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Abstract—We consider the problem of finding a multicast tree
rooted at the source node and including all the destination nodes
such that the maximum weight of the tree arcs is minimized. It is
of paramount importance for many optimization problems, e.g.,
the maximum-lifetime multicast problem in multihop wireless net-
works, in the data networking community. We explore some im-
portant properties of this problem from a graph theory perspec-
tive and obtain a min-max-tree max-min-cut theorem, which pro-
vides a unified explanation for some important while separated re-
sults in the recent literature. We also apply the theorem to derive
an algorithm that can construct a global optimal min-max mul-
ticast tree in a distributed fashion. In random networks with �
nodes and� arcs, our theoretical analysis shows that the expected
communication complexity of our distributed algorithm is in the
order of ����. Specifically, the average number of messages is
��� � � � �� � � ����� �� �� at most, in which � is the Euler
constant. To our best knowledge, this is the first contribution that
possesses the distributed and scalable properties for the min-max
multicast problem and is especially desirable to the large-scale re-
source-limited multihop wireless networks, like sensor networks.

Index Terms—Communication complexity, distributed algo-
rithm, min-max tree, Steiner tree.

I. INTRODUCTION

T HE problem that this paper investigates—namely, the
min-max Steiner tree problem—is one that arises natu-

rally from several optimization problems in the data networking
community. Given a weighted directed graph, a source node,
and a set of destination nodes, the min-max Steiner tree problem
is to determine a Steiner tree rooted at the source and including
all the destination nodes such that the maximum weight of
the tree arcs is minimized over all possible Steiner trees. In a
wired network, this optimization problem would intend to find
a maximum bandwidth tree, e.g., the work [1], in which the
arc-weight represents the negative of link bandwidth. The same
problem in a wireless network received attention for finding a
maximum-lifetime tree, e.g., the works [2], [3], and [9]–[11],
in which the arc-weight represents the reciprocal of lifetime of
wireless communication link.

We consider this optimization problem in a general network
that is modeled as a weighted graph with nodes and arcs.
A special case of the problem is to determine the min-max path,
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which is to find a path from the source node to the destination
node that minimizes the maximum arc cost on the path. In the
literature, the min-max path problem arises in the implemen-
tation of Edmonds and Karp’s “maximum capacity augmenta-
tion” version of the Ford–Fulkerson maximum network flow al-
gorithm [4].

In an undirected graph, the min-max spanning (broadcast)
and Steiner (multicast) tree problems can be solved by the al-
gorithms proposed in [5] and [6], respectively, in a time com-
plexity of . These results, however, cannot be simply ex-
tended to the directed graph scenarios, i.e., the trees obtained
from the above algorithms on a directed graph are not neces-
sary to be optimal.

The algorithm discovered by Camerini in [5] is the first one
that obtains the optimal solutions for the min-max spanning
tree problem in a directed graph. It runs in time.
This result has been improved by the algorithms proposed by
Gabow and Tarjan [7] to an
time, where is recursively defined as ,

, and .
The proposed algorithms can be also extended to the Steiner
tree case with the same time complexity. Recently, Georgiadis
gave another optimal solution for the directed min-max Steiner
tree problem based on a variant implementation of Dijkstra’s
algorithm. It runs in time [8], in which is the
time needed to sort the arc costs. Note that the above results
can be applied to the undirected graph case.

This min-max Steiner tree problem has been receiving new
and tremendous attention recently in multihop wireless net-
works in forms of ad hoc network or sensor network. In such
networks, energy resource supplied by batteries is likely to be
scarce and even entirely nonrenewable in some applications.
In order to extend the network operating lifetime, the max-
imum-lifetime multicast problem, or equivalently the directed
min-max Steiner tree problem, is of paramount importance
for the wide deployment of multihop wireless networks. In
the recent literature, some algorithms have been proposed to
maximize the lifetime for broadcasting (e.g., [9], [10]) and
multicasting (e.g., [11]–[14]), respectively.

Most of the existing solutions for the min-max Steiner tree
problem are centralized, meaning that the global network in-
formation must be propagated throughout the network to a cer-
tain node in order to construct a Steiner tree. Unfortunately,
such solutions are not practical for some specific problems with
certain constraints, e.g., the lifetime optimization problem in
large-scale multihop wireless networks in which each node has
limited energy, bandwidth, memory, and computation capabil-
ities. The only possible distributed solution is to use the dis-
tributed minimum spanning tree algorithm proposed in [15] and
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[16] for the special case of finding min-max spanning tree in
undirected graph. This conclusion is based on the well-known
findings in [5] that the minimum spanning tree is a min-max
spanning tree, but not vice versa, in undirected graphs. The dis-
tributed minimum spanning tree algorithms [15], [16] have the
communication complexity of , which is the best
result so far.

This motivates us to reexamine the general problem, i.e., the
directed min-max Steiner tree problem, and to design the dis-
tributed algorithm that can run on a resource-limited network.
The desired distributed algorithm should be able to construct a
global optimal directed min-max Steiner tree with a low com-
munication complexity. In the rest of the paper, we only con-
sider the general case, in which the term min-max tree implicitly
refers to directed min-max Steiner tree. In order to refer to the
special cases, we shall add determinatives like spanning, undi-
rected, etc.

The contributions of this paper are summarized as follows.
1) We have discovered by the first time a min-max-tree max-

min-cut theorem in directed graphs. It shows the equiva-
lence of two optimization problems, i.e., the min-max tree
problem and the max-min cut problem. Some results with
regard to the min-max tree problem that previously seem
unrelated, e.g., [8]–[14], now can be explained under the
same philosophy given by this theorem. Furthermore, we
have attempted to reveal the relationship of this theorem
with the famous max-flow min-cut theorem and obtained
some preliminary but important results.

2) Applying this theorem, we derive an optimal algorithm
that can solve this optimization problem in a distributed
fashion. It is especially favorable for a resource constrained
network, like sensor networks.

3) We also present a theoretical analysis to show that the pro-
posed distributed algorithm can achieve an expected linear
message complexity . This not only appears to be the
first result for the general min-max tree problem, but also
improves the best performance [15], [16]
known so far in the literature, in terms of average message
complexity, for the special case of the undirected min-max
tree problem.

The remainder of this paper is organized as follows.
Section II gives the problem formulation. Section III derives
a min-max-tree max-min-cut theorem and gives some appli-
cations of this theorem. Section IV then presents a distributed
optimal min-max tree algorithm. Section V analyzes the
communication complexity of the algorithm. Section VI sum-
marizes our findings and points out future research problems.

II. PROBLEM STATEMENT

We model a general network as a simple directed graph
with a finite node set , an arc set
, and a weight function that assigns a nonnega-

tive real number to each arc . Most communication
networks support bidirectional links, resulting in the corre-
sponding directed graphs symmetric, i.e., for every arc that
belongs to , the corresponding inverted arc also belongs to .

Note that because the undirected graph is a special case of the
symmetric directed graph when for each arc ,
the conclusions achieved in this paper can apply to the case of
undirected graph directly. In the rest of the paper, we focus our
study on the symmetric directed graph and finally extend the
results to the general directed graph.

We consider a source-initiated multicast with multicast mem-
bers , where is the source node and is the set of
destination nodes. All the nodes involved in the multicast form
a multicast tree rooted at the node , i.e., a rooted tree , with a
tree node set and a tree arc set . We define a rooted
tree as a directed acyclic graph with a source node with no in-
coming arcs, and each other node has exactly one incoming
arc. A node with no outgoing arcs is called a leaf node, and all
other nodes are internal nodes (also called relay nodes).

A directed path on graph can be defined by a sequence
of adjacent links from to . An important property of a rooted
tree is that for any node in the rooted tree , there must exist
a unique directed acyclic path in the tree. Let denote
the maximum weight of the tree links, i.e.,

(1)

A tree link is called the bottleneck link of the tree if
. Similarly, we use to denote the maximum

weight of the links on a directed path , i.e.,

(2)

Now the formal definition of the min-max tree problem can be
formulated as follows.

Definition 1: The min-max tree problem is to determine a
directed multicast tree rooted at the source and including
all the multicast members (i.e., such that
is minimized, i.e.,

(3)

III. A MIN-MAX-TREE MAX-MIN-CUT THEOREM

Given a multicast request , we say the link set ,
including all links crossing the node partition , is
a -cut if the first node set includes at least the source
node and the second node set includes at least one
destination node, i.e.,

(4)

In the rest of the paper, the prefix of the term -cut
is omitted for simplicity without confusion. Let denote
the minimum weight of the cut links, i.e.,

(5)

We now introduce, by the first time, another problem that is
closely related to the min-max tree problem.
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Fig. 1. Illustration of the proof for Lemma 1. The arrowed line denotes the
directed tree link and arrowed curve denotes the directed tree path.

Definition 2: The max-min cut problem is to determine a cut
such that is maximized, i.e.,

(6)

In the following, we provide a sufficient and necessary condi-
tion for the min-max tree problem, and then derive a min-max-
tree max-min-cut theorem that eventually shows the equivalence
of these two optimization problems.

Lemma 1: If there exists a directed multicast tree in , then
for any cut

(7)

Proof: Note that there is at least one destination node
belonging to the node set , i.e., ,

based on the cut definition. Let be a min-max tree of .
There must exist an arc connecting the node sets

and (i.e., and ) as shown in Fig. 1
in order to satisfy the requirement that is there exists a directed
path from to the destination node in the tree. Therefore, we
can obtain

.
Because the inequality given in (7) is for any cut, it must hold

for the max-min cut as well. We then have the following
conclusion.

Corollary 1:

(8)

Theorem 1: The multicast tree is a min-max tree if and
only if there exists a cut such that .

Proof: We first prove the “if” case. Let be any multicast
tree. For the same reason as stated in the proof of Lemma 1, there
must exist at least one tree link connecting node
sets and (i.e., and . The defi-
nition of given in (5) implies . Further-
more, since , its weight must not be greater than
the weight of a bottleneck link, i.e., . Therefore,
from the given condition in the theorem and the above derived
inequalities, we have for any

, i.e., is a min-max tree.
We then prove the “only if” case. Let be a min-max tree.

We construct a cut as follows:

(9)

In the following, we first explain that cut must satisfy the
cut definition given by (4) as follows. The source is included
in trivially. We show by contradiction that there must exist at
least one destination node in the set . If we assume

, then we can construct a multicast tree by superposing
all the directed path , from the source to each individual
destination node , that satisfies the condition ,
resulting in . This contradicts the fact that is
a min-max tree.

Now, we prove that the constructed cut above satisfies the in-
equality in Theorem 1. Let be the cut link with
minimum weight, i.e., . It must be true that

. This can be explained by contradiction as follows.
Since , there must exist a directed path that satisfies

based on the construction rule given in (9). If
, we can obtain a directed path by appending

the link to the end of path , i.e., .
Therefore, node satisfies the condition in (9)
as well and should also be included in set . This contradicts
the observation of and . Finally, we achieve
that .

Corollary 2:

(10)

Proof: Let be a min-max tree. Equation (9) gives a way
to construct such that . From the definition
of the max-min cut, we then have

.
Corollary 3:

(11)

Proof: It can be derived from Corollaries 1 and 2 directly.

Finally, we have the following min-max-tree max-min-cut
theorem. To our best knowledge, this is the first theorem that
shows the equivalence of the min-max tree problem and the
max-min cut problem. We shall see later that it can be used to
derive optimal algorithms for the min-max tree problem.

Theorem 2: (The Min-max-tree Max-min-cut Theorem) If
there exists a multicast tree and a cut such that

, then is a min-max tree and is a max-min cut.
Proof: From Lemma 1, we have . On the

other hand, we have from (3). From the given
condition , we obtain , i.e., is a
min-max tree. Finally, we achieve the equation

from Corollary 3 directly, i.e., is a max-min
cut.

We shall have the immediate result that Prim’s algorithm [17]
can generate a directed min-max tree from the above theorem.
Recall that the standard Prim’s algorithm maintains throughout
its execution a single tree rooted at the source node. Initially, the
rooted tree includes the source node only. Subsequently, new
nodes are added to the tree iteratively one at a time on a min-
imum weight basis until all nodes are included in the tree. Let

be the tree after the th iteration of the tree incremental for-
mation, where . The initial tree only includes
the source, i.e., and .
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Fig. 2. Illustration of the proof for Theorem 3. The dark nodes and arcs indicate
the multicast tree, and the light nodes and arcs indicate the branches pruned from
the spanning tree � .

Theorem 3: The multicast tree obtained by running Prim’s
algorithm on a directed graph and pruning the resulting span-
ning tree is a min-max tree.

Proof: Let be the final multicast tree pruned from the
spanning tree obtained by Prim’s algorithm as shown in
Fig. 2. We assume that is a bottleneck link of that is
added into the tree just after the th iteration. We define a node
set

(12)

such that its corresponding cut obviously satisfies the cut
definition given by (4). Note that link is added to the tree
on a minimum weight basis, i.e., . This leads to

. From the min-max-tree max-min-cut
theorem, we can conclude that is a min-max tree.

Corollary 4: A pruned minimum spanning tree in undirected
graph is an undirected min-max tree.

Proof: The result is achieved directly from Theorem 3
since the tree obtained from Prim’s algorithm on an undirected
graph is a minimum spanning tree.

The min-max-tree max-min-cut theorem achieves the same
result for the revised Dijkstra’s algorithm [8]. The standard
Dijkstra’s algorithm [18] works by keeping for each node
the cost of the shortest path found so far between and

. Initially, this value is 0 for the source node
and infinity for all other nodes. Similar to Prim’s algorithm,
new nodes are added to the tree iteratively one at a time on a
minimum cost basis until all nodes are included in the tree.
After adding a new node, it is followed by the edge relaxation
operation [18] for each node outside the tree.

The revised Dijkstra’s algorithm [8] changes the relaxation
operation given in (13) to the new one given in (14) as follows:

(13)

(14)

in which is the new node included into the tree and is any
node outside the tree. Based on this revision, we have the fol-
lowing observation.

Observation 1: At the beginning of each th iteration
, the following equations are always held:

(15)

(16)

(17)

Theorem 4: The multicast tree obtained by running the re-
vised Dijkstra’s algorithm on a directed graph and pruning the
resulting spanning tree is a min-max tree.

Proof: Let be the final multicast tree pruned from the
spanning tree obtained by the revised Dijkstra’s algo-
rithm. We assume that is a bottleneck link of that
is added into the tree just after the th iteration. Note that the
link is added to the tree on a minimum cost basis, i.e.,

for any node .
Let be any link that connects node sets

and , i.e., . Since node is outside the tree
, by substituting into (16), we thus obtain

(18)
Therefore, we have

(19)

On the other hand, because node is outside the tree and
node is inside the tree , we obtain the following inequality
from (17) and (15) directly:

(20)

Considering both (19) and (20), we conclude that

(21)

Furthermore, because the link is chosen to be added into
the tree, it must hold that

(22)

Combining (21) and (22), we can obtain .
Recalling that and is any cut link in , the
above inequality shows that .

Finally, since is a bottleneck link of , we have
. From the min-max-tree max-min-cut

theorem, we can conclude that is a min-max tree.
The above practice shows that our analysis on the min-max

tree and max-min cut problems can actually provide the in-
sights to explain some results that previously seem separate and
different (e.g., the work in [8]–[14] including the proposal in
Section IV) under a unified theorem.

IV. DISTRIBUTED MIN-MAX TREE ALGORITHM

The investigation of the min-max tree properties now would
allow us to design a distributed min-max tree algorithm. It has
an initial neighbor discovery process that allows each node to
be aware of the existence of all its one-hop neighbors and the
one-hop neighborhood knowledge . In this section,
we present a multicast routing protocol using the Search-Report
and Grow-Request message forwarding mechanism to construct
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Fig. 3. The description of the �th round of Search-and-Grow procedure.

an optimal min-max tree. Such description is nonstrict but suf-
ficient for us to study the communication complexity of the dis-
tributed algorithm in Section V.

Whenever there is a multicast session request in the
network but no route information is known, the source will
initiate the distributed min-max tree algorithm by running
the Search-and-Grow procedure iteratively. Let be the
intermediate tree constructed after the th round of
Search-and-Grow procedure. The algorithm starts from an
initial tree , which contains the source node only, and
each iteration- makes the tree grow from to with one
or more nodes included. Eventually, such iterations terminate
until the tree contains all the nodes in and the final min-max
tree is achieved by pruning all unnecessary links (the branches
including nonmember nodes only). The pseudocode of the th
round of Search-and-Grow procedure is given in Fig. 3.

We use an example to illustrate the basic tree construction
steps in the above algorithm. A 10-node graph is given in a
10 10 square, in which all nodes are multicast members and
node 0 is the source. The link weight is defined as its Euclidean
length.

The min-max tree is constructed step by step with three iter-
ations as shown in Fig. 4(a)–(c), respectively.

Step 0: Initially, the tree consists of only the source node 0.
Step 1: In the first iteration, link (0, 4) crossing node sets

and is found with minimum
weight, and it is the only link added into the tree as
shown the dark arc in Fig. 4(a).

Step 2: In the second iteration, link (0, 7) crossing node sets
and is found with minimum

weight and added into the tree. Link (7, 9) is also
included because as shown in Fig. 4(b). We
denote such subsequently included links as the light
arcs.

Step 3: In the third iteration, link (9, 1) crossing node sets
and is found with minimum

weight and added into the tree. The tree then grows by
including more links (1, 3), (1, 5), (1, 6), (3, 8), and
(6, 2) since their weights are all less than . The
min-max tree is eventually obtained as shown in
Fig. 4(c) with the bottleneck link (9, 1) that is found in
the last iteration.

In the following, we describe how the Search-Report and
Grow-Request messages are propagated in the th round of

Search-and-Grow procedure. In the Search phase, each tree
node first calculates an upper bound of
locally as follows:

(23)

It then sends back a Search-Report message to its
parent node (if ) with the parameter
if is a leaf node or, otherwise, the parameter

after
collecting all the Search-Report messages from its child nodes.
Furthermore, if is a multicast member, it also attaches its own
address in the Search-Report message to notify its attendance to
the multicast. These messages propagating back to the source,
shown as the dotted arrowed lines in Fig. 5, shall eventually
allow the source to calculate a lower bound of as

(24)

If not all multicast members are included in the tree, the
source initiates a Grow phase by flooding the Grow-Request
messages with the parameter over the tree . Other-
wise, the iterations of Search-and-Grow procedure terminate.

After the tree-flooding of the Grow-Request messages, shown
as the solid arrowed lines within the area in Fig. 5, each
tree node would further forward Grow-Request to a nontree
node if . At each new included node, the node from
which the first Grow-Request message is received will be set
as the parent node, and all subsequent duplicate Grow-Request
messages are simply dropped (e.g., the message from to as
shown in Fig. 5). Such message propagation, shown as the solid
arrowed lines in the shaded area outside in Fig. 5, will
proceed until the incremental tree ceases growing. When the
Grow operation completes at node , it then goes to the Search
operation again as described earlier.

Eventually, a multicast forwarding tree is created by several
Search-and-Grow cycles until all members join the tree. After
that, the final min-max tree can be obtained straightforward by
pruning all unnecessary links shown as the dotted lines in Fig. 5.
Such post-procedure starts backwards from the nonmember leaf
nodes and performs in a distributed manner.

Note that at each round of Search-and-Grow procedure, the
tree grows by one more node at least. Therefore, we can as-
sume that there are exactly rounds of
Search-and-Grow procedure to achieve the final multicast tree.
Finally, it remains to show that the multicast tree discovered by
our distributed algorithm is a min-max tree. This is stipulated in
Theorem 5 as follows.

Theorem 5: The distributed algorithm constructs a min-max
tree.

Proof: Let be the final tree obtained from the distributed
algorithm. We observe that the sequence of the values in the
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Fig. 4. Examples of min-max tree construction using the iterations of the Search-and-Grow procedure. (a) iteration-1. (b) iteration-2. (c) iteration-3.

Fig. 5. Illustration of the message propagation at the �th round of Search-and-
Grow procedure.

multicast tree formation is in an increasing order and the final
one in the sequence is equal to , i.e.,

(25)

Now, we can define and thus obtain
by substituting (24) into (25). From the min-

max-tree max-min-cut theorem, we can conclude that the final
tree is a min-max tree.

V. COMMUNICATION COMPLEXITY ANALYSIS

In order to study the upper bound of message complexity of
distributed algorithms for the min-max tree problem, we only
need to consider the spanning tree case. The best results on the
communication complexity is [15], [16] for the
min-max spanning tree problem in an undirected graph. In this
section, we shall analyze the communication complexity of our
distributed algorithm for the same problem in a directed graph.

We consider the message interactions in the th round of
Search-and-Grow procedure. It can be considered to consist

of two components: 1) the tree-flooding of the messages
(Search-Report and Grow-Request) in the area ; and 2) the
network-flooding of the messages (Grow-Request) in the area

as shown in Fig. 5.
Let and be the number of messages propagated within

the areas and , respectively. Thus, the communi-
cation complexity (i.e., the total number of Search-Report and
Grow-Request messages) of the distributed algorithms using
rounds of Search-and-Grow procedure can be expressed as fol-
lows:

(26)

(27)

(28)

Recall that in the network-flooding, the Grow-Request mes-
sages are delivered only to nontree nodes, which will join the
tree and never receive such messages again in the later rounds.
Therefore, throughout the whole distributed algorithm, the net-
work-flooding Grow-Request message passes on each link at
most once, resulting in

(29)

In the best case, only one round of Search-and-Grow proce-
dure can span all the nodes, and thus the total number of mes-
sages is at most

(30)

On the other hand, in the worst case, the final min-max span-
ning tree needs exactly rounds, and each round
only includes one more node, i.e., ,
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, which can be substituted into (26)–(29) to obtain the total
number of messages as follows:

(31)

We now turn our attention to the more interesting and diffi-
cult task on analyzing the complexity for the average case. Sup-
pose that our distributed algorithm includes the links into the
min-max spanning tree in the order of , in which

is the th included link with the weight ranked as the th
one in the corresponding weight list sorted in

an increasing order. We consider there are exactly number
of tree links already in the tree. A key observation made below
allows us to derive the average message complexity in the rest
of the analysis.

Observation 2: Link is the first one chosen to be included
in a certain Search-and-Grow procedure, if and only if ,

.
If we define a random variable as follows:

,
otherwise

(32)

then the communication complexity in (27) can be rewritten
as

(33)

We first consider the case in which each value is unique
over the weight list . The probability of the
event , i.e., , can be obtained under this
assumption as shown in the following lemma.

Lemma 2:

(34)

Proof: See the Appendix for details.
This result allows us to calculate the average number of

Search-and-Grow iterations and eventually to achieve the
average total number of messages, which are stipulated in the
following Theorems 6 and 7, respectively.

Theorem 6: The average number of Search-and-Grow itera-
tions is bounded by , in which is the Euler constant

, i.e.,

(35)

Proof: This result can be obtained immediately from
Lemma 2 as follows:

Notice that we use the well-known inequality
to achieve the final result, in which

is the th harmonic number.
Theorem 7: The average total number of messages is

bounded by , i.e.,

(36)

Proof: Considering Equations (26), (33), (29) and (34), we
have the following derivations:

Now, we consider the weight list with redundant elements.
Let and

be two
weight lists, in which the th and th elements in
have the same value . By comparing and , we can con-
clude that

(37)

which achieves the relation of their communication complexi-
ties directly from (33) as follows:

(38)

This result shows that the average communication complexity
of our distributed algorithm to find the min-max spanning trees
with redundant link weights should not exceed the upper bound

given in (36) as well.
To our best knowledge, this is the first theoretical analysis to

show that a distributed algorithm can achieve an expected linear
communication complexity for the directed min-max tree
problem. Since the undirected min-max tree problem can be
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viewed as a special case, our algorithm can also apply to undi-
rected graphs. The best distributed algorithms known so far to
find an undirected min-max tree can be found in [15] and [16],
which use the technique of parallelly merging minimum sub-
trees to achieve a message complexity at order of

. We thus can conclude that our distributed algorithm outper-
forms them in terms of average message complexity for such
problems.

VI. DISCUSSIONS

In this section, we would like to further discuss the results
obtained so far with regard to several related problems in the
literature and also to explore more general conclusions.

A. Minimum Steiner Tree versus Min-Max Steiner Tree

The minimum Steiner tree and min-max Steiner tree have
been both received much attention in wireless networks for
energy-aware multicast problems. When the objective is to
minimize the total energy consumption of the multicast tree,
the minimum Steiner tree algorithms are especially of interest.
These algorithms are not optimal [22] since they tend to op-
timize link costs but not node costs, which can save energy
further by exploiting the broadcast advantage property. How-
ever, the minimum Steiner tree is still a good approach because
any Steiner tree algorithm with a constant-factor approximation
ratio gives rise to a heuristic for the minimum energy multicast
problem with a constant-factor approximation ratio as well
[23]. On the contrary, the min-max Steiner tree is an optical
approach when the objective is to maximize the lifetime of
multicast tree. This is because such optimization problem can
be modeled as a min-max tree problem [9]–[11] just based on
the broadcast advantage property.

B. Symmetric Directed Graph versus Directed Graph

We observe that the results in Section III, including the min-
max-tree max-min-cut Theorem and the centralized optimal al-
gorithms, are also correct in general directed graphs because
they are obtained without any dependency on the symmetric-arc
property. On the other hand, the proposed distributed min-max
tree algorithm exploits such property by allowing the Search-
Report messages to propagate in a reverse direction of the tree
arcs. Now, we consider extending the results in Sections IV and
V to directed graph under the condition of strong connectivity,
or a more relaxed condition in which for each arc ( , ) in G,
there must exist a directed path from to in as well. Note
that the latter is the weakest requirement that must be satisfied
in a communication network if the packet acknowledgement to
senders should be supported.

We assume an underlying shortest-path unicast protocol for
our distributed algorithm such that for any tree arc , node
can forward the Search-Report message to its parent node
through the route provided by the unicast protocol if the reverse
arc does not exist. Let be the hop number of directed
shortest-path from to and the radius of the network, i.e.,
the maximum hop number of any shortest path in the network.

In such network settings, the message component in (27) can be
rewritten as

(39)

in which the first term is the number of Grow-Request mes-
sages propagating along the tree arcs and the second term is
the number of Search-Report messages propagating backwards
through unicast routes. Equation (39) can also be expressed in
terms of the variable , i.e.,

(40)

Finally, the average message complexity is derived in a similar
way as in Theorem 7.

(41)

C. Min-Max-Tree Max-Min-Cut Theorem versus Max-Flow
Min-Cut Theorem

By reexamining the analysis in Section III, we find that the
(42) implied by the min-max-tree max-min-cut theorem has a
dual given in (43), which is referred as the max-min-tree min-
max-cut theorem.

(42)

(43)

The above max-min-tree min-max-cut theorem has a very close
relationship to the traditional max-flow min-cut theorem [24] to
be explained as follows.

Let weight be the link capacity of a directed graph . In
the case of single destination, i.e., , the maximum flow

from source to the destination across multiple
paths in can be achieved in (44) directly from the max-flow
min-cut theorem.

(44)

If we constrain the flow from source to the destination
only along a single path, the value of a flow is exactly equal
to the minimum link weight of this path , in

which the multicast tree degenerates into a directed path
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from to . This shall result in the corresponding maximum
flow to be achieved in (45) from our max-min-tree
min-max-cut theorem expressed in (43).

(45)

Equations (44) and (45) reveal the relationship of these two the-
orems in single-destination case. We now consider the multi-
destination case. The corresponding max-flow problem can be
modeled as a max-multicast-flow problem in a linear program-
ming form given in

(46)

(47)

(48)

(49)

(50)

Note that the capacity constraints in (50) are upon each indi-
vidual flow from source to a destination node , not the
accumulated flow

(51)

as required in the traditional multicommodity flow problem. We
observe that (45) is still true for the multidestination case, in
which each individual flow is constrained on a single path
from the source to the destination . This is because the value of
a multicast-flow that satisfies constraints (47)–(50) is exactly
equal to the minimum link weight of the tree, which is obtained
by superposing all directed paths from source to each destina-
tion node. Equation (44) shall also hold, as conjecture, for the
multidestination case, and we leave the strict proof in our future
work.

Finally, a corollary from this conjecture as the multicast ver-
sion of the Menger’s theorem [24] is provided below. It can be
easily obtained by applying (44) to a binary capacity network.

Corollary 5: Let be a finite undirected graph and
the multicast with source and nonempty destination node set

, . The minimum number of edges whose removal dis-
connects and at least one destination node in is equal to the
maximum number of edge-disjoint paths from to each desti-
nation node in .

VII. CONCLUSION

In this paper, we have systematically explored the properties
of min-max tree and described how to use them for the design
of a distributed algorithm. The scalability of the distributed al-
gorithm in terms of average communication overhead has been
also validated using theoretical analysis.

Recall that the communication complexity of the distributed
algorithm in the worst case is , which is worthy of further

exploration. One would be interested in improving this com-
plexity to the order , which is similar to the re-
sults in [15] and [16], or even to the same order as the average
case . Due to the importance of the problem in multihop
wireless networks, it is worth extending the results of this paper
to the networks using directional antennas [19]–[21] as a pos-
sible new research direction.

APPENDIX

PROOF OF LEMMA 2

In the case that each value is unique over the weight list
, the statement is true only if

. Thus, we can express the probability of
as follows:

(52)

We also observe that for a given link list , the
corresponding weight rank order is a permuta-
tion of . Under the condition

, the first elements in the list should
be selected only from the set with elements,
instead of the set with elements, to
satisfy the statement , resulting in the
conditional probability to be

(53)

We now can find the probability of by substituting
(53) and into (52) as follows:

Notice that we use the well-known combinatorial identity
, , to simplify the summation in

the above derivation.
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