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Abstract—The capacity of ad hoc wireless networks can be sub-
stantially increased by equipping each network node with multiple
radio interfaces that can operate on multiple nonoverlapping chan-
nels. However, new scheduling, channel-assignment, and routing
algorithms are required to fully utilize the increased bandwidth
in multichannel multiradio ad hoc networks. In this paper, we de-
velop fully distributed algorithms that jointly solve the channel-as-
signment, scheduling, and routing problem. Our algorithms are
online algorithms, i.e., they do not require prior information on
the offered load to the network, and can adapt automatically to
the changes in the network topology and offered load. We show
that our algorithms are provably efficient. That is, even compared
with the optimal centralized and offline algorithm, our proposed
distributed algorithms can achieve a provable fraction of the max-
imum system capacity. Furthermore, the achievable fraction that
we can guarantee is larger than that of some other comparable al-
gorithms in the literature.

Index Terms—Channel assignment, distributed algorithms, ef-
ficiency ratio, multichannel multiradio ad hoc wireless networks,
routing, scheduling.

I. INTRODUCTION

M ULTICHANNEL multiradio ad hoc wireless networks
have recently received a substantial amount of in-

terest, especially under the context of wireless mesh networks
[2]–[14]. It has been shown that one can significantly increase
the capacity of ad hoc wireless networks by equipping each
network node with multiple radio interfaces that operate on
multiple nonoverlapping channels. This is motivated by some
current wireless LAN standards (in particular, IEEE 802.11)
where the entire frequency band is divided into multiple chan-
nels, and each radio can only access one channel at a time.
Hence, if each network node has multiple radio interfaces, it
can then utilize a larger amount of radio bandwidth, and hence
can achieve higher system capacity. Even if each node still
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has only one radio interface, by operating neighboring nodes
at different channels, the amount of interference is reduced,
which also leads to higher system capacity.

Such multichannel multiradio networks pose an interesting
set of resource allocation problems, including: 1) channel-as-
signment: what are the set of channels that each node/link
should operate on? 2) scheduling: when should each link be
activated at each channel? and 3) routing: how does one select
paths that minimize interference and increase throughput?
These three problems are interrelated with each other, and thus
form a challenging cross-layer control problem across the MAC
layer and the network layer.

In this work, we are interested in control protocols for mul-
tichannel multiradio ad hoc networks that achieve high system
capacity. Although such control protocols for channel-as-
signment, scheduling and routing can be obtained via the
throughput-optimal algorithms in [15] and [16] that are known
to achieve the maximum system capacity, these algorithms are
centralized and often with exponential computational-com-
plexity. Hence, they are not easy to implement in real systems.
In this paper, we develop distributed and provably efficient
solutions to the above cross-layer control problem. By prov-
ably efficient, we mean that for any offered load that a given
multichannel network can ever support (possibly by using the
centralized and complex throughput-optimal algorithms of [15]
and [16]), our algorithms can guarantee to support at least a
constant fraction of this offered load on the same network. In
other words, our algorithms can achieve a provable fraction of
the maximum system capacity. Our proposed algorithms are
online algorithms, i.e., they do not require prior knowledge of
the offered load, and can automatically track the changes in the
network topology and offered load. The distributed and online
nature of our solution, combined with its provable efficiency,
differentiates our work from existing control algorithms in the
literature for multichannel multiradio ad hoc networks that
either do not guarantee provable performance bounds [2], [3],
[6], [10]–[14], require centralized and offline solutions [8], [9],
[11], [15], or only provide order-optimal scaling laws [5].

Our proposed algorithms are perhaps most comparable to the
polynomial complexity (but centralized) algorithm in [8], which
is also shown to guarantee a certain fraction of the maximum
system capacity. Compared with the centralized solution of [8],
the control algorithms proposed in this paper are not only dis-
tributed and much simpler, but also guarantee a higher frac-
tion of the maximum system capacity (see the comparison im-
mediately after Proposition 4 in Section IV-B for details). One
of the key differences between our approach and that of [8] is
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our assumption that, if the number of radio interfaces of a net-
work node is less than the number of channels, the network
node can switch radios from one channel to another dynami-
cally [2], [3], [6], [7], [9], [14]. In contrast, the work in [8] re-
quires radio-channel assignment to be fixed. It does incur addi-
tional overhead in order to enable dynamic channel switching,
which include both the hardware switching delay [2], and the
protocol overhead for changing channel-assignment. However,
these types of overhead could be reduced by improved hard-
ware technology and refined protocols. More importantly, we
believe that our results provide a strong motivation to pursue
such improved channel-switching hardwares and protocols be-
cause, by allowing dynamic channel switching, one can obtain
control protocols (like the one developed in this paper) that are
both simpler and with higher provable performance.

Our work is related to the recent progress in developing
distributed and provably efficient scheduling algorithms for
single-channel multihop wireless networks [17]–[24]. However,
as we will show in Section II-B, straightforward extensions
of some single-channel distributed scheduling algorithms to
multichannel networks may lead to very poor performance.
The reason is that, in multichannel networks, there may exist
channel-diversity. That is, due to both frequency-selective
multipath fading and different amount of background inter-
ference, each link can have different rate at each channel. In
Section III-B, we will provide examples to show that straight-
forward extensions of a well-studied single-channel distributed
scheduling algorithm, i.e., the Maximal Scheduling algorithm,
can perform very poorly in multichannel systems with channel
diversity. In contrast, the algorithms that we develop in this
paper can guarantee provable efficiency even with channel
diversity.

Our work is also related to the opportunistic scheduling algo-
rithms in cellular networks that use orthogonal frequency divi-
sion multiplexing (OFDM). Note that in OFDM, the transmitter
sends information over a large number of subcarriers (e.g., 52
subcarriers in IEEE 802.11a). Hence, OFDM systems can also
be viewed as a special type of multichannel multiradio wireless
systems. Opportunistic scheduling algorithms can significantly
improve the capacity of such systems by exploiting subcarrier
frequency-diversity (and also time-diversity) [25]–[27]. How-
ever, such opportunistic scheduling algorithms for cellular net-
works cannot be extended directly to ad hoc wireless networks
because of the distributed nature of ad hoc networks. On the
other hand, the algorithms that we develop in this paper can be
viewed as distributed opportunistic scheduling algorithms for
OFDM-based ad hoc wireless networks.

The rest of the paper is organized as follows. We first outline
the network model in Section II. In Section III, we illustrate the
important effect of channel diversity, and show that straightfor-
ward extensions of single-channel distributed scheduling algo-
rithms may perform very poorly in multichannel networks with
channel diversity. We then present a new distributed and prov-
ably efficient algorithm in Section IV. Simulation results are
presented in Section V. Then, we conclude.

II. SYSTEM MODEL

Consider a wireless network with nodes and links. Each
link corresponds to a pair of transmitter node and receiver node.

Let and denote the transmitter node and the receiver
node, respectively, of link . Let denote the set of all links
originating or terminating at node . There are frequency
channels in the system. In order to take into account possible
channel diversity, we use to denote the rate at which link
can transfer data on channel , provided that there are no in-
terfering links transmitting on channel at the same time. The
interference relationship is defined as follows. For each link ,
there is a set of links that interfere with . That is, if link
and another link in are transmitting on the same channel at
the same time, neither of the links can transfer any useful data.
We assume that the interference relationship is symmetrical, i.e.,

if and only if for any two links and . For sim-
plicity, we adopt the convention that . Note that the inter-
ference relationship is identical over all channels. Furthermore,
the channels are nonoverlapping. Hence, it is perfectly fine that
link and another link transmit at different channels at
the same time. The above interference model is very general and
can be used to model a large class of practical interference re-
lationships, including IEEE 802.11 DCF [19], [21], Bluetooth,
and FH-CDMA [28].

A key parameter that will impact the performance of the con-
trol algorithms proposed in this paper is the interference de-
gree [21], [22]. We first define a noninterfering subset of as
a subset of links in such that any two links in this subset do
not interfere with each other. The interference degree of
link is the maximum cardinality of any noninterfering subset
of . In other words, the interference degree of link char-
acterizes the potential loss of system capacity if link is sched-
uled, i.e., it is the maximum number of links that could have
been turned on simultaneously (without interference) if link
was not turned on. The interference degree of the whole net-
work is the maximum possible interference degree over all links.
Note that the interference degree of the system can often be de-
termined directly from the physical interference model, and thus
can be independent of the exact network topology. For example,
under the so-called node-exclusive interference model, each link
only interferes with other links that share a common node. This
model has been used to model Bluetooth and FH-CDMA net-
works, and its interference degree is 2. For the so-called bidirec-
tional equal-power model that approximates IEEE 802.11 DCF,
the interference degree is 8 [21].

Let be the number of radio interfaces available at node .
We assume that at any given time a radio can only tune to one
channel. Therefore, for link to successfully communicate on
channel , both the transmitting node and the receiving
node must tune one radio to channel . Like [2], [3], [6],
[7], [9], and [14], we assume that radios can switch channels
dynamically.

There are users in the system. Each user is associated with
a source node and a destination node. The traffic from each user
may be routed over multiple alternate paths. Let denote
the number of alternate paths for user . Let denote the
routing matrix, where if path of user traverses link
, , otherwise. We assume that time is divided into slots

of unit length. Let denote the number of packets that user
injects into the system at time-slot . For simplicity, we as-

sume that is i.i.d. across time, and is bounded from above
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(while our results can also be generalized to more general arrival
patterns, e.g., when packets arrive according to some Markovian
arrival processes). Let .

We assume that the channel assignment can be changed every
time-slot, and the time that it takes to switch radios between
channels is negligible compared to the length of each time slot.
For ease of exposition, in the rest of the paper whenever there
is no source of confusion, we will use the term “schedule” to
refer to both the channel assignment and the link schedule at a
time slot. At time slot , let denote the out-
come of the scheduling algorithm, where is the set of
noninterfering links that are chosen to transmit at channel at
time . Let denote the number of packets that link can
serve at time slot . Then . Let de-
note the fraction of traffic from user that is routed to path at
time slot . Furthermore, let denote the number of packets
queued at link at the beginning of time slot . The evolution of

may be written as

(1)

where denote the projection to . We say that the
system is stable if the queue lengths at all links remain finite
[16], i.e.,

almost surely as

Remark: Note that in (1) we have adopted the simplifying as-
sumption that packets from each user are applied to all links
along the path of user simultaneously. This assumption sim-
plifies the analysis of the paper, and allows us to focus on the
channel assignment and scheduling components of the problem.
In reality, packets have to traverse the links one at a time. There
are a number of known methodologies that can extend our model
to take into account this link-by-link packet dynamics [17], [19],
[20], [24]. One such approach is to assume that users can com-
municate the amount of transmitted traffic to all
links along path through an additional control channel, and let
each link update a “virtual” queue according to (1). Then, with
an appropriate packet scheduling policy at each link, one can
show that the real queue (with link-by-link packet dynamics)
is stable as long as the “virtual” queue defined by (1) is stable
[17], [29]. Hence, in this paper we will neglect the link-by-link
packet dynamics, and use (1) to describe the queue dynamics.

Let denote the offered load to the network.
The capacity region under a particular channel-assignment,
scheduling and routing algorithm is the set of such that the
system remains stable. Under possible routing constraints,
we define the optimal capacity region as the supremum
of the capacity regions of all algorithms. An algorithm is
throughput-optimal if it can achieve the optimal capacity region

. An algorithm is said to achieve an efficiency ratio of if
it can stablize the system under any load that lies strictly
in . By definition, a throughput-optimal algorithm has an

TABLE I
TABLE OF ALL NOTATIONS

efficiency ratio of 1. The key variables in the system model are
summarized in Table I.

III. GENERALIZATIONS OF SINGLE-CHANNEL SCHEDULING

ALGORITHMS TO MULTCHANNEL NETWORKS

In this paper, we are interested in distributed control algo-
rithms with provable efficiency ratios. A number of provably
efficient and low-complexity scheduling algorithms have been
proposed for single-channel multihop wireless networks [17],
[19]–[24]. One would naturally hope that the generalization
of these single-channel scheduling algorithms may lead to
equally efficient and low-complexity scheduling algorithms
for multichannel networks. Unfortunately, this is not always
the case. In this section, we study the generalization of two
such single-channel scheduling algorithms, i.e., Greedy Max-
imal Scheduling and Maximal Scheduling, to multichannel
networks. We will first show that the generalization of Greedy
Maximal Scheduling can still guarantee efficiency-ratios al-
most as tight as in single-channel networks. While this result
is encouraging, the complexity of Greedy Maximal Scheduling
grows linearly with the size of the network. It would be more
desirable that we can develop distributed scheduling algorithms
for multichannel ad hoc wireless networks with even lower
complexity. However, we will show that straightforward exten-
sions of Maximal Scheduling, an even simpler low-complexity
and distributed algorithm, can result in much lower efficiency
ratios in multichannel networks.

A. Greedy Maximal Scheduling

It is known that the maximum system capacity can be at-
tained by the following throughput-optimal scheduling algo-
rithm [15]–[17]: at each time slot , the schedule should
be chosen to maximize the queue-weighted rate-sum, i.e.,

(2)

Furthermore, if an algorithm can generate schedules whose
weights are guaranteed to be above a fraction of the maximum
weight in (2), then the algorithm will achieve an efficiency ratio
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of [17], [18]. The Greedy Maximal Scheduling algorithm
is one such algorithm. Roughly speaking, a schedule is
maximal if is a noninterfering schedule, and no more
links can be added to at any channel without violating
the interference constraint and radio interface constraint. The
Greedy Maximal Scheduling algorithm computes a maximal
schedule by always starting from the link-channel pair with the
largest queue-weighted rate . Specifically, the Greedy
Maximal Scheduling algorithm proceeds as follows in each
time-slot .

Greedy Maximal Scheduling:
(a) Form a set of all link-channel pairs . Define the

weight of each link-channel pair to be , where
is the current queue length at link . Start from an

empty schedule .
(b) First search for the link-channel pair with the largest

weight . Add link to .
(c) Remove from all link-channel pairs that cannot be

scheduled after is scheduled, due to either the in-
terference constraints in channel or the radio interface
constraints at end-points of link .

(d) Find the link-channel pair with the largest weight
from the remaining pairs in . Add link to

.
(e) Repeat Step (c) and Step (d) until no link-channel pairs

are left in .
Note that the above Greedy Maximal Scheduling algorithm

is a natural generalization of the Greedy Maximal Scheduling
algorithm for single-channel networks [17] and high-speed
switches [30].

The following proposition shows that Greedy Maximal
Scheduling can guarantee an efficiency ratio of in
multichannel networks, where is the interference degree de-
fined in Section II. Note that the Greedy Maximal Scheduling
algorithm has been shown to achieve an efficiency ratio of

in single-channel networks [17]. Thus, we can conclude
that its performance in multichannel networks is similar. For
simplicity, we only present the result for the case where each
user has one fixed path through the network. Let if the
path of user uses link , , otherwise.

Proposition 1: Assume that each user can only use one path,
and the routing matrix is given by . The above Greedy Max-
imal Scheduling algorithm can achieve an efficiency ratio of

. Furthermore, if for all , i.e., there are
no radio interface constraints, Greedy Maximal Scheduling can
achieve an efficiency ratio of .

The proof of Proposition 1 is provided in our online tech-
nical report [31], and is along the line of similar results for
switches [30] and for single-channel networks [17], [18]. The
main idea is to show that the weight of the schedule produced by
Greedy Maximal Scheduling is guaranteed to be above

of the maximum weight of the optimal schedule in (2). The
Greedy Maximal Scheduling algorithm can be implemented by
a centralized algorithm with complexity , where is
the total number of links. Alternatively, it may be implemented
by a distributed algorithm with time-complexity of (see

[32], which is a distributed variant of the algorithm in [33]1).
Note that in the literature, there are other algorithms that can
generate schedules with weights guaranteed to be above a cer-
tain fraction of the optimal schedule. Some of these algorithms
are distributed and have even lower complexity than Greedy
Maximal Scheduling (see, e.g., [34]–[36]). However, these dis-
tributed algorithms either guarantee lower approximation ratios
than Greedy Maximal Scheduling [34], or require additional
geometric constraints on the network topology [35], [36].

B. Maximal Scheduling

For single-channel networks, another algorithm called Max-
imal Scheduling is known to guarantee an efficiency ratio of

, is easy-to-implement in a distributed fashion, and has even
lower complexity than Greedy Maximal Scheduling. Under the
node-exclusive interference model, the complexity of Maximal
Scheduling can be as low as for single-channel
networks [37]. Hence, it would be interesting to see whether
extensions of Maximal Scheduling to multichannel ad hoc
wireless networks can also attain similar efficiency ratios as
Greedy Maximal Scheduling. Recall the definition of a max-
imal schedule in Section III-A. Mathematically, a maximal
schedule can be stated as follows.

Multichannel Maximal Scheduling: A multichannel max-
imal schedule consists of links that are backlogged, i.e.,

. Furthermore, for any link-channel pair
such that link is backlogged, at least one of the following is
true:

• either link is scheduled in channel , i.e., ;
• one of the interfering links to link (i.e., ) is

backlogged and scheduled in channel (i.e., );
• either the transmitter or the receiver of link has used up

all the radios, i.e., ,

or .
For single-channel networks, such Maximal Scheduling

algorithms have been shown to achieve an efficiency ratio
of . However, for multichannel networks with channel
diversity, such algorithms can perform much worse, because
the algorithm could pick the weakest (i.e., least capacity) links
at each channel into the maximal schedule. A slightly improved
version of Maximal Scheduling for multichannel networks
would be to enforce an additional constraint that the scheduling
pattern on all channels must be the same. Assume that
for all node , i.e., each node has enough radio interfaces to
access all channels simultaneously. Thus, if we aggregate all
channels together, the capacity of link is . We can
then define the following Aggregated Maximal Scheduling as
in single-channel networks.

1Although these algorithms are designed to compute matching for graphs,
it is not difficult to generalize them to multichannel networks. Essentially, a
link-channel pair can schedule itself if it is the “locally heaviest” [32], i.e., its
weight is larger than all other conflicting link-channel pairs. (Ties can be broken
using some preassigned ID numbers.) Otherwise, it will wait until the conflicting
link-channel pairs with larger weights have decided. Then, it will either give up
(if a conflicting link-channel pair with higher weight has been scheduled), or
schedule itself (if all other conflicting link-channel pairs with higher weights
have given up).
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Aggregated Maximal Scheduling:
• If link is scheduled, it will transmit over all channels si-

multaneously.
• For any link that is backlogged (i.e., ),

either link is scheduled, or some other backlogged link
is scheduled.

However, the performance of Aggregated Maximal Sched-
uling can still be very poor. We note that the weak performance
of Aggregated Maximal Scheduling has less to do with the in-
efficiency of single-channel Maximal Scheduling, but has more
to do with the fact that all channels are aggregated into a single
channel. In fact, the following example shows that, once all
channels are aggregated into a single channel, regardless of the
scheduling algorithm used, the efficiency ratio can be as low
as , where is the maximum number of links that inter-
fere with any link . To see this, consider a node 0 communi-
cating with nodes . Label the links between node 0 and
node as link . Assume that each link interferes with all other
links if they operate on the same channel. Hence, only one link
can be assigned to each channel at any time. Assume that the
total number of channels is also . Let the capacity of link at
channel to be 1, while its capacity at all other channels is .
Thus, if we aggregate all channels into a single channel, the ag-
gregate capacity of link is . Since only one link
can be activated at each time, the total capacity of the system is

. However, if we assign each link to operate on
channel , there will be no interference in the system, and the
total capacity of the system is thus . Hence, regardless of the
scheduling algorithm used, as approaches zero, the efficiency
ratio will be arbitrarily close to .

The above example clearly illustrates the weakness of
Maximal Scheduling algorithms in multichannel networks
with channel diversity. In particular, the above extensions of
Maximal Scheduling to multichannel networks fail to take into
account the channel diversity, and hence the performance of the
scheduling decisions can be very poor.

IV. DISTRIBUTED AND PROVABLY EFFICIENT MULTCHANNEL

CONTROL ALGORITHM BASED ON MAXIMAL SCHEDULING

Given the results in Section III, a natural question is then:
can we develop a distributed scheduling algorithm for multi-
channel multiradio ad hoc wireless networks that can guarantee
the same efficiency ratio as the Greedy Maximal Scheduling
algorithm, but with lower complexity comparable to Maximal
Scheduling? In this section, we will develop such a distributed
scheduling algorithm. Interestingly, our new scheduling algo-
rithm still uses maximal schedules. Obviously, in order to avoid
the inefficiency illustrated in Section III-B, we must be able
to properly take into account channel diversity. In this work,
we introduce a novel two-stage queueing mechanism to address
channel diversity, and to prevent links from using channels that
are weak (i.e., with smaller capacity).

The basic idea of two-stage queueing is as follows. Packets
arriving to each link are served in two steps. The first step is
a logical assignment of the packets to channels: packets that ar-
rive at each link are assigned to queues that correspond to each

channel . The second step is the actual scheduling of radio in-
terfaces and links: radios are assigned to channels according
to maximal schedules, and packets in the channel queues are
served. The key of two-stage queueing is to ensure that, in the
first step, packets are less likely to be assigned to link-channel
pairs that are “weak.” Thus, the “weak” links do not even partic-
ipate in the maximal schedules in the second step. Clearly, the
main difficulty is how to determine in a distributed and online
fashion which link-channel pairs are “weak.” As we will show
next, our algorithm makes this decision intelligently by using
the queue length information at both the per-link level and the
per-channel level.

A. Single-Path Case

For ease of exposition, in this subsection we first focus on
the case where each user only has one fixed path through the
network. Let if the path of user uses link , ,
otherwise. Our proposed multichannel multiradio scheduling
algorithm works as follows. Each link maintains queues.
There is one queue for each link , which represents the
backlog of packets at link that have not been assigned to
channel queues yet. At the same time, each link maintains
channel-queues . The per-channel queue
represents the backlog of packets assigned to channel by link
that are still waiting to be served. Note that both and evolve
as a function of time , and in general . At
each time slot , the following algorithm is executed.

Algorithm :
• Step 1: Define to be the number of packets that link

can assign to channel at time-slot . For each link , let

otherwise (3)

where is an arbitrary positive constant chosen for link .
Then, link drains packets from

, and assign them to each channel queue2. Let
be the actual number of packets assigned to each

channel queue . Recall that in the same time slot, link
also receives new packets. The evolution
of is thus given by

(4)

where

(5)

2This assignment can be more precisely described as follows: If � ��� �
� ���, then � ��� � � ��� for all channel �. Otherwise, choose any

� � � ��� � � ��� such that � ��� � � ���. For example, if there are
three channels, � ��� � �� � ��� � �� � ��� � �, and � ��� � �, then we can
choose, as an example, � ��� � � ��� � � ��� � �.
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• Step 2: Based on the channel queues , Multichannel
Maximal Scheduling (as in Section III-B) is carried out
to determine the channel-assignment and link schedules.
Mathematically, this means that again consists of
links that are backlogged in channel (which is now
defined as ). Furthermore, for any link-channel
pair that is backlogged, one of the statements
under the Multichannel Maximal Scheduling algorithm
in Section III-B must hold. Then at the end of step 2, the
evolution of each channel queue is given by

(6)

Remark: The assignment in (3) is the key to ensure that links
will only be scheduled on their “strong” channels. Roughly
speaking, this rule means that packets will have a better chance
to be assigned to a channel-queue if the corresponding rate

is large (note that appears in the denominator of the
right-hand side). Note that in (3) each link only needs to know
the channel-queue-length at interfering links. This rule
can be best explained by interpreting the quantities and

as “price” signals. The quantity can be interpreted
as the congestion cost at link (due to the imbalance between
the external arrivals and the system capacity). The quantity

can be interpreted as the contention cost at link
(due to the interference on channel from links in the inter-

ference set ). The quantities

and can be interpreted as the

radio costs at the transmitter node and receiver node ,
respectively, of link . Hence, each link will assign traffic to
channel at the maximum rate only if the contention cost
of the channel plus the radio cost, weighted by the channel
capacity , is smaller than the congestion level at the link.

Note that in the definition of Multichannel Maximal Sched-
uling in Section III-B, we have explicitly given priority to links
that are backlogged. Similarly, in Step 2 of Algorithm SP, we
only require the link-channel pairs that are backlogged (i.e.,

) to participate in the schedule computation in each
channel. As a result, the updated channel-queue in (6) is always
nonnegative. It is possible that, in addition to a multichannel
maximal schedule, one can simultaneously activate additional
link-channel pairs that are not backlogged (i.e., )
and that still satisfy the interference constraints and the radio
interface constraints. Specifically, we can modify Step 2 as fol-
lows: If after computing multichannel maximal schedule for
backlogged link-channel pairs, there are still other link-channel
pairs that could be activated, we can include those link-channel
pairs into the schedule as long as they do not interfere with the
link-channel pairs that have been scheduled. In this case, the
evolution of the channel queue becomes

(7)

where consists of both and the additional link-
channel pairs that are scheduled but are not backlogged. This
modification will help to more quickly drain those queues that
are not backlogged. Our main result (Proposition 2) does not
require scheduling those link-channel pairs that are not back-
logged, and hence applies to both update (6) and update (7).

The following main result shows that the efficiency ratio of
Algorithm is identical to that of Greedy Maximal Sched-
uling in Section III-A.

Proposition 2: Assume that each user can only use one path,
and the routing matrix is given by . The efficiency ratio
of our proposed algorithm is where is the
interference degree defined in Section II.

Proof: We will show that for any such that some sched-
uling algorithm can stabilize the network at the offered load

, Algorithm will stabilize the system at the offered
load . We use the following Lyapunov function to establish
stability

(8)

where

Let . Since
we assume that is bounded, we have

where upper bounds for any and .
According to (5), whenever

. Hence, we can show that

for some constant . Similarly, we can show that
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where is a positive constant and

(9)

Note that this inequality holds even if we replace the channel-
queue update (6) by (7), because the activation of link-channel
pairs that are not backlogged only further decreases the differ-
ence . Therefore, the Lyapunov drift

can be bounded by

for some positive constant .
Since there exists some scheduling algorithm that can stabi-

lize the system at the offered load vector , there must
exist some for each such that

for all link (10)

for all link and channel (11)

for all node (12)

where can be interpreted as the long-term average amount of
service that link received at channel , and is a small positive
number. Note that the inequality (10) is due to the rate-balance
at link . Inequality (11) is due to the interference constraint, i.e.,
there can be no more than links activated simultaneously in
any interference range . The inequality (12) is due to the radio
interface constraint, i.e., there can be no more than link-
channel pairs incident to node that are activated simultaneously
(see [8] and [9]). Let . We thus have

for all link (13)

for all (14)

Therefore, we have

(15)

Let

By definition of Multichannel Maximal Scheduling (see
Section III-B), whenever . Using
(13)–(14), we thus have

(16)

(17)
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Recall that . Then, by Step 1 of Algorithm , the
third term in (17) is nonpositive. Therefore

The stability of the system then follows [16].
If for all node , i.e., when there are no radio in-

terface constraints, a tighter efficiency ratio can be shown by
slightly modifying Algorithm . In particular, we can remove
from (3) the radio costs (i.e., the last two terms). We can then
use the following Lyapunov function:

Following the line of proof of Proposition 2, and noting that the
last two terms of (14) can also be removed. We can then show
the following tighter result.

Proposition 3: Assume that each user can only use one path,
and the routing matrix is given by . Furthermore, assume
that for all node . The efficiency ratio of the modified
Algorithm is .

In both cases, the distributed Algorithm achieves the
same efficiency ratio as the higher-complexity Greedy Maximal
Scheduling algorithm in Section III-A.

We briefly discuss the choice of in (3). The parameter
will affect the balance between the link-queue and

channel-queues . If is too large, Algorithm may
not move packets from the link-queue to the channel-queues
even when there is a large backlog in the link-queue . On
the other hand, if is too small, then the per-channel queue
needs to be fairly large before the algorithm can avoid “weak”
channels. In practice, we find that the algorithm performs
satisfactorily when is chosen to be at the same magnitude as

, which leads to comparable lengths of link-queues
and channel-queues.

B. The Multipath Case

We next extend Algorithm to the case when each user can
use multiple alternate paths. For the moment, we assume that
each user is provided with alternate paths through the net-
work, and we will study how each user should optimally route
packets among these alternate paths. Then, in Section IV-C, we
will discuss how these paths should be computed. Let if
the th path of user uses link , and , otherwise. Define

to be the fraction of incoming packets from user that are
routed to path . Let . Obviously,

and for all user . Let .
We can then generalize Algorithm to the following joint
channel-assignment, scheduling and routing algorithm.

Algorithm : At each time slot :

• Step 1: Each user computes the routing fractions
as the solution to the following optimization problem:

(18)

(19)

where is the routing matrix, is a positive number
chosen for each source , and is a constant chosen
for each path of source . Each user then routes each
arriving packet independently to path with probability

. Let be the actual fraction of packets that user
routes to path at time . Note that

.
• Step 2: This step is the same as Step 1 of Algorithm ,

except that the queue evolution (4) becomes3

• Step 3: This step is the same as Step 2 in Algorithm .
Remark: The optimization problem (19) is formulated in

such a way that the routing fraction is larger for a path
with a smaller congestion cost . Note that
each user only needs to know the sum of the queue length
along its own paths. An efficient algorithm for solving this
optimization problem with -complexity is
provided in [38]. The parameter is optional and it allows
each user to give preference to certain paths. For example,
can be equal to a positive constant multiplied by the number
of hops along each path of user , in which case the paths
with a smaller number of hops are given preference. The
quadratic term in the objective function of (19) is essential
to prevent potential routing oscillation. To see this, note that
if , then when (19) is solved for any user that has
multiple alternate paths, only paths that have the smallest cost

will have positive . This property
can easily lead to oscillation of the routing fractions when
the queue length is being updated [39]. On the other hand,
with the addition of a quadratic term, the objective function
of (19) becomes strictly concave. The optimal routing fraction
then becomes a continuous function of the queue length .
Thus, routing oscillation is eliminated. The parameter can
also control how sensitive the routing fraction is with respect
to the queue length. By setting to be a larger constant, the
routing fraction will become less sensitive to the transient
queue dynamics.

3Note that here again we use the assumption that packets from each user � are
applied to all links � along the path of user � simultaneously. Correspondingly,
the choice of the routing probability in (19) is also based on this “virtual” queue.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:00:19 EDT from IEEE Xplore.  Restrictions apply. 



1882 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

The following result shows that Algorithm can achieve
at least of the maximum system capacity, compared
with a throughput-optimal algorithm using the same set of al-
ternate paths.

Proposition 4: Assume that the set of alternate paths are
given. If for all links , then the efficiency ratio of Algo-
rithm is . Furthermore, if for all node ,
then the efficiency ratio can be improved to .

Remark: The authors of [8] also developed a joint channel
assignment, scheduling and routing algorithm, which has been
shown to achieve an efficiency ratio of (see
[8, Theorem 2]). The algorithm in [8] is an offline and central-
ized algorithm. In contrast, Algorithm that we developed in
this paper is distributed and much simpler. Furthermore, when
Algorithm uses the same set of paths as computed by the
Linear-Programming based algorithm in [8], it can guarantee an
efficiency ratio of , which is higher than that of [8]
if some network nodes only have a small number of radio inter-
faces. We refer the readers to the discussions in the Introduction
regarding the difference between our work and [8], and the po-
tential implications.

Proof of Proposition 4: We only provide the proof for the
efficiency ratio . We use the same Lyapunov function
in (8). Following the steps in the proof of Proposition 2, we can
bound the Lyapunov drift as

Since can be supported by the optimal policy, similar
to (13) and (14), there must exist some and , such that

for all link

for all

We thus have

(20)

(21)

where is some constant. Note that except the first two terms
(20) and (21), the remaining terms are the same as (15) in the
proof of Proposition 2. To show stability, it then suffices to en-
sure that (20) and (21) have negative drifts. From (20), we have
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According to Step 1 of Algorithm

Hence, the term (20) can be bounded by

On the other hand, the second term (21) is less than

The rest of the proof then follows along the same line as the
proof of Proposition 2.

It is also possible to combine Greedy Maximal Scheduling
with Step 1 of Algorithm to obtain a multipath version
of Greedy Maximal Scheduling. By combining the Lyapunov
function in the proof of Proposition 1 (see [31]) with the tech-
niques in the proof of Proposition 4, we can show that the mul-
tipath version of Greedy Maximal Scheduling also guarantees
an efficiency ratio of in general, and an efficiency
ratio of when for all node . In Section V, we will
compare the performance of these two distributed algorithms
through simulation.

C. How to Generate Alternate Paths

The set of alternate paths, denoted by the matrix , could
potentially be the enumeration of all possible paths between
each source-destination pair. In practice, however, a much
smaller set of alternate paths suffices. We next describe options

to compute and maintain this set of alternate paths. First, we
could use the paths computed by any of the routing algorithms
in [2], [6], [8]–[12]. Proposition 4 then ensures that the capacity
region of Algorithm is no worse that times the
maximum capacity that can be achieved by using the same set
of paths.

A more attractive alternative is to discover paths online. Note
that the queue-length also provides us with the signal to
discover potentially better paths. Given a set of alternate paths,
we can easily verify the following property for Step 1 of Algo-
rithm . For each user , those paths with positive routing
fractions must satisfy the following condition:

(22)

Therefore, adding paths with congestion costs
larger than will not yield any gain. We can use this

property to iteratively generate the candidate paths online. Con-
sider the case when for all paths. Starting from any
initial set of candidate paths, we execute Algorithm for
joint routing, channel-assignment and scheduling. Then, every

time-slots (our simulation uses ), we can run a
minimal cost routing algorithm using the queue-length as the
cost-metric for each link. If the minimal cost is smaller than

defined in (22), we add this new path into the set of
alternate paths, and continue. Otherwise, we can conclude that
no further alternate paths need to be added. In practice, in order
to reduce the number of paths added, we may add new paths
only when the minimal cost of the new path is smaller than

. Our simulation results in the next section use
and still exhibit satisfactory performance.

D. How to Compute Maximal Schedules

For single-channel systems and under the node-exclusive
interference model, efficient algorithms for computing a
maximal schedule (which reduces to maximal matching) in

-time have been provided in [37]. We believe that
the idea there can also be generalized to multichannel systems
and to more general interference models. Below we sketch
one algorithm that can compute a maximal schedule for multi-
channel systems in logarithmic-time, assuming that the size of
the interference sets is bounded, i.e., for all links .
For ease of exposition, we assume that each node has only
one radio interface [because the multiple-interface case can be
mapped to the single-interface case by mapping each physical
node to multiple copies of logical nodes (see [40])]. Like [37],
this algorithm proceeds in phases. Each phase computes a
(not necessarily maximal) schedule from a system . At the
initial phase , the system is the original network. After
each phase , the system at the next phase is obtained
from by removing those link-channel pairs that either have
already been scheduled, or cannot be scheduled any more due
to interference constraints or radio interface constraints. The
algorithm ends when have no link-channel pairs left, and
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the maximal schedule is the union of the schedules computed
in all phases.

The algorithm in each phase proceeds as follows. First, a
collapsed graph is constructed from such that an edge

is in if and only if there is a link in any channel
in system . We assume that there exists a separate control
channel with which each node can communicate with its adja-
cent nodes. We then use the algorithm from [37] to compute
a (not necessarily maximal) matching in this collapsed graph

. Then, for each edge belonging to the matching, the two
end-points (say, and ) decide on a channel such that link

is available for scheduling in channel in system . The
two end-points then tune one radio to channel . One of the end-
points (say ) picks a random backoff time between 1 to

. If node does not hear any other transmissions
in channel from its interfering links before its own backoff
time expires, it sends an RTS (Request-to-Send) to the other
end-point (in this case ). Node then responds with a CTS
(Clear-to-Send) if it also has not heard other transmissions in
channel from its interfering links. Using this random-backoff
procedure, in each channel any link with a smaller backoff time
than all of its interfering links will win. All link-channel pairs
that win will be added to the schedule computed in this phase.

We can show that this algorithm has expected time-com-
plexity of . To see this, note that according
to the result in [37], at least a third of the edges in are
“good edges” (readers can refer to [37] for the definition
of “good edges”). For each good edge, in each phase with
probability at least it is either included in the
matching computed by the algorithm in [37], or adjacent to
another edge in the matching. For each edge in the matching,
the probability that its corresponding link can win in the above
random-backoff procedure is at least (see [23]).
Since we assume that there is only one interface at each node,
whenever a link wins, all links that share a common node with
this link will be removed from the system. Using these facts,
we can then conclude that in each phase, the average fraction
of edges that will be removed is bounded from below by a
constant that is inversely proportional to . Hence, the
expected number of phases to completion is , and
the total time to compute a multichannel maximal schedule is

.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
algorithms through simulation. Our simulations are based on the
network topology shown in Fig. 1. There are 16 nodes (repre-
sented by circles) and 24 links (represented by dashed lines).
For simplicity, we assume a node-exclusive interference model
in our simulations, i.e., only links that share a common node
interfere with each other [17], [28]. We also use the simplified
equation (1) to model the queue evolution.

We first consider a single-hop scenario. We will compare the
performance of the fixed-path Algorithm , the Greedy Max-
imal Scheduling algorithm and the Aggregated Maximal Sched-
uling algorithm in Section III. We assume that there are 8 avail-
able channels in the system, and each node has 8 radios so that

Fig. 1. Network topology.

Fig. 2. Comparison of Algorithm �� with Greedy Maximal Scheduling and
Aggregated Maximal Scheduling.

it can transmit/receive on 8 channels simultaneously. In our sim-
ulation, the capacity of each channel for each link is randomly
chosen as an integer from 1 to 5, which models channel-diver-
sity. The single-hop flows are represented by arrows in Fig. 1.
We let the rate of each flow be . Note that although the rates
of the flows are the same, the composition of the flows has
been chosen to avoid uniform patterns. For Algorithm , we
have chosen the parameter in (3) to be 100 for all links,
so that the per-link queues and the channel-queues are on the
same order of magnitude. Furthermore, in order to reduce the
queue backlog as much as possible, after computing the multi-
channel maximal schedule in Step 2 of Algorithm , we do
schedule additional link-channel pairs that are not backlogged
if they do not interfere with the multichannel maximal schedule.
In Fig. 2, we plot the mean total backlog in the network di-
vided by the total number of flows as the packet arrival rate
increases. When approaches a certain limit, the mean backlog
will increase to infinity. This limit can then be viewed as the
boundary of the capacity region under the particular channel-as-
signment and scheduling algorithm. Furthermore, we modify
the rate control algorithm in [41] to compute the highest value
of that the network can support under the throughput-op-
timal (and centralized) channel-assignment and scheduling al-
gorithm (2). In Fig. 2, this highest value of is shown as the
right-most vertical line. We observe from Fig. 2 that both Al-
gorithm and Greedy Maximal Scheduling achieve approx-
imately 40% higher capacity than Aggregated Maximal Sched-
uling, and their capacity on this network topology is fairly close
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TABLE II
SIMULATIONS OF 10 RANDOM CASES: THE VALUES IN THE TABLE REPRESENT THE CAPACITY ACHIEVED BY EACH ALGORITHM

Fig. 3. Performance of Algorithm �� .

to the optimal capacity. Therefore, by exploiting channel-diver-
sity, our new proposed algorithms can significantly improve the
system capacity. We have also randomly simulated ten cases,
each with different assignments of the link-channel capacities

. In Table II we have listed the maximum capacity achieved by
Aggregated Maximal Scheduling, Algorithm , and Greedy
Maximal Scheduling, respectively, and compare with the op-
timal capacity computed by the rate-control algorithm of [41].
The relative performance of the algorithms are consistent with
the observations in Fig. 2.

Our second set of simulations consider the same network
topology in Fig. 1, but now with three available channels and
with multipath routing. We randomly pick eight source-destina-
tion pairs. We then run Algorithm with one, two and three
radios for each node. As discussed in Section IV-C, in these
simulations we maintain at most four alternate paths for each
source-destination pair. Every time-slots, we update
the alternate paths according to the online strategy described in
Section IV-C. Specifically, we first compute the minimum-cost
path using the queue length as the cost metric. (The optional
parameter in (22) is chosen to be zero.) Then, the new min-
imum-cost path is added into the set of alternate paths if its cost
is less than 3/4 of in (22). If there are already four alter-
nate paths between a source-destination pair, the existing path
with the smallest routing fraction is replaced by the new path.
We also choose the parameter in (19) to be 1000, so that
the routing fractions are not too sensitive to the transient queue
updates. In Fig. 3, we plot the mean total backlog in the net-
work divided by the total number of users when there are one,
two, and three radios for each node. As expected, the network
capacity increases as the number of radios increases. We also
show in Fig. 4 the performance of Greedy Maximal Scheduling
when used with a multipath routing algorithm as in Step 1 of

Fig. 4. Performance of the Greedy Maximal Scheduling with multipath
routing.

Algorithm . In both figures, we have drawn vertical lines
that correspond to the largest values of that the network can
support with one, two, and three radios per node, respectively.
These largest values of are computed by the joint rate con-
trol and routing algorithm in [41], using the throughput-optimal
channel-assignment and scheduling algorithm (2), along with
back-pressure based routing. We observe that with multipath
routing, the performance of Greedy Maximal Scheduling on
this network topology is still quite close-to-optimal. The per-
formance of Algorithm is worse, although it is still above
the lower bound guaranteed by the efficiency ratios in Proposi-
tion 4. (Note that under the node-exclusive interference
model used in these simulations.)

VI. CONCLUSION

In this paper, we develop fully distributed algorithms that
jointly solve the channel-assignment, scheduling and routing
problem for multichannel multiradio ad hoc wireless networks.
The algorithms that we developed, in particular Algorithm
and Algorithm , are amenable to distributed implementa-
tions. They do not require prior information on the offered load
to the network, and can thus adapt automatically to the changes
in the network topology and offered load. We show that these al-
gorithms are provably efficient. That is, even compared with the
optimal centralized and offline algorithm, our proposed algo-
rithms can achieve a provable fraction of the maximum system
capacity. Furthermore, the achievable fraction that we can guar-
antee is larger than that of the centralized and offline algorithm
in [8].

The results in this paper have a number of interesting im-
plications to the design of efficient and channel-aware control
protocols in broadband wireless networks. Firstly, they provide
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additional insights that motivate the study of multichannel con-
trol protocols. Note that in many protocol settings, multichannel
systems arise because the protocol a priori divides the spec-
trum into multiple channels. One could argue that, if we can re-
design the system so that the entire spectrum is used as a single
channel, then single-channel protocols will suffice. The results
of this paper indicate that this is not always the case. In partic-
ular, when there is frequency diversity in the system (e.g., due
to frequency-selective multipath fading), it will be more advan-
tageous to divide the spectrum into multiple channels, and to
use channel-aware multichannel control algorithms in order to
exploit channel diversity. In contrast, if the entire spectrum is
used as a single channel, then as illustrated by the example in
Section III-B, the system performance can be much worse when
there is channel diversity.

A second closely related question is how to best use OFDM.
As discussed in the Introduction, OFDM can be viewed as a spe-
cial case of multichannel systems. Current wireless LAN proto-
cols (such as IEEE 802.11a/g) use OFDM by grouping all sub-
carriers into one single channel, which again does not fully ex-
ploit channel diversity. Perhaps in future protocols, we should
consider incorporating subcarrier scheduling capabilities into
the protocol.

Third, a main difference between the protocol developed in
this paper and that of some earlier work (e.g., [8]) is that we
allow the network nodes to switch channel dynamically. Current
state-of-art IEEE 802.11 hardware may take up to a few mil-
liseconds to switch channels [2], [42], [43]. In addition, our al-
gorithm requires some protocol overhead to collect local queue-
length information, and to instruct the transmitter and receiver
nodes which channel(s) they should switch to. However, by al-
lowing this channel-switching capability, the algorithm that we
have developed are much simpler and can be shown to guar-
antee a higher efficiency ratio. Therefore, we believe that our
results provide a strong motivation to pursue such improved
channel-switching hardwares and protocols in the future.

The solutions in this paper are related to the duality ap-
proach for solving some underlying optimization problems that
approximate the interference constraints by linear inequality
constraints [44]. In particular, the queues and can
be viewed as Lagrange multipliers for the underlying linear
constraints. There are other distributed algorithms [45]–[47]
that may be used to provide fast solutions to linear programs,
such as fractional packing problems. However, these studies
do not directly address the problem of how to schedule the
links in order to satisfy the interference constraints in wireless
networks. Nonetheless, it would still be useful to explore joint
channel-assignment, scheduling, and routing algorithms based
on the ideas in these works.

In our future work, we plan to study practical issues for im-
plementing the proposed algorithms. Note that in real imple-
mentations, additional protocols need to be carefully designed
in order to: a) exchange channel-queue-length information be-
tween interfering links so that each link can assign traffic to
channel queues according to (3); b) feedback the queue-length
information to the source so that the source can make routing de-
cisions according to (19); and c) account for actual link-by-link
packet dynamics [see the remarks under (1)]. Past studies in the

literature have suggested that these protocol overheads could be
substantially reduced without significantly affecting the actual
performance of the algorithm [19], [20], [23], [48]–[50]. For fu-
ture work, we plan to carefully address these protocol issues and
study their impact on the actual system performance. Finally, the
performance gain due to multichannel scheduling will likely de-
pend on the level of channel diversity. How to characterize this
gain in realistic settings is also an interesting direction for future
work (see [40] for some related results).
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