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Engineering Wireless Mesh Networks:
Joint Scheduling, Routing, Power Control,

and Rate Adaptation
Jun Luo, Member, IEEE, Catherine Rosenberg, and André Girard

Abstract—We present a number of significant engineering in-
sights on what makes a good configuration for medium- to large-
size wireless mesh networks (WMNs) when the objective function is
to maximize the minimum throughput among all flows. For this, we
first develop efficient and exact computational tools using column
generation with greedy pricing that allow us to compute exact so-
lutions for networks significantly larger than what has been pos-
sible so far. We also develop very fast approximations that compute
nearly optimal solutions for even larger cases. Finally, we adapt
our tools to the case of proportional fairness and show that the en-
gineering insights are very similar.

Index Terms—Column generation, power control, rate adapta-
tion, routing, scheduling, wireless mesh networks (WMNs).

I. INTRODUCTION

W IRELESS mesh networks (WMNs) such as IEEE
802.16 [2] are seen as a promising alternative to other

(wired) broadband access technologies. In order to offer high
throughput, WMNs will have to be tightly managed. Once an
operator has placed his mesh routers and his gateway to offer
appropriate coverage to a set of end-users, he will need to
engineer his WMN to maximize the network performance. This
means choosing among a number of sometimes conflicting op-
tions with complex interactions that can affect performance to
various degrees. The main objective of this paper is to produce
quantitative measures of the impact of these choices on the
performance of networks of realistic sizes.

We examine these issues in the centralized framework devel-
oped in [3], where we assume that the position of the nodes, the
flows, the interference, and propagation models are known at
a central location where the optimal configuration is computed
and then passed along to each mesh router. Note that we are
not claiming that centralized solutions are necessarily the best
way to operate WMNs. The point is that this framework pro-
vides an upper bound on the performance that can be achieved
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on WMNs using random access protocols or some form of dis-
tributed scheduling [4], [5]. It can also provide joint routing,
scheduling, power control, and rate adaptation in scheduled net-
works whenever a centralized solution is deemed more appro-
priate. Note that with an additive interference model such as the
one we use, finding a set of links that can be scheduled at the
same time requires information from potentially widely sepa-
rated areas in the network. In that context, implementing a de-
centralized solution would be difficult at best, if not outright im-
possible, due to the large information transfers that would be
needed.

The first contribution of this work is to provide deep
practical insights on the engineering of WMN networks when
the objective function is to maximize the minimum throughput
among all flows.

• First, we examine the impact of power and rate selection on
the performance of WMNs. We show that while multiple
power levels improve the performance of the network, a
few power levels is enough as long as they are selected
correctly. On networks with multiple rates, we show that an
optimal configuration tends to trade spatial reuse for high
link rate.

• Another result is linked to the multihop capability of
WMNs. Multihop communication enables connectivity at
much lower transmit powers than single-hop communi-
cation and yields the maximum achievable throughput at
significantly lower transmit power at the gateway.

• We study routing in WMNs and show that multipath op-
timal routing is not much more efficient than single-path
optimal routing and that not all min-hop routings are
equally efficient. We also quantify how suboptimal is the
“best” min-hop routing using realistic scenarios.

• A major advantage of WMNs is spatial reuse, the possi-
bility of using the same channel in different areas of the net-
work. We show that the relationship between spatial reuse
and network performance is not straightforward.

These results can be obtained only by solving a hard mixed
integer linear program (MILP). The tool developed in [3] used
a commercial solver to calculate a solution after reformulating
the problem into a standard linear program (LP). While it is true
that state-of-the-art solvers can handle large LP instances, that
approach was still limited in the scope and size of networks that
could be solved and was clearly not adequate for the task since
the number of variables of the LP formulation grows exponen-
tially with the network size.

Some form of decomposition or column-generation formula-
tion is then needed. While commercial solvers do not provide
column generation automatically, they can be used to solve the
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pricing subproblems, which have a smaller size. Nevertheless,
this approach works only for relatively small network instances,
and in order to get quantitative results for large networks, we
had to develop new computation tools, both exact and approx-
imate, that are efficient enough to study realistic WMN sce-
narios. These scenarios would have several tens of mesh routers,
many flows, several possible modulation/coding schemes, and
many possible power levels. The development of these tools is
the second contribution of this work. To the best of our knowl-
edge, no such tools have been developed since all the results
that have been reported for this type of networks have been for
at most 20 to 25 nodes [3], [6]. More precisely, in our second
contribution, we do the following:

• We propose a column-generation technique which allows
us to solve exactly medium-size problems. The difficulty
is to solve the NP-hard pricing subproblem in an efficient
manner. This is especially important since it has to be
solved repeatedly. We do that by introducing a technique
that we call “greedy pricing,” which uses an enumeration-
based algorithm on a restricted set of links.

• We show that this technique allows us to compute exact
solutions for problems much larger than what an improved
version of the original technique proposed in [3] can do.
For networks small enough for both techniques to handle,
our technique also turns out to be much faster.

• We also propose and compare two approximate algorithms
that are fast and very accurate. They can be used to com-
pute solutions for much larger networks.

Our third contribution is related to proportional fairness
(PF). We adapt our tools to this case, which is very challenging
since it yields a nonlinear problem. In our third contribution:

• we show how our technique blends smoothly with a se-
quential linear programming approach;

• we show some numerical results that illustrate, in the case
of one power level and one rate, that the trends are similar
to the ones we had seen for the max-min case;

• we also compare the performance of a network configured
with a max-min versus a PF objective and show that the
gain in social welfare for the PF configuration is not that
great.

We provide in Section II some background on models and
computational tools developed in related work. Then, we de-
scribe our network model and formally define our optimization
problem in Section III. In Section IV, we present our algorithm
based on column generation to solve it exactly. We compare its
computation times to a benchmark based on the simplex algo-
rithm using a smart technique to construct the coefficient ma-
trix. In Section V, we report on the engineering insights that
we obtained by using this tool on realistic WMN scenarios.
They are based on exact computations. In Section VI, we pro-
pose and compare two fast and accurate approximate methods.
Section VII addresses the case of a PF objective.

II. RELATED WORK

Jain et al. [7] were among the first to formulate a joint routing
and scheduling problem for wireless networks valid for all linear
objective functions, including max-min. The framework they
proposed is rather comprehensive: it includes both the protocol
and the physical interference models, an extension of which

is used in our paper, and it can accommodate physical tech-
nologies such as multiple radios and nonoverlapping channels.
One limitation is that power control and rate adaptation are
not considered. Jain et al. only provide upper bounds obtained
by applying clique feasibility conditions and lower bounds ob-
tained by using subsets of all schedulable link sets. The gap be-
tween the upper and lower bounds is nonzero unless the conflict
structure induces a perfect graph [3]. The computation of these
bounds is rather cumbersome, and hence the results presented
in [7] are limited to the protocol interference model.

There have been many attempts to extend this optimization
framework and to improve the algorithms that solve it. Zhang
et al. [8] apply column generation to solve a similar problem in
multiradio and multichannel networks. However, it is not clear
how their algorithm would scale since it is based on an exact
pricing. Both [9] and [10] take a staged approach. They first
solve a concurrent flow problem using the algorithm of [11]
followed by a packing-based heuristic to approximate the op-
timal link channel assignment. Note that [8]–[10] only consider
the protocol (interference) model and nonoverlapping channels.
The results of [12] clearly show the importance of choosing an
additive interference model. Their approach does not involve
power control and rate adaptation. Karnik et al. [3] extend the
framework of [7] to encompass multipower and multirate and
focus only on the additive interference model. They propose an
exact enumeration-based algorithm and derive an upper bound
on the size of a schedulable link set (see also Section IV-A for
details). Another distinct contribution of [3] is a characterization
of the optimal max-min throughput by routing and clique feasi-
bility conditions. A similar characterization is applied in [13] to
construct a new routing metric called interference clique trans-
mission time, though it is not clear how practical such a scheme
can be.

There also exists another body of work applying online
dynamic control for throughput maximization, e.g., [14]–[16]
and the references therein. That approach considers the cases
where no information about the environment is available
a priori. However, the price paid for the lack of a priori infor-
mation is the increased algorithmic complexity: NP-complete
subproblems such as the maximum weight independent set
problem need to be solved online repeatedly [16]. Moreover,
any attempt at approximating the NP-complete subproblems
may drastically reduce the performance [17].

On the algorithmic side, the column-generation method has
been applied intensively to the cross-layer design of multihop
wireless networks. However, these studies either rely on com-
mercial solvers such as CPLEX [18] to deal with the NP-com-
plete/hard subproblem that generates a column [19], [8], [6],
[20] or make use of a greedy heuristic to obtain suboptimal
solutions [21], [22]. While the first approach does not scale
with an increasing problem size, the second one almost always
fails to provide optimal solutions [20]. As described later in
Section IV-B, our greedy pricing approach delivers both exact
and approximate solutions and scales well with the problem
size.

III. NETWORK MODEL AND PROBLEM FORMULATION

We model the network as a set of nodes (the mesh routers
and the gateway) and a set of directed links, with
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and . Each node has a location . We de-
note by the set of links incident (inbound or outbound) to a
node . A link is identified not only by its origin–destina-
tion pair, but also by its physical parameters, which are defined
in Section III-A. Let denote the set of flows, and let .
A flow is identified by its source–destination pair
and has a rate . Let be the flow rate alloca-
tion vector.

In the following subsections, we present models for the phys-
ical, interference, and network layers and formulate the joint
routing, scheduling, rate adaptation, and power control problem
whose solution can be used to configure the network. Note that,
in all cases, we restrict ourselves to conflict-free scheduling.

A. Physical Layer Model

Each link is identified by four physical parameters:

the origin and the destination nodes of . A link is
sometimes denoted whenever the context is
clear, where and .
the transmit power used by . It takes its
value from a finite set . This represents the
power control ability of a node. We assume a
network-wide reference power level. All nodes
use the same reference power and a finite number
of power levels that have fixed offsets from the
reference power.
the link rate in bits per second. It takes its
value from a finite set . This represents the
multirate capability of a node. We assume that
a particular rate can only be obtained from one
modulation/coding scheme. Hence, there are
modulation/coding schemes.

Let and be the
power and link rate vectors, respectively. Because of the way
we define a link, it is more a logical entity rather than a phys-
ical link since there are potentially multiple links between two
nodes and that differ from each other by the power used by
and/or the link rate. Strictly speaking, a link should be referred
to by a set , but we use a single index for ease of
notation. There might be from zero up to links be-
tween and . Two links between and with the same rate and
different transmit power will differ in their robustness against
interference as discussed below.

We assume that a link characterized by is
feasible if its signal-to-noise ratio (SNR) meets the following
condition:

(1)

where denotes the channel gain on is the average
thermal noise power in the operating frequency band, and
is the threshold related to the modulation/coding scheme that
yields . The channel gain between two points separated by
distance is assumed to be given by , where is
the close-in reference distance, is the shadowing and fading
gain, and is the path loss exponent. The size of the link set
for a given set of powers and a set of rates is then given
by the number of links such that (1) holds for each quadruple

and hence is a function of and . There is
an implicit assumption here that the channel gain is quasi-time-

invariant. This is a realistic assumption in urban/suburban areas
with rooftop antennas [23].

B. Additive Interference Model

We now present the additive interference model we use in this
paper, which extends the physical interference model of [24]. It
is described using the concept of an independent set (ISet)1, a set
of links that can all operate at the same time, i.e., the interference
they produce is not harmful to any of the links in the set. We
denote by the set of all ISets and by the set of ISets that
contain link .

First, note that a set is an ISet only if no two links in
the set share a node, i.e.,

(2)

We also assume that the interference on a given link is the cumu-
lative interference from all the links that are active at the same
time. Hence, under this interference model, a set is an
ISet iff it meets condition (2) and the following condition:

(3)

Here, is the signal-to-interference-plus-noise ratio (SINR)
of link , and is the channel gain from to . Re-
call that a link is in fact a logical link represented by a tuple

. Consider an ISet containing some link . Assume
also that is another feasible logical link between and ,
i.e., and/or . It should be clear that the set

is not necessarily an ISet, either because it
produces too much interference at some other receiving nodes
of or is receiving too much interference from the transmit-
ting nodes of the other links in . These conditions are auto-
matically checked by the construction algorithm described in
Section IV-A.

C. Network Model

The network model proposed here is based on the assumption
that the traffic is static or quasi-static. We believe that it is rea-
sonable since the traffic seen by the mesh routers is aggregated.

We will consider both multipath and single-path routing. For
multipath routing, we denote by the set of all routes that can
be used by flow and by the set of all routes that can be
used by going through link . The amount of flow routed
on is denoted by and . Let

be the routing vector.
A link schedule is an -dimensional vector

such that if ISet is scheduled, and
otherwise. We interpret as the fraction of time allocated to an
ISet . Obviously, . We only schedule ISets since
we are interested in conflict-free scheduling.

In summary, we want to compute the flow rate allocation
vector , the routing vector , and the scheduling vector using
the following optimization framework.

D. Problem Formulation

The following joint routing, scheduling, rate adaptation, and
power control problem (JP) is based on the parameters and

1The term “independent set” is not the same as the notion of independent sets
as used in graph theory. However, we use it in order to be consistent with the
literature.
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variables defined above. The multipath formulation given in
Section III-D1 comes from [3], while the single-path formula-
tion presented in Section III-D2 is new.

1) Multipath Formulation: We define the link-set incidence
matrix such that if , and 0 otherwise. Note
that each column of is a vector that represents an ISet
and that the number of columns is , which is generally very
large. For a flow , we also define the standard node-arc
incidence matrix such that if if

, and 0 otherwise. The dependence on is useful to
prevent certain flows from using some links. Define also the
node-flow incidence vector , where if , and 0
otherwise. Let be the amount of flow going

over a link , and denote by the link flow
vector associated with . Finally, let .

Given the network model and the definitions, we want
to maximize the minimum throughput of all the flows, i.e.,

. In this form, the objective function is not
differentiable and the problem is transformed by the standard
technique of introducing a scalar variable and
adding a set of constraints (5) to put a bound on the flows. We
can then formulate JP as (4)–(7).

(4)

(5)

(6)

(7)

where we have put the Lagrangian multipliers corresponding
to each constraint in parenthesis. In this formulation, we have

and . The maximization is explicitly taken
with respect to the maximum flow , link load allocation , and
link scheduling vector , but it is also implicitly taken over the
transmit power vector and link rate vector since they are
implied by the scheduling of ISets and the links that make up
these sets. We call this problem JP-Primal. It is a standard but
very large linear program (LP) and its difficulty lies in the com-
putation of the incidence matrix which grows exponentially
with the problem size.

Note that the solution of this problem does not yield full infor-
mation about the optimal configuration: The routing vector is
replaced by its aggregated form . Nevertheless, there are stan-
dard procedures to reconstruct a set of compatible path flows
from the arc flow formulation. Obviously, even though we have
chosen a max-min objective function, our tools could be directly
adapted for any other linear objective function.

2) Single-Path Formulation: To be able to take into account
single-path routing where a flow is constrained to use only one
path, we add a binary variable such that if link is
used to carry flow , and otherwise. We also add the
following constraints to the JP problem (4)–(7):

(8)

(9)

where denotes the links out of node . Constraint (8) states
that if is not used to carry , i.e., if , the load imposed
by on is zero. Equation (9) states that, for a given node ,
at most one outgoing link is used to carry a certain flow . A
similar formulation was used in [7]. Note that this makes the
problem much harder to solve since we now have an integer
problem due to the presence of the binary variables .

IV. TOOLS FOR EXACT SOLUTIONS

In order to get more engineering insights than those obtained
in [3], we are faced with the task of computing solutions for
relatively large networks with many mesh routers, flows, levels
of powers, and possible rates. This means solving a very large
LP with a coefficient matrix that grows exponentially with the
size of the network.

We now present two efficient algorithms that solve JP exactly.
The first one is a direct application of the simplex algorithm,
where we construct the matrix using an efficient enumeration
of the ISets. It will serve as a benchmark to measure the gain in
computation time of our second proposed algorithm based on
column generation. We will show in Section V that the range of
networks that can be solved exactly by the algorithm based on
column generation is quite extensive and includes many realistic
scenarios. We will propose and compare in Section VI fast and
accurate approximate algorithms for even larger networks.

A. Solution by the Simplex Algorithm

The solution technique proposed in [3] was a straightforward
use of the simplex algorithm. While this requires a complete
enumeration of all the ISets, there is a definite advantage to this
approach. Once we have built the set , we can easily solve dif-
ferent problem instances as long as they all have the same ISets,
e.g., different objectives, flow patterns, different gateway posi-
tions, etc. This might not be possible with the column-genera-
tion technique presented later, which requires us to start anew
for each change in the input set. It is thus worth the effort of
trying to design an efficient exact method based on the simplex
algorithm even if we know that other exact methods can be more
efficient in other situations (see Section IV-B).

The difficulty with this approach is that there is a huge number
of ISets that have to be constructed beforehand. A naive con-
struction procedure is to enumerate all the elements of the
power set of and to check whether each of them forms an ISet.
Karnik et al. [3] improved this brute force algorithm by deriving
an upper bound on the maximum size of an ISet, such
that only elements of need to be enumerated. How-
ever, the bound is still too loose to allow efficient enumeration.

We propose here an efficient algorithm that constructs all pos-
sible ISets but no more. The complexity of this method is only

as opposed to in [3], where is the max-
imum ISet size and typically . We describe it using a re-
cursive depth-first algorithm, but we have also implemented an
iterative breadth-first version. While the recursive form is sim-
pler to program and is well suited for enumerating all ISets, the
iterative form is better suited for enumerating only the maximal
ISets. The algorithm is based on the following proposition that
is trivial to prove.

Proposition 1: If is an independent set, then any subset
of is also an independent set.
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Fig. 1. Pruning function.

The algorithm builds ISets of increasing sizes and stops when
this is no longer possible. This is done using an enumeration
tree as follows. The root node is at depth 0. A node at depth
contains an ISet of links and a list of links that are candi-
date for addition to this ISet. We assume that is implemented
as an ordered data structure indexed by increasing link number.
Consequently, means that appears later than in and

returns the link whose index number is the largest in .
We define two functions. The first one isprune , which

returns a reduced candidate list of links constructed as de-
scribed in Fig. 1. The condition on line 5 for adding a link
to an ISet has two parts. The first is used to avoid enumerating
ISets more than once, and the second tests the set against
the appropriate interference model defined in Section III-B. The
first condition is due to the fact that the ISets are built in a pre-
cise order. At a given depth in the tree, the tree nodes contain
ISets of links and are built left to right with the link numbers
in an increasing lexicographic order. Suppose that
and that . Since there is already a node to the left of the cur-
rent node containing the ISet , there is no need
to add to .

The other function makeSons is a simple recursive
procedure that builds all the children of a node for a given
candidate list . It should be clear that a child of is an ISet
that differs from by one link. The set of ISets is accumulated
at each node until the whole collection is built up. Finally, the
algorithm is initialized with the root node empty, and the first
candidate list is the set of all links.

B. Solution by Column Generation

Even with the most efficient enumeration technique, the ap-
proach of Section IV-A will eventually become infeasible due to
the large size of set . On the other hand, we know that only a
few ISets will be active in the optimal solution by the following
proposition.

Proposition 2: The number of nonzero elements of , i.e.,
the number of ISets that are effectively used, in a basic solution
of JP-Primal is at most .

This follows directly from Carathéodory’s theorem. This sug-
gests that we use column generation [25] to solve the problem,
thus avoiding the explicit generations of .

If we write the constraints (4)–(7) in standard matrix form,
the column corresponding to constraints (6) and some variable

has the form . These are
used for pricing the ISets as follows.

1) Exact Pricing: Column generation is basically the revised
simplex algorithm with a particular pricing technique. The tech-
nique uses only a subset of columns , which is called the Re-
stricted Master Problem (RMP). At a given iteration, we have,
for the RMP, a basic feasible solution , and as well as the
current estimate of the dual variables , , and .

The first step of the next simplex iteration is to price the off-
basis columns. The reduced cost of an off-basis column is
given by the standard formula

(10)

since the cost coefficient of the off-basis variable in the ob-
jective function is zero. When the objective is to maximize, the
standard pivoting rule of the simplex is to choose the column
with the largest reduced cost. The stopping rule is also simple:
If there is no off-basis column with a strictly positive reduced
cost, the current solution is optimal. This means that the pricing
requires the solution of the following Maximum Weight ISet
(MWIS) problem with as the link weights

(11)

subject to constraints (2) and (3). It can be easily shown that it
is an NP-hard problem.

If we want an optimal solution, we must make sure that there
is no off-basis column with a strictly positive reduced cost at the
last simplex iteration. This in turn means that we have to solve
the MWIS pricing subproblem to optimality. It will then become
very difficult to compute large networks by a straightforward
column-generation technique. This is why we propose another
method called greedy pricing, which has been proven to be very
fast at delivering exact solutions.

2) Greedy Pricing: We can reduce the amount of compu-
tation if we use a greedy pricing rule at each iteration. This is
based on the fact that choosing any column with a positive re-
duced cost may potentially produce a new solution with a higher
value of the objective. We can also speed up the calculation by
solving the pricing subproblem over a set of links with
positive reduced costs only. The reason is that if there exists a
solution to the MWIS problem where some links with zero re-
duced costs appear in the solution, then there is an optimal so-
lution made up of only the links with strictly positive reduced
costs. This follows from Proposition 1.

The algorithm to find a new column for the RMP with a pos-
itive reduced cost uses two functions, denoted as greedy and
enuoracle. They take a link set as the input and re-
turn an ISet with a positive reduced cost, if such a set exists, or
an empty set.

In a basic implementation of greedy, the algorithm simply
orders the links in decreasing weights. The link with the largest
weight is first chosen, then the link with the largest possible
weight that is still independent of the first one is selected and so
on until an ISet is constructed. Instead of naively using the
of (11) as the weights, we use a more sophisticated definition
taking into account also some measure of the interference; it
usually works better than just the . We refer to the Appendix
for more details on this.

If the ISet produced by greedy has a positive reduced cost,
it is pivoted into the basis of the RMP and the next iteration
is started. If the reduced cost is not positive, we try to find a
better ISet that might have a positive reduced cost using en-
uoracle. It is similar to the efficient enumeration presented
in Section IV-A, but it stops when either finding an ISet with
a positive reduced cost or failing to find such a set upon enu-
merating all the possible ISets that can be constructed from the
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TABLE I
LINK RATES AND CORRESPONDING THRESHOLDS

current link set . If we want to guarantee the optimality of the
final solution of the column-generation algorithm, a full enu-
meration of ISets is needed to solve the MWIS exactly, but this
is required only in the last iteration and on a smaller set of links.

In practice, our greedy pricing approach runs very fast mainly
due to the following three reasons:

• The number of iterations to terminate the algorithm is often
far less than .

• The algorithm greedy does find an off-basis column with
a positive reduced cost in most iterations.

• The size of the link set is usually much smaller than that
of thanks to the dual degeneracy that happens frequently.

As we will now see, our algorithm based on column generation
using greedy pricing is much faster than the simplex algorithm
with enumeration presented in Section IV-A.

C. Settings for Numerical Results

We now report the computation time of the LP benchmark
and the column-generation algorithm. Both are programmed in
C++. We use GLPK [26] as the LP solver. All the computations
have been done on a machine with a 3.2-GHz Pentium 4 CPU
and 1 GB of RAM.

Because of space limitation, we choose to present results only
for a subset of the many network scenarios we have studied:
one with 25 nodes (Grid25), two with 30 nodes (Rand30a and
Rand30b), one with 40 nodes (Rand40), two with 50 nodes
(Rand50a and Rand50b), and one with 80 nodes (Rand80).
Apart from Grid25, whose nodes are on a square grid and the
gateway is in the middle, all the others have their nodes placed
at random in a square with the gateway in the center. Note that
we scale the network dimension in proportion to the number
of nodes so that the node density is always the same. For each
network, we require every node to send or receive a flow to or
from the gateway. We call these flow patterns converging and
diverging. Since we have not seen any significant differences
between results obtained for converging and diverging flow
patterns, we will mostly focus on converging flows.

For radio propagation, we assume dBm,
m, , and . The five normalized link rates

and their corresponding thresholds are listed in Table I. They
are taken from the IEEE 802.16 standard. For power control, the
finite power set is represented by a base power
and a step size . Therefore,

if there are power levels. All our results are shown as a
function of the base power . The curves all start at , where
a network first becomes connected, and stop at that allows
every node to have a single-hop connection with the gateway.

D. The Computation Costs of Obtaining Exact Solutions

We show in Fig. 2 the computation times needed for pro-
ducing the throughput curves as a function of for Grid25 and

Fig. 2. Computation times for the two exact algorithms for the case with con-
verging traffic: (a) Grid 25 and (b) Rand30a.

Rand30a with a single power and a single rate using the enu-
meration and the column-generation algorithms.

As expected, the computation times increase very fast using
the enumeration approach. This directly follows from the expo-
nential increase of the number of ISets as the transmit power
grows. The times for the column-generation algorithm increase
much more slowly when power grows. Actually, the time de-
pends heavily on the fraction of “useful” ISets out of all ISets.
At an optimal solution, the algorithm produces a basis with a
scheduling vector whose . We find that these solutions
are highly degenerate and that there are many other optimal vec-
tors with the same value of the objective function. An ISet is said
to be useful if it belongs to this set of potentially optimal solu-
tions. If the optimal solution were unique with respect to , the
fraction of useful ISets would be very low, according to Propo-
sition 2, which fortunately turns out not to be the case. It can be
rather high, though still far lower than that of the enumeration
algorithm. Note that we were unable to compute an exact so-
lution in a reasonable time using the simplex algorithm for the
random network with 30 nodes for power larger than dBm,
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whereas we had no problems doing it with our column-genera-
tion algorithm.

Under the protocol interference model, both our algorithms
compute an optimal solution in the order of seconds and actu-
ally less than 1 s in most cases; we omit the numerical results
due to space limitations. This is much faster than the algorithm
described in [7], where the CPU time is of the order of minutes.
Recall that no numerical results were presented in [7] for an ad-
ditive interference model that incurs much longer computation
times.

V. ENGINEERING INSIGHTS

We now report numerical results obtained with our computa-
tion tools with the engineering insights that they provide.

A. Summary of Previous Results

The main engineering insights that were reported in [3] and
[12] can be summarized as follows:

1) Assuming that each node in the network uses the same
transmitting power , the max-min throughput is a non-
decreasing function of .

2) The largest achievable max-min (per-flow) throughput
in a node network is if the flow pattern
is diverging or converging where is the largest
value in . This throughput can be achieved through
single-hop if the transmit power is larger than or equal to

, where is the largest distance
between the gateway and a node. Note that the throughput
is limited by the fact that the gateway cannot receive or
transmit more than one packet at a time.

3) There are usually many optimal configurations. They are
generally so complex that no simple rule can be deduced
from them.

4) In a scenario with a fixed power , if only a single rate,
among a given set , can be used
for all nodes, it should be the highest rate allowing connec-
tivity at .

5) The choice of the interference model has a great impact
on the solution and the additive interference model yield
max-min rates and configuration parameters very different
from those obtained with simpler models.

B. Power Control

We first investigate the effect of power control on the optimal
throughput. While there is a common belief that many power
levels, or even a continuous tuning of the power, are prefer-
able, our results show that, at least for the converging and di-
verging traffic patterns, only a small number of power levels are
needed if they are chosen carefully. All the nodes may use a
finite number of power levels that have fixed offsets from the
reference power .

Fig. 3 shows the max-min throughput as a function of for
Rand30a for different when the traffic pattern is converging
and , i.e., there is only one modulation/coding scheme.
In Fig. 3(a), we assume two power levels and we show curves
for different step size . It can be easily seen that having access
to two power levels yields better performance results than if we
have access to only one power level and that the value of the
step size has a significant impact on the performance gain. In
the case illustrated in the figure, the step size dB offers

Fig. 3. The impact of power step size and number of power levels on max-min
throughput for Rand30a with converging traffic: (a) different step sizes for two
power levels and (b) multiple power levels.

an overall performance that is always better than the others. The
improvement in throughput when dB is around 20% as
compared to a single power level throughout the whole power
range, whereas other step sizes may result in marginal improve-
ment. The results indicate the existence of an optimal power step
size, and we can determine this step size relatively quickly with
our tools.

In Fig. 3(b), we compare the case with five power levels and
a 1-dB step size with the best two power levels. The fact that
they are quite close to each other suggests that the number of
power levels has a less significant impact on the throughput than
the step size. We also show on that figure other curves corre-
sponding to three and four power levels with good step sizes ob-
tained by trial and errors. Again, we observed that adding power
levels does not significantly increase the throughput. In other
words, we still observe that the higher the reference power, the
better the max-min throughput. Having multiple power offsets
does improve throughput, but one or two offsets are enough to
bring most of the performance gain.

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:27:54 EDT from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Multirate versus single-rate for Rand30a in the case of converging
traffic: (a) different two-rate combinations, and (b) multirate versus single-rate.

C. Rate Adaptation

We now study the benefit of rate adaptation assuming one
power level. It is known that, compared to a single high rate,
allowing multiple lower rates enables a network to be connected
at lower transmit powers. Our results, in addition to confirming
that, demonstrate an interesting trend: The relative gain obtained
at high power by having multiple rates over one single high rate
is low.

We compare in Fig. 4 the optimal max-min throughput of
Rand30a with and without rate adaptation as a function of
in the case of a single power with a converging traffic pattern.
Fig. 4(a) compares the max-min throughput as a function of
for the cases where two rates are available, either (6, 4), (6, 3),
(6, 2), or (6, 1). We see that if the power is above dB, the
best pair of rates is almost always (6, 3). Similarly to the power
adaption discussed in the previous section, the results indicate
the existence of a “better” pair of rates, and we can determine
this pair relatively quickly with our tools.

Fig. 4(b) compares the max-min throughput as a function of
when there is rate adaptation—e.g., two, three, four, and five

TABLE II
MULTIHOP ADVANTAGE: � � �� AND � � �� DIVERGING TRAFFIC

possible rates—with the case where only the single highest rate
is available. As expected, rate adaptation enables connectivity at
lower powers than a single high rate. Rate adaptation with three
rates yield almost the same max-min throughput than those with
four and five rates after the network becomes connected. This
seems to indicate that at an optimal configuration, only links
with relatively high rates are used. Since operating links with
high rates tends to reduce the spatial reuse because they are more
susceptible to interference, our results indicate that an optimal
configuration tends to trade spatial reuse for high link rate. This
will be confirmed later when we study the effect of spatial reuse
in Section V-F.

D. The Multihop Advantage

One obvious advantage of multihop communication is that
connectivity can be enabled at much lower transmit powers than
with single-hop. This section will show and quantify another
advantage of multihop over single-hop: In a mesh network with
diverging flows, the maximum achievable throughput can be
obtained by using a much lower transmit power at the gateway
using multihop communication than with single-hop commu-
nication. In an -node network with diverging flows and a
single power and a single rate, it can be shown that the max-
imum achievable max-min throughput is if there is only
one power and one rate [3]. At , i.e., at the transmit
power that allows every node to be connected to the gateway
through a single hop, we can easily achieve this throughput by
scheduling the links between the nodes and the gateway one
at a time. Let be the minimum transmit power for which
the maximum achievable throughput can be obtained via mul-
tihopping. We characterize what we call the multihop advan-
tage by (in dB). Table II shows the multihop advantage
for different networks, assuming , i.e., dB.
We see that multihop communication achieves the maximum
achievable max-min throughput with a transmit power at the
gateway from 3.5 up to 6.7 times lower than the power needed
for single-hop communication. This is made possible by al-
lowing spatial reuse, i.e., the activation of more than one link at
a time. Of course, the energy saving at the gateway is obtained
by spending more energy at the intermediate nodes.

Using multihop improves performance both by providing
connectivity at low power, something that we cannot do
with single-hop, and by offering the maximum achievable
throughput at much lower transmit power at the gateway. These
two advantages come at the cost of a more complex network
operation and more energy spending at intermediate nodes. In
addition, our results show that, for a particular network, the
multihop advantage as defined above is rather sensitive to the
value of . This is not surprising since the larger the , the
lower the potential for spatial reuse. Similar results have been
obtained for multiple power levels and rates.
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Fig. 5. Optimal multipath and single-path routings versus min-hop routings:
Rand30a with converging traffic.

E. Does Multipath Have an Advantage, and What About
Min-Hop Routing?

We now want to address the following two questions:
1) How much do we gain in throughput by allowing each flow

to be routed on as many routes as necessary?
2) Can a min-hop routing achieve good performance?
1) Single-Power and Single-Rate: To answer the first ques-

tion, we solved the single-path version of our JP problem de-
fined in Section III-D2. This is an integer program that cannot be
handled by our column-generation approach, which works only
for noninteger LPs. Instead, we use the enumeration technique
of Section IV-A to produce all the ISets, and then use CPLEX
[18] to solve the resulting integer program. Fig. 5 shows the
max-min throughput obtained for Rand30a for both the single-
path and the original multipath problems. Clearly, multipath
does not produce much of an increase in throughput since the
single-path max-min throughput is never more than 2% below
the multipath value. This is true for all the scenarios that we
have studied with converging and diverging flow patterns. Note,
however, that this result may be due to the particular max-min
objective that we are using. Whether it remains so for other ob-
jectives such as proportional fairness or total throughput is still
an open question.

In order to answer the second question, we compare our
optimal joint routing and scheduling with a min-hop routing
on top of an optimal scheduling, i.e., we solve a pure sched-
uling problem by fixing the routing in JP. Many networks use
min-hop routing because it is simple to compute and imple-
ment. This can be done either without any consideration for
lower layers—for example, by using a simple Dijkstra’s algo-
rithm—or by using some information about the lower layers to
find a “good” min-hop solution among the many available. We
want to compare these two options with our optimal solution.

We first compute the max-min throughput for a min-hop
routing obtained by using Dijkstra’s algorithm, This min-hop is
represented by the curve labeled “min-hop” in Fig. 5. We have
also formulated a “cross-layer” min-hop problem in which we
compute for each the best possible min-hop path for each

Fig. 6. Optimal multipath routing versus min-hop routing: Rand30a with con-
verging traffic: (a) four power levels ��� ���� ������ �������� dBm
and one rate; (b) five rates and one power level.

flow. This problem is computationally hard to solve, and this
is why the corresponding curve in Fig. 5 is limited to a small
section of the power range. One can see that a simple min-hop
routing can be very inefficient, while the “best” min-hop
routing, i.e., the cross-layer optimized one, is much better but
still somewhat far from the optimal.

2) Multipower or Multirate: Min-hop routing has to be care-
fully defined for multipower or multirate scenarios. The way
we obtain a min-hop path for a given flow is as follows. A
min-hop path is first produced using Dijskstra’s algorithm on all
the physical links. We consider that there is a physical link be-
tween two nodes if there exists at least one logical link between
them. Then, for each physical link that belongs to the min-hop
path, we select the logical link with the lowest power (for mul-
tipower) or the highest rate (for multirate) to form the actual
routing path. Fig. 6 compares our cross-layer design with this
min-hop routing. Clearly, a simple min-hop routing can yield
significantly lower throughput than our cross-design approach
especially in the case of a single rate.
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Fig. 7. Optimal max-min throughput under constraints on the maximum size
of ISets: Rand50a with diverging traffic.

F. Revisiting Spatial Reuse

As we explained in Section V-D, the advantage of multihop-
ping stems from spatial reuse. Therefore, it is natural to think
that in an optimal configuration, spatial reuse is high, i.e., ISets
of large size are scheduled for a significant fraction of the time.
In this section, we want to verify if this conjecture is true. Sur-
prisingly, our results suggest that, for the large number of ran-
domly generated networks with diverging or converging traffic
patterns that we have studied, this conjecture is not really true:
Using only ISets of size , and sometimes only ISets of size

, yields a throughput that is almost optimal. This is in spite
of the fact that in the networks that we have studied there exist
many ISets of size larger than 6. This indicates that spatial reuse
is not a good metric to represent the efficiency of a distributed
algorithm.

1) Single-Power and Single-Rate: In Fig. 7, we show the
optimal max-min throughput curve as a function of without
any restrictions on the size of the ISets and the throughput curves
obtained by restricting the size of the ISets that can be use to
be less or equal to 1, 2, 3, and 4, respectively for the 50-node
network with a diverging flow pattern (we find the same kind of
results for the converging pattern).

Comparing the case , where at most two links
can be scheduled at the same time, with the case ,
corresponding to no spatial reuse, it is obvious that there is a
big advantage to allow some level of spatial reuse. However,
the gain obtained by allowing more spatial reuse is decreasing
fast, e.g., the throughput obtained with is not
much higher than the one obtained with . More-
over, yields a throughput that is almost the same
as that with or the optimal one. This is rather
surprising since it seems to indicate that even moderate spatial
reuse is enough to reach high throughput. We believe that the
reason is that our traffic pattern is very much gateway-centric,
and hence, as discussed in [3], the performance of the network
can only be improved by trying to schedule one link to or from
the gateway as much as possible. This result is very important
since computing the throughput by limiting the ISet size to 2

Fig. 8. Optimal max-min throughput under constraints on the maximum size
of the ISets. Rand30a with converging traffic: (a) four powers and (b) five rates.

or 3 makes the computation and possibly the network opera-
tion much simpler. Finally, we note that the multihop advan-
tage (see Section V-D) is obtained with or even

in some cases.
2) Multipower or Multirate: Fig. 8 extends the previous re-

sults to multiple powers or multiple rates. In both cases, we see
the same effect as that observed with a single power and a single
rate. In particular, in the multirate case, the maximum differ-
ence between the optimal value and the throughput obtained
with is just 6%, and the average difference is
less than 3%. An important implication, which has also been
shown in Section V-C, is that when high rates are available and
can be used, an optimal configuration would rather have higher
rates and lower spatial reuse than higher spatial reuse and lower
rates. This can be intuitively explained by the diminishing gain
of spatial reuse and the relative constant gain of increasing link
rates.

VI. TOOLS FOR APPROXIMATE SOLUTIONS

Although our exact algorithms are very efficient, the pricing
subproblem is still NP-hard so that the computation time will
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eventually become impractical for large networks where we can
only expect good approximations within a reasonable time. In
this section, we propose and test two approximation algorithms.

A. Approximation Tools

We have developed two approximation tools based on our
column-based algorithm. The first one has already been used
in Section V-F and is based on limiting the ISet size to , which
clearly has an impact on the size of the problem to solve. As
a first approximation, we modify our column-generation algo-
rithm to search for an entering column only among ISets with
size smaller than , typically , or 3. Our second ap-
proximation, called partial pricing is based on the following:
Whenever algorithm greedy fails to find an off-basis column
with a strictly positive reduced cost, we stop the calculation and
do not enter the enumeration algorithm enuoracle. As we
will show below, these approximations produce objective values
very close to the optimal ones.

B. Results

We now show that our two approximation techniques are
quite accurate in the sense that they produce almost optimal
solutions in a small computation time.

As discussed in Section V-F, we have already seen from
Figs. 7 and 8 that using has an excellent accuracy
when compared to the exact solution even for relatively small .
The throughput computed for is always within
5% of the optimal value. We obtain similar results for other
networks for which the optimal solutions can be computed in a
reasonable time. This is an important result in that we have now
at our disposal a fast and quasi-optimal approximate tool that
we can use to generate configurations for very large networks.
We can also see in the left-hand side of Fig. 9(a) that the
partial pricing algorithm also produces very accurate solutions
for a network with 50 nodes. Its performance is very close to

, as can be seen by comparing Fig. 9(a) with
Fig. 7(b). However, the computation time is much shorter than
that needed by the optimal solution, as shown in the right-hand
side of Fig. 9(a).

Using the approximation tools, we can study larger problems
for which optimal solutions are not available. The two exam-
ples we show in Fig. 9(b) and (c) are for Rand40 with three
powers and three rates and for Rand80 with one power and
one rate. These cannot be solved exactly because they have
a very large number of logical links. Essentially, the partial
pricing and approximations have almost the same
computation time, but partial pricing usually yields much better
throughput. However, this does not mean that the partial pricing
approximation is always best. The configurations produced with

are much simpler since at most two links need to
be scheduled at a time. Therefore, partial enumeration of level
might turn out to be more useful for practical network operation.
It is also worth noting that the approximation ,
while quite accurate, is much too slow, and that is why the cor-
responding curve in Fig. 9(c) is limited to a small power range.
As for engineering insights, it seems that we have confirmed
our previous result to the effect that in a mesh network where
the flows are to or from the gateway, a spatial reuse of 3 seems
to be close to optimal.

VII. PROPORTIONAL FAIRNESS

In this section, we replace the max-min objective function
by proportional fairness (PF), i.e., in the problem JP given in
(4)–(7), we replace (4) by (12)

(12)

and the original problem becomes a nonlinear program (NLP).
Note that if we can enumerate all the ISets, which of course
would restrict the size of the networks that we can handle, then
we can use a generic NLP solver such as MINOS [27]. In order
to solve larger problems, we have developed a computational
technique based on column generation that we summarize here
(for more details, see [28]).

A. Nonlinear Column Generation

Our approach, sketched below, is based on the sequential
linear programming (SLP), also known as the Frank–Wolfe
method [29], which is designed for problems with a nonlinear
objective and linear constraints :

1) Find an initial feasible solution .
2) At iteration , let be the current solution. A linearized

version of the problem with a linear objective function
and the original constraints is solved.

This produces a vector that is a vertex of the domain
and a direction .

3) Find the step size in the direction by solving
the one-dimensional nonlinear optimization

.
In general, both steps are calculated to optimality at each iter-

ation. In our case, this is not really needed, and we can use fast
approximations. The line search is terminated when a sufficient
decrease has been obtained as determined by the two following
rules:

1) Armijo rule: ;
2) Curvature condition:

with .
To compute the direction, we need to solve an LP, and we can

use the greedy pricing algorithm where we do not necessarily
run the procedure to termination. The idea is that the computa-
tion-intensive enumeration step is not invoked as long as we can
make a sufficiently large progress with only the greedy pricing.
This is equivalent to the two conditions

(13)

(14)

for certain parameters and . If neither condition holds, the
enumeration-based column generator is used. This insures the
eventual convergence to optimality since no feasible direction
with an increasing value of the objective will be left out.

B. Numerical Results

The model with proportional fairness provides some more
engineering insights. We have chosen to present the results in
terms of the average flow rate as opposed to the value of the
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Fig. 9. Comparisons of different approximation mechanisms on different large scenarios: (a) Rand50b, one power, one rate, converging traffic; (b) Rand40, three
powers, three rates, converging traffic; (c) Rand80, one power, one rate, converging traffic.

objective function since the fairness measure does not mean too
much practically.

Fig. 10 shows the average rate of a flow as a function of in
the case of network Rand30a optimally configured for PF and
in the case where a min-hop routing is used. The general trend
of the throughput curves for PF is similar to what was found in

Section V for the max-min objective both for the average rate
per flow and also for the difference in the throughput produced
by the optimal and min-hop routings.

Fig. 11 shows that the minimum throughput produced by the
PF model is much lower than the minimum throughput produced
by the max-min model. This is expected, but a quantitative mea-
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Fig. 10. Average flow rate for the case of PF for the Rand30a network.

Fig. 11. Comparison of PF and max-min optimal configurations for the
Rand30a network.

sure of this difference is possible only if a computation tool is
available to solve the problems exactly.

A more unexpected result is provided by comparing in
Fig. 11 the average flow rate obtained with PF and the max-min
rate, where we see that the difference is never more than 12%.
In practice, this difference could be even smaller since the
max-min value is a lower bound on the average flow rate under
the max-min model since there could be some flows with values
larger than this. Hence, in a well-configured network, we could
expect that max-min is almost as good as PF in terms of social
welfare, i.e., the average flow rate.

VIII. CONCLUSION

This paper proposes a detailed and extensive study of the op-
timal configurations of fixed mesh networks using conflict-free
scheduling. In the case of a max-min objective function, we con-
firm that power control is useful, but that the number of levels
might be less important than the actual values that are used.
We also quantify the advantage of multihop over single-hop,

showing that multipath optimal routing is not much more ef-
ficient than single-path optimal routing and that not all min-hop
routing is equally efficient. Moreover, we find that the relation-
ship between spatial reuse and network performance is not that
straightforward.

These results are obtained by developing two computational
tools to solve exactly the joint routing, scheduling, power con-
trol, and rate adaptation problem. These tools allow us to cal-
culate solutions for networks significantly larger than what is
currently possible. The first one is based on linear programming
and is useful when solving a set of problems with multiple input
sets at the network layer. The second one is based on column
generation and is much faster than the LP technique thanks to
an efficient greedy pricing algorithm.

We also propose two approximation algorithms that are very
fast and are shown to be nearly optimal for networks small
enough that one can calculate an exact solution. They have been
tested on networks up to 80 nodes, which shows that the design
of WMNs of realistic sizes is now entirely feasible.

We then adapt our tools to the case of proportional fairness in
the case of one power level and one rate and show some inter-
esting engineering insights.

Finally, one should keep in mind that it is very hard to do
routing, scheduling, and power and rate control in a real net-
work. This requires that all the nodes be synchronized and must
be done quickly in the presence of changing channel conditions.
There is obviously a need for further work to check whether the
engineering insights provided by our model still hold in a more
dynamic situation.

APPENDIX

LINK WEIGHT FOR GREEDY PRICING

We rewrite the SINR-based constraints (2) and (3) as follows:

(15)

(16)

where represents the normalized interference from a link
to , for , and it has the form

otherwise

where is some large constant. For constraint (15), we can
construct the corresponding conflict graph as described in [7].
As a result, a greedy pricing can use the vertex degree as
a penalty factor in the link weight. For constraint (16), there is
no straightforward graph representation. We instead use the row
interference index and/or column interference index

as penalty factors; they represent the total interference
to link and from link (to other links), respectively. It is anal-
ogous to the vertex degree in a conflict graph. In summary,
the link weight used in our greedy pricing can be expressed as

, where is increasing in
and decreasing in , and .
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