M2 

has two choices for the previous hop — either to append the identity of M1, or append the identity of one of M2’s 

neighbors, say X. In the first choice all the neighbors of M2 will reject the REQ because they all know, from the 

stored data structure of the two-hop neighbors, that M1 is not a neighbor to M2. In the second case, all the guards 

of the link from X to M2 (X, m, and l) will detect M2 as fabricating the route request since they do not have the 

information for the corresponding packet from X in their watch buffer.  
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Figure 4: Wormhole detection for out-of-

band and packet encapsulation modes 

In both cases M2 is detected, and the guards increment 

the MalC of M2. In addition, the REP packet may also be 

used for detection of M1 and M2. When D gets the REQ, 

it generates a route reply packet, REP, and sends it back 

to M2. The guards of the link from D to M2 (D, m, and y) 

overhear the REP and save an entry in their watch 

buffers.   
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Node M2 sends the route reply back to M1 using the out-of-band channel or packet encapsulation. After t time 

units, the timers in the watch buffers of the guards D, m, and y run out, and thus the guards detect M2 as dropping 

the REP packet and increment the MalC of M2. However if M2 is smarter, it can forward another copy of the REP 

through the regular slower route. In this case, MalC of M2 is not incremented. When M1 gets the REP from M2, M1 

forwards it back to S after appending the identity of the previous hop. As before, M1 has two choices — either to 

append the identity of M2, or append the identity of one of M1’s neighbors, say Z. In the first choice, node S rejects 

the REP because it knows that M2 is not a neighbor to M1. Also, all the neighbors of M1 know that M2 is not a 

neighbor to M1. In the second case, all the guards of the link from Z to M1 detect M1 as forging the REP since they 

don’t have the corresponding entry from Z in their watch buffers.  

Detecting high power transmission wormhole 

This mode is detected using the assumption of symmetric bi-directional channels. Suppose a malicious node, 

say X, tries to use high power transmission to forward a packet P1 to it is final destination, or to cross multiple 

hops to introduce itself in the shortest path. Then all the nodes for which X is not in their neighbor lists detect the 

malicious behavior of X and reject P1.  

Detecting packet relay wormhole 

This mode is detected using the stored neighbor lists at each node. Suppose a malicious node X is a neighbor to 

two non-neighbor nodes A and B and tries to deceive them by relaying packets between them. Both A and B detect 

the malicious behavior of X since they know that they are not neighbors and reject the relayed packet. 

Detecting protocol deviation wormhole 

This mode can not be detected using LITEWORP. Researchers have proposed techniques for countering selfish 

behavior in specific protocols. Selfishness refers to the property that nodes may tend to deny providing 

cooperating services to other nodes in order to save their own resources, e.g., battery power. Kyasanur et al. have 

addressed the problem of greediness at the MAC layer [30], while Buttyán have addressed selfishness in packet 

forwarding [28]. Hu et al. have proposed a solution to an attack, called the rushing attack, in which nodes greedily 

forward the route request passing through them without back off [16]. 
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5 LITEWORP Analysis 

5.1 Coverage Analysis 

In this section, we characterize the probability of missed detection and false detection as the network density 

increases and the detection confidence index γ varies. The results provide some interesting insights. For example, 

we are able to compute the required network density d to detect p% of the wormhole attacks for a given γ.  

Consider a homogeneous network of nodes where the nodes are uniformly distributed in the field. For 

simplicity, we assume that the field is large enough that edge effects can be neglected in our analysis. Consider 

any two randomly selected neighbor nodes, S and D, as shown in Figure 5(a). S and D are separated by a distance 

x, and the communication range is r.  The value of x follows a random variable with probability density function 

of f(x) = 2x/r2 with range (0,r). This follows from the assumption of uniform distribution of the nodes.  

G

S D

(a) (b)

S X

r

DS X

r

DD

 
Figure 5: (a) The area from which a node can 

guard the link between S and D; (b) Illustration 
for detection accuracy 

The guard nodes for the communication between S and D 

are those nodes that lie within the communication range of S 

and D, the shaded area in Figure 5(a). This area is given by 

( )
2

2 1 2( ) 2 cos 2
2 4
x xArea x r x r
r

− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

.  

The minimum value of Area(x), Areamin, is when x = r.

Therefore, the minimum number of guards 2
min min 0.36g Area d r d= = .The expected value of the area 

[ ] ( )
2

2 1 2 2 2
2

0

2 2 1( ) 2 cos 2 1.6
2 4 3 2

r x x xE Area x r x r dx r r
r r

π−
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − ≈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ . Therefore, the expected 

number of guards 2[ ( )] 1.6g E Area x d r d⎢ ⎥= = ⎣ ⎦ . The number of neighbors of a node is given by 2
BN r dπ= , 

thus
2 1 0.51
3 2 B Bg N N

π
⎛ ⎞= − ≈ ⎢ ⎥⎣ ⎦⎜ ⎟
⎝ ⎠

 ⎯⎯⎯⎯⎯ (I). 

Now, as in [33] where IEEE 802.11 was analyzed, we assume that each packet collides on the channel with a 

constant and independent probability, PC. As shown in Figure 5(b), a guard G will not detect a fabricated packet 

sent by D, claiming it was received from S, if G experienced a collision at the time that D transmits. Thus, the 
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probability of missed detection is PC. Assume that m packet fabrications occur within a certain time window, T. 

Also assume that a guard must detect at least β fabrications to cause the MalC for a node to cross the threshold, 

and thus generate an alert. Then, the alert probability at a guard is given by ( ) ( )| 1 i i
C C

i

P P P
i

µ
µ

β µ
β

µ −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ . Thus, 

assuming independence of collision events among the different guards, the probability that at least g of the guards 

generate an alert is given by 

( ) ( )
|

| 1
| |

0

( , , 1) !1 (1 )
( , 1) ( 1)!( )!

Pg i g i g

i

B P gg gp P P u u du
i B g g

β µ
β µ γ γ

γ β µ β µ
γ

γ γ
γ γ γ γ

− − −
≥

=

− +⎛ ⎞
= − = = −⎜ ⎟ − + − −⎝ ⎠
∑ ∫  

where,  ( , 1)B gγ γ− +  is the Beta function and |( ; , 1)B P gβ µ γ γ− +  is the incomplete Beta function. 

Figure 6(a) shows the probability of detecting wormholes with m = 7, b=5, g =3, the number of compromised 

nodes M = 2, and PC = 0.05 at NB = 3. The number of guards is determined from NB using Equation (I). 

Thereafter, PC is assumed to increase linearly with the number of neighbors. Since the number of guards increases 

as the number of neighbors increases, the probability of detection increases since it becomes easier to get the 

alarm from g guards. However, the collision probability also increases with the number of neighbors, and thus the 

probability of detection starts to fall rapidly beyond a point. Figure 10 shows that for the same m, b, and PC, the 

probability of wormhole detection as a function of g when NB = 15 and M = 2. As g increases, the probability of 

detection (P≥g) decreases. 
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Figure 6: (a) Probability of wormhole detection as a function of the number of neighbors; (b) Probability of 

false alarm as a function of the number of neighbors 
As shown in Figure 5(b), a false alarm occurs when D receives a packet sent from S, while G does not receive 

that packet, and later, G receives the corresponding packet forwarded by D. Thus, the probability of false alarm 
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is 2(1 )FA C CP P P= − . Assume that S sends m packets to D for forwarding, within a certain time window, T. The 

probability that D is falsely accused is the probability that b or more packets are falsely suspected as fabricated. 

This is given by ( ) ( )( | ) 1i i
FA FA FA

i

P P P
i

µ
µ

β µ
β

µ −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , and the probability that at least γ guards generate false 

alarms is given by  
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Figure 6(b) shows the probability of false alarm as a function of the number of nodes for the same parameters 

as in Figure 6(a). The non monotonic nature of the plot can be explained as follows. As the number of neighbors 

increases, so does the number of guards. Initially, this increases the probability that at least γ guards miss the 

packet from S to the guard but not from D to the guard, leading to false detection at these γ guards. But beyond a 

point, the increase in the number of neighbors increases the collision probability. This increases the probability 

that both of these packets are missed at the guard and thus does not lead to false detection. The worst case false 

alarm probability is still negligible (less than 0.3×10-6). 

5.2 Cost Analysis 

In this section, we show the memory, the computation, and the bandwidth overheads of LITEWORP to evaluate 

its suitability to resource-constrained environments. 

 Memory overhead: We need to store the first and the second hop neighbor lists, the watch buffer, and the alert 

buffer. The identity of a node in the network is 4 bytes. Reusing the notation from the previous section, the size of 

neighbor list is NBL = pr2d entries. Each entry in the NBL needs 5 bytes; 4 for identity of the neighbor and 1 for 

the MalC associated with that neighbor. So the total NBL storage, NBLS=5(πr2d)2. For example, for an average of 

10 neighbors per node, NBLS is less than half a kilobyte. The alert buffer has g number of 4 byte entries. The 

watch buffer size depends on the average number of hops between a source-destination pair, h, the frequency of 

route establishment, f, as well as the density of the nodes. To find the average number of nodes involved in 

watching a REP, we create a rectangular bounding box containing nodes that may overhear the REP sent from A 

to B (Figure 7). This is an overestimate since we use a square that circumscribes the circular transmission range.
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Figure 7: The average number of nodes involved in the 
watch of a route reply 

 The number of nodes involved in monitoring 

is 22 ( 1)REPN r h d= + . Thus, given N as the total 

number of nodes in the network, each node is 

involved in watching ( / )REPN N f  route replies 

per unit time. 

For example, if N=100 nodes, h = 4 hops, and f = 1 route every 4 time units, then NREP = 17, and each node 

watches only 4 route replies every 100 time units. Because the time t for which the packet is kept in the watch 

buffer is relatively small (may be less than one time unit), a watch buffer size of 4 entries is more than enough for 

this example. Each entry in the watch buffer is 20 bytes: 4 bytes each for the immediate source, the immediate 

destination, and the original source, and 8 bytes for the sequence number of the REP. If we include the route 

request in the watch, then each node will be involved in watching ( / )REPf N N f+ . That requires each node to 

watch 4 packets every 16 time units; again 4 entries are still sufficient for the watch buffer.  

Computation and Bandwidth overhead: Each watched route reply requires one lookup for the current source 

and the current destination in the neighbor list, adding an entry to the watch buffer (incoming) or deleting an entry 

from the watch buffer (outgoing), and may be another addition and deletion from the watch buffer (if a node is a 

guard for two consecutive links). Since the size of the watch buffer and the neighbor list structure are relatively 

small, the computation time required for these operations is negligible. For example, a lookup in a 100 entry 

buffer takes the MICA mote with an Atmega128 4 MHZ processor, about 2m seconds. The bandwidth overhead is 

incurred after deployment of a node for neighbor discovery and in the case of wormhole detection for informing 

the neighbors of the detected node. This is therefore a negligible fraction of the total bandwidth over the lifetime 

of the network.  

Thus, due to the low resource overheads, LITEWORP is suitable for use in resource-constrained wireless 

environments. 
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6 Simulation Results 

We use the ns-2 simulation environment [34] to simulate a data exchange protocol, individually in the baseline 

case without any protection, and with LITEWORP. We distribute the nodes randomly over a square field with a 

fixed average node density. Thus, the field size varies (80×80 m to 204×204 m) with the number of nodes. We use 

a generic on-demand shortest path routing that floods route requests and unicasts route replies in the reverse 

direction. A route, once established, is not used forever but is evicted from the cache after a timeout period 

expires (TOutRoute). When a malicious node hears a route request, it directs the request to all the malicious nodes 

in the network using an out-of-band channel or using packet encapsulation. For packet encapsulation, we assume 

that the colluding nodes always have a route between them. We simulate the out-of-band channel by letting the 

compromised nodes deliver the packets instantaneously to their colluding parties. These two schemes exercise the 

principal feature of LITEWORP, namely, local monitoring and are the most challenging to mitigate. Hence, we 

simulate them in preference to other modes of attack. After a wormhole is established, the malicious nodes at each 

end of the wormhole drop all the packets forwarded to them.  

Each node acts as a data source and generates data using an exponential random distribution with inter-arrival 

rate of m. The destination is chosen at random and is changed using an exponential random distribution with rate 

x. The input parameters with the experimental values are given in Table 2. The output parameters include the 

isolation latency, the number of data packets dropped due to the wormhole, the number of routes established, and 

the number of routes affected by the wormhole. The simulation also accounts for losses due to natural collisions. 

The isolation latency is calculated from the time a malicious node starts a wormhole attack until it is completely 

isolated by all of its neighbors. The guards inform all the neighbors of the detected malicious node through 

multiple unicasts. The output parameters that we present here are obtained by averaging over 30 runs. For each 

run, the malicious nodes are chosen at random such that they are more than 2 hops away from each other. 

Parameter Value Parameter Value Parameter Value 
Tx Range (r) 30 m g 2-8 Total # nodes (N) 20,50,100,150 
NB 8 m 1/10 sec x 1/200 sec 
TOutRoute 50 sec M 0-4 Channel BW 40 kbps 
b 5 t 0.5 sec T 200 

Table 2: Input parameter values for LITEWORP simulations 
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Figure 8 shows the number of packets dropped as a function of simulation time for the 100-node setup with 2 

and 4 colluding nodes both with LITEWORP and without LITEWORP.  The attack is started 50 sec after the start of 

the simulation. Since the numbers are vastly different in the two cases, they are shown on separate Y-axes; the 

axis on the left corresponds to the baseline case and the axis to the right corresponds to the system using 

LITEWORP. In the baseline case, since wormholes are not detected and isolated, the cumulative number of packets 

dropped continues to increase steadily with time. But in the LITEWORP case, as wormholes are identified and 

isolated permanently, the cumulative number stabilizes. Notice that the cumulative number of packets dropped 

grows for some time even after the wormhole is locally isolated at 75 sec, due to the cached routes that contain 

the wormhole and continue to be used till route timeout occurs.  
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Figure 8: Cumulative number of dropped packets 

with and without LITEWORP 
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Figure 9: Fraction of dropped packets and 

malicious routes with and without LITEWORP  
Figure 9 shows a snapshot, at simulation time of 2000 sec, of the fraction of the total number of packets 

dropped to the total number of packets sent, and the fraction of the total number of routes that involve wormholes 

to the total number of routes established. This is shown for 0-4 compromised nodes for the baseline and with 

LITEWORP. With 0 or 1 compromised node, there is no adverse effect on normal traffic since no wormhole is 

created. The relationship between the number of dropped packets and the number of malicious routes is not linear. 

This is because the route established through the wormhole is more heavily used by data sources due to the 

aggressive nature of the malicious nodes at the ends of the wormhole. If we track these output parameters over 

time, with LITEWORP, they would tend to zero as no more malicious routes are established or packets dropped, 
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while without LITEWORP they would reach a steady state as a fixed percentage of traffic continues to be affected 

by the undetected wormholes. 
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Figure 10: Detection probability and latency with 

varying g 

Figure 10 bears out the analytical result for the 

detection probability as γ is varied with NB = 15 and M= 

2. As γ increases, the detection probability goes down 

due to the need for alarm reporting by a larger number 

of guards, in the presence of collisions.  Also the 

isolation latency goes up, though it is very small (less 

than 30 s) even at the right end of the plot.

7 Conclusion and Future Work 

We propose to investigate the extension of LITEWORP to mobile ad-hoc and sensor networks. The 

fundamental requirement is the ability of a node to securely determine its first hop and second hop neighbors in 

the face of mobility. We can augment LITEWORP with existing work on dynamic secure neighborhood 

determination protocols, e.g., [15],[16] to achieve the goal as in static networks. However, we are also 

investigating an alternate design of LITEWORP that is customized to mobile networks.  

In this paper, we have presented a taxonomy for attack modes used to launch the wormhole attack in multihop 

wireless networks. We have presented a protocol called LITEWORP that incorporates a detection protocol and an 

isolation protocol. The detection protocol can be applied for detecting each mode of the wormhole attack except 

the protocol deviation. The fundamental mechanism used is local monitoring whereby a node monitors traffic in 

and out of its neighboring nodes and uses a data structure of first and second hop neighbors. LITEWORP isolates 

the malicious node and removes its ability to cause future damage. The coverage analysis of LITEWORP brings out 

the variation of probability of missed detection and false detection with increasing network density. The cost 

analysis shows that LITEWORP has low storage, processing, and bandwidth requirements. These, together with the 

fact that no specialized hardware is required, make the protocol ideally suited to resource-constrained wireless 

networks, such as sensor networks. 
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