
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Distributed Cross-Layer Algorithms for the Optimal
Control of Multihop Wireless Networks

Atilla Eryilmaz, Member, IEEE, Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano

Abstract—In this paper, we provide and study a general frame-
work that facilitates the development of distributed mechanisms
to achieve full utilization of multihop wireless networks. In partic-
ular, we describe a generic randomized routing, scheduling, and
flow control scheme that allows for a set of imperfections in the
operation of the randomized scheduler to account for potential
errors in its operation. These imperfections enable the design of a
large class of low-complexity and distributed implementations for
different interference models. We study the effect of such imper-
fections on the stability and fairness characteristics of the system
and explicitly characterize the degree of fairness achieved as a
function of the level of imperfections. Our results reveal the rela-
tive importance of different types of errors on the overall system
performance and provide valuable insight to the design of dis-
tributed controllers with favorable fairness characteristics. In the
second part of the paper, we focus on a specific interference model,
namely the secondary interference model, and develop distributed
algorithms with polynomial communication and computation
complexity in the network size. This is an important result given
that earlier centralized throughput-optimal algorithms developed
for such a model relies on the solution to an NP-hard problem at
every decision. This results in a polynomial complexity cross-layer
algorithm that achieves throughput optimality and fair allocation
of network resources among the users. We further show that our
algorithmic approach enables us to efficiently approximate the
capacity region of a multihop wireless network.

Index Terms—Congestion control, fair allocation, dynamic
routing, multihop wireless networks, network optimization, ran-
domized algorithms, throughout-optimal scheduling.

I. INTRODUCTION

T HERE has been considerable recent interest in developing
network protocols to achieve the multiple objectives of

throughput maximization and fair allocation of resources among
competing users. Much of the work in wireless communica-
tion networks has focused on centralized control and has de-
veloped throughput-optimal policies (e.g., [16], [32], and [43]).
However, these policies do not directly lend themselves to dis-
tributed implementation, which is essential in practice. In this
paper, we provide a class of randomized routing, scheduling and
flow control algorithms that achieve throughput-optimal and fair

Manuscript received May 08, 2008; revised March 09, 2009 and April 30,
2009; approved by IEEE/ACM TRANSACTIONS ON NETWORKING EDITOR F.
Paganini. This work was supported by DTRA Grant HDTRA1-08-1-0016,
the Control-Based Mobile Ad-Hoc Networking (CBMANET) Program under
DARPA Subcontract 060786; and by ARO Muri Grant W911NF-08-1-0238.

A. Eryilmaz is with the Department of Electrical and Computer Engineering,
The Ohio State University, Columbus, OH 43210 USA (e-mail: eryilmaz@ece.
osu.edu).

D. Shah, A. Ozdaglar, and E. Modiano are with the Lincoln Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
asuman@mit.edu; devavrat@mit.edu; modiano@mit.edu).

Digital Object Identifier 10.1109/TNET.2009.2030681

resource allocations that is amenable to distributed implemen-
tation with polynomial communication and computation com-
plexity.

In their seminal work, Tassiulas and Ephremides developed
a joint routing-scheduling algorithm that stabilizes the network
whenever the arrival rate of the exogenous flows are within
the stability (capacity) region. In [42], Tassiulas showed that
randomized algorithms can be used to achieve maximum
throughput in input queued switches with linear computational
complexity. To improve the exponentially high delay perfor-
mance of [42], [19] introduced randomized algorithms for
switches. Other research—for example, [1], [16], [24], [32],
and [36]–[39]—has contributed to the analysis of centralized
throughput optimal policies in wireless networks.

In this paper, we provide a scheduling-routing algorithm com-
bined with a congestion controller for a general system model
whereby multihop flows are considered. Following the approach
of [29], we allow various types of errors to occur during the
scheduling operation, which facilitates the design of distributed
implementations. One of the main contributions of the paper is
the explicit characterization of the effect of different types of
errors on the overall performance. Additionally, this paper con-
tributes to the study of resource allocation in multihop wireless
networks in several fundamental ways.

First, we propose a generic cross-layer mechanism with three
components: a randomized scheduling component and a routing
component (implemented by the network nodes) aimed at allo-
cating resources to the flows efficiently, and a dual congestion
control component (implemented at the sources) aimed at regu-
lating the flow rates to achieve fairness. To facilitate distributed
implementation, several types of imperfections are allowed in
the scheduler, as in [29]. In this paper, we further add a routing
component to the framework to optimally steer multihop traffic
and a congestion control component that regulates the flow rates
to achieve fair division of the resources among flows, where
fairness is defined using the utility-maximization framework of
Kelly et al. [22], [23] and further improved in subsequent works
[27], [40], [46].

Second, we study the proximity of the achieved rate alloca-
tion with generic cross-layer scheme to the fair allocation and
explicitly characterize the performance loss as a function of
the imperfections of the underlying scheduler. Moreover, by re-
vealing the relative importance of different types of errors on
the performance, our analysis also yields principles for efficient
design of distributed network controllers.

Third, for the secondary interference model,1 we show that
our cross-layer mechanism can be implemented via distributed

1In the secondary interference model, two links interfere if they share a node
or if there is a link that connects any of the end nodes of the two links. This inter-
ference model prevents real-world issues such as the hidden terminal problem
(see [33]).

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

algorithm. This approach involves the operation of two sequen-
tial algorithms. A novel feature of these algorithms is their
operation on an appropriately constructed conflict graph. The
use of the conflict graph leads to a partitioning of the network,
whereby the decisions can be made independently in different
partitions. Moreover, the operations on the conflict graph can
be mapped into network-level operations using the special
structure of the problem. These distributed algorithms not only
achieve throughput-optimal and fair allocations, but also have
polynomial communication and computation complexity.

Finally, our policy suggests an algorithmic method of esti-
mating the stability region of multihop wireless networks, which
is otherwise a very difficult task to characterize.

This work differs from our earlier relevant works [12]–[14] in
that: [12] studies the performance cross-layer algorithm with a
pick-and-compare scheduler, but without any errors and does
not propose any specific implementable algorithm; [13] pro-
poses a low-complexity algorithm, but still does not allow for
any errors; [14] allows for errors, but only allows single-hop
traffic and, thus, has no routing component. Other related works
include [11], [26], [28], and [44], which develop distributed al-
gorithms that guarantee 50% utilization of the stability region
for a primary interference model.2 While distributed implemen-
tation of these algorithms is possible, this comes at the cost of
sacrificing a significant portion of the capacity of the network
(see, for example, [5] and [6]). As more general interference
models are considered, even more of the capacity of the network
needs to be sacrificed for distributed implementation (e.g., [7]
and [45]). For example, in the case of a secondary interference
model with the grid topology, distributed implementation can
only guarantee 12.5% of the capacity of the network. [29] also
used [42] to develop distributed schedulers by utilizing Gossip
mechanisms.

More recently, the throughput performance of greedy max-
imal matching schedulers is investigated for general interfer-
ence models and geometric graphs [20], which proves that 1/6
of the stability region is guaranteed to be achievable by such
schedulers. In other recent works [4], [21], distributed sched-
ulers are proposed with attractive delay characteristics.

The rest of the paper is organized as follows. In Section II,
we describe the system model and our goal. In Section III, we
describe a generic randomized scheme for scheduling-routing-
congestion control and prove its throughput-optimality and fair-
ness properties. In Section V, we use the randomized scheme to
design and analyze distributed algorithms for the secondary in-
terference model. Finally, in Section VI, we provide simulation
results.

Throughout the paper, we denote the dot product of two vec-
tors, say and as .

II. SYSTEM MODEL AND GOAL

Consider a wireless network that is represented by an undi-
rected graph, which has a node set (with car-
dinality) and a link set (with cardinality). We assume a
time slotted system with synchronized nodes, where each slot
is long enough to accommodate a single packet transmission
over each link in unless there is interference. We refer to the
flow that enters the network at node and leaves it at node as

2In the primary interference model, each feasible allocation consists of links
that do not share a node, i.e., each feasible allocation is a matching.

Flow- . We let denote the vector of
arrivals to the network in slot , with corresponding to
the arrivals for Flow- . We use the notation to de-
note the mean flow rate of Flow- in slot , i.e.,

. Then, the mean flow rate of Flow- is defined
as whenever it exists.

We consider a general interference model specified by a set
of link-pairs that interfere with each other, i.e., when their con-
current transmissions collide. We assume that if two interfering
links are activated in a slot, both transmissions fail. Note that
this includes a large class of graph-theoretic interference models
considered in the scheduling literature (e.g., the primary inter-
ference model [6], [26], [44], [35] or the secondary interference
model [2], [7], [45]).

We use to denote a link allocation
vector (or schedule) at time , and to denote the set of feasible
allocations where a feasible allocation is a set of links in which
no two links interfere with each other. We introduce the nota-
tion to distinguish packets destined for different nodes:

At any given slot is 1 if link serves a
packet destined for node in that slot, and 0 otherwise. This im-
plies that for all . At
each node, a buffer (queue) is maintained for each destination.
We let denote the length of the queue at node destined
for node at the beginning of slot . Evolution of when

satisfies

(1)
where . Also

is a shorthand for the maximum number of packets that can be
internally routed to node that are destined for node . Sim-
ilarly, are the maximum
number of packets that can leave node and are destined for
node . When we set for all because in
that case the packets have already reached their destination.

Next, we introduce the concepts of network stability and ca-
pacity region.

Definition 1 (Stability): A given queue, say is stable

if . The network is stable if all

queues are stable; and unstable otherwise.
Definition 2 (Capacity [Stability] Region): The capacity

(stability) region is the set of for which
there exists an algorithm that can stabilize the network.3

Given the general model described above, our goal is to de-
sign distributed algorithms that achieve throughput-optimality
and fair allocation of the network resources among the flows.
Following the extensive literature on the topic (e.g., [15], [32],
[39], and [43]), we call a policy throughput-optimal if it can sup-
port any mean flow rate in the capacity region without violating
the network stability.

3Note that, under this definition, the capacity region is monotone, i.e., if �� �
�, then �� � �� (component-wise) must also be in �.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 3

To define fairness, we use the “utility maximization” frame-
work of economics: With each flow, say Flow- , we asso-
ciate a utility function , of the mean flow rates whereby

is a measure of the utility gained by Flow- for
the mean flow rate . We assume, based on the law of dimin-
ishing returns, that the function is concave and nonde-
creasing for all flows. Then, a mean flow rate vector is referred
to as a fair allocation if it is an optimal solution of the convex
optimization problem

(2)

Hence, a fair allocation is a mean flow rate vector that maxi-
mizes the aggregate utility over all flows in the network. It is
known that by defining appropriately, different types
of fairness, such as proportional or max-min fairness, can be
achieved [15], [22], [23], [25], [27], [31], [40].

III. GENERIC CROSS-LAYER SCHEME

In this section, we provide the description of a generic
congestion control-routing-scheduling scheme that achieves
the throughput-optimality and fairness goals of Section II.
The scheme combines ideas from recently studied congestion
controllers designed for wireless networks (e.g., [8], [15], [26],
[31], [41]) and the randomized scheduling strategy introduced
by Tassiulas in his seminal work [42]. Our algorithm not only
extends the use of randomized scheme of [42] to multihop
networks with general interference models, but also utilizes the
parallel use of a dual congestion controller to achieve fairness.

The generic scheme is composed of three components: the
scheduling and routing components that are implemented by the
network and the congestion control component that is imple-
mented by the users (or the sources of the flows). The scheduling
component builds on two algorithms: one called PICK, which
randomly picks a feasible allocation satisfying a specific con-
dition [see (5)]; and the other called UPDATE, which contains a
network-wide comparison operation [see (6)]. In the operation
of PICK and UPDATE algorithms, we allow for various types of
imperfections and relaxations to accommodate errors and to fa-
cilitate distributed implementations. We will comment on the
nature of these imperfections and relaxations after the descrip-
tion of the cross-layer scheme. The routing component deter-
mines which packets to be served over which links so as to opti-
mize their routes. Finally, the congestion controller component
adjusts the rate of injected traffic into the network to fully utilize
the resources, i.e., to solve (2).

The scheme operates in stages, each stage containing a fi-
nite number of time slots where the number of slots is a design
choice. The scheduling-routing and congestion control decision
is updated at the beginning of each stage and is kept unmodified
throughout the stage.

Definition 3 (Generic Cross-Layer Scheme): The cross-layer
algorithm is composed of three components: a randomized
scheduler with imperfections characterized by the parameters

; a routing component that steers packets toward
optimal paths; and a congestion controller component that
regulates the amount of injected traffic into the network to
maximize the network utilization. Next, we describe each of
these components.

SCHEDULING COMPONENT: The scheduling
component determines the service rates of all the links in
the network, namely by performing the following
operations.

• At stage for each link we define its
weight as

(3)

which is also referred to as the maximum differential
backlog ([16], [32]) of link .

• Let the optimum feasible allocation for be

(4)

where and are defined subsequent to (1).
• PICK: Scheduler randomly picks any feasible allocation

that satisfies, for some fixed

for all and (5)

• UPDATE: The schedule for time is updated such
that it satisfies

(6)

for some .

ROUTING COMPONENT: Once the link rate vector is
determined by the scheduler, the router determines which
packets to transmit over them.

• Let . Then,

— if Serve packets

from to and
— if Serve packets

from to .

Before describing the congestion controller component, we
remark that the parameters in the above scheduler cap-
ture different type of imperfections and relaxations. relaxes
the constraint of picking the optimum feasible allocation in each
iteration, hence, significantly reduces the complexity of this op-
eration. captures the potential errors in the computation of the
total weight of the randomly selected schedule. captures the
potential errors in the comparison of the weights of the previous
and the random scheduler. The imperfections included in the
scheduling component are likely to occur when randomized or
distributed methods are employed to perform these operations.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

DUAL CONGESTION CONTROL COMPONENT:

• Let denote the queue-length vector at the beginning
of stage . Then, each node, say generates
packets to be transmitted to node for each such
that

(7)

where and are positive scalars, and is used
to denote .

Notice that (7) is equivalent to solving

(8)

and also note that if there exists no flow from to we
can define to get .

Our goal in this work is to understand the effect of the im-
perfections captured by parameters on the optimality
(or fairness) characteristics of the cross-layer mechanism. Our
framework covers various schedulers that are introduced in
the literature (e.g., [29], [34], [42]). In particular, [34] yields a
scheduler for the first-order interference model with
and where is a design parameter. Also, [29] contains
algorithms with as well as gossip-based algo-
rithms with arbitrarily small parameters. None of these
works, however, contain a study of the cross-layer scheme
with congestion control. Hence, our analysis of the generic
cross-layer scheme will be directly applicable to all these
cases. In Section V, we will introduce a new algorithm that
is applicable to higher order interference models and use our
results to show that it achieves optimality using operations that
grow polynomially with the number of nodes.

IV. ANALYSIS

In this section, we study the throughput-optimality and fair-
ness properties of the proposed generic cross-layer scheme. Our
analysis relies on the notions of -relaxed stability region and
-fair allocation, which we define next.

Definition 4(-Relaxed Stability Region,):

Definition 5 (-Fair Allocation,):

Note that as , we have . Let us define a new
state, which forms a Markov Chain under our
generic cross-layer scheme.

In the following theorem, we focus on the scheduling-routing
component of the algorithm by assuming that the mean flow
rates lie inside the -relaxed stability region. Here, we assume

that the arrivals are inelastic, i.e., their statistics are not modified
throughout the operation of the scheduling-routing component.
Later, we will add the congestion control component into the
framework.

Theorem 1: Assume that is independent and identi-
cally distributed (i.i.d.)4 for all and flows with

. Assume that is chosen such that

where is the maximum degree of the network,
and and are the parameters of the generic cross-layer
scheme.

Let the Lyapunov function be defined as
. Then, for any mean arrival vector

the scheduling-routing
policy guarantees, for some finite

where is a bounded positive number and is a positive con-
stant.

Proof: The proof is moved to the Appendix.
An immediate consequence of Theorem 1 is provided next.

Corollary 1: The generic cross-layer algorithm stabilizes any
traffic with a mean flow rate vector lying inside

.
Proof: Pick to be larger but arbitrarily close to

. Then, from Theorem 1, we have

for some . This shows that the Foster–Lyapunov crite-
rion is satisfied (see, e.g., [3]), and, therefore, we must have

.
The scheduling-routing component of the above algorithm is

based on [42], whereby the existing feasible allocation is com-
pared to a randomly picked feasible allocation, and the one
with the larger total weight is implemented in the next stage.
The same strategy is also used in a recent work [29] that de-
velops another deterministic distributed algorithm for the pri-
mary interference model and randomized algorithms based on
gossiping techniques that are applicable to more general inter-
ference models. In other works (e.g., [26] and [6], [7], [20], [34],
and [45]), low-complexity implementations have been proposed
at the expense of different levels of efficiency loss for the pri-
mary interference model. However, many of these results are not
applicable in the higher interference models scenarios.

The next theorem studies the impact of the parameters
in the proposed cross-layer mechanism on its stability

and fairness characteristics. Earlier works in this context (e.g.,
[15], [26], [31], and [41]) are applicable only to the case of a
centralized scheduler. Below, we extend these results in the

4The assumption of i.i.d. arrivals is not critical to the analysis. The same re-
sults continue to hold for processes with mild ergodicity properties [17].

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 5

presence of a randomized scheduling-routing component with
imperfections.

Theorem 2: For any generic cross-layer scheme,
there exists finite constants, , such that: For any

for which we have

(9)

(10)

where and

.

Proof: The proof utilizes the Lyapunov-based analysis and
the technique introduced in [31] together with Theorem 1. Re-
call that and that the definition of the Lyapunov
function introduced in Theorem 1 is: .
Then, by using the same arguments as in the derivation of (16)
and (17), it can be shown that

for some finite constants that were introduced in
the Proof of Theorem 1. Next, we add and subtract

and rear-

range the terms to get

Lemma 1:

where is defined in Definition 5.
Proof: [Lemma 1] Note that the congestion control mech-

anism picks to solve (8). Since we have
that satisfies

for all .
We use Lemma 1 in the previous expression to get

(11)

where the last inequality follows from the application of The-
orem 1 to (11).

Next, we take the expectation of both sides of the inequality
to eliminate the conditioning, and then take the telescoping sum
of such -step drifts to obtain

(12)

(13)

(14)

(15)

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

where we define . Noting that

for all feasible and rearranging the terms in this
expression, we can obtain

Also noting that for each
we have

which, when combined with the previous inequality, yields

for some when is large enough.
Next, we reorganize the terms in (12)–(15) in a different way

to obtain

Also revoking Jensen’s inequality, we have

Combining these two results as letting we have

where is as defined in the statement of the theorem, and
is a bounded number. This completes the proof.

Theorem 2 reveals the effect of the errors and relaxation in
the operation of the scheduler. In particular, we see that when

and the cross-layer scheme achieves op-
timal performance. Also, we observe that the effect of can be

detrimental unless it is significantly smaller than . In compar-
ison, the effect of appears to be milder if it can be made small.
Ideally, we would like to design schedulers with ,
in which case optimal performance can be guaranteed. In the
next section, we propose one such scheduler that is applicable
to second-order interference model, but can also be extended to
higher order interference models.

V. ALGORITHM DESIGN

In Section III, we studied the throughput and fairness prop-
erties of a cross-layer mechanism that can be applied to a large
class of interference models. We observed that a scheduler with

and achieves optimal performance. In this
section, we focus on the secondary interference model and out-
line a distributed low-complexity algorithm with these parame-
ters. We will also note a modification to our algorithm that yields

.
Our approach, which inherits its main components from [42],

involves the sequential operation of two algorithms, which we
refer to as PICK and COMPARE. The PICK algorithm is a random-
ized, distributed algorithm that yields a feasible schedule
satisfying (5) in finite time. The COMPARE algorithm compares
the total weights of the old schedule with the new schedule

according to (6) in a distributed manner. An important fea-
ture of the COMPARE algorithm is the use of the conflict graph
of the two schedules. On the conflict graph, a spanning tree can
be constructed in a distributed manner and used for compar-
ison of the weights of the two schedules in polynomial time.
The conflict graph enables a natural partitioning of the network,
whereby decisions can be made independently in different par-
titions in a distributed manner. As we will show, the operations
on the conflict graph can be mapped to the actual network oper-
ations owing to the special structure of the problem.

The schedule used for packet transmissions is updated at the
beginning of each stage. Throughout a stage, packet transmis-
sions are performed according to the schedule updated at the be-
ginning of that stage. In parallel with the packet transmissions,
PICK and COMPARE algorithms are implemented. Since the same
medium is shared, the data packet transmissions can collide with
the control messages generated by these algorithms. To prevent
such collisions, time is divided into two intervals, namely the
control signaling interval (CSI), during which control messages
are locally communicated, and the data transmission interval
(DTI), during which data packets are transferred (see Fig. 1).
Notice that both PICK and COMPARE algorithms operate during
CSI, while queue-lengths are updated during DTI. It is assumed
that all the nodes are synchronized to the same CSI/DTI divi-
sion of time. This assumption can be relaxed by adding a buffer
interval between CSI and DTI to accommodate propagation de-
lays. Alternatively, the control signaling can be performed over
an orthogonal channel through frequency division. Finally, we
assume that each transceiver can perform carrier sensing during
transmission without the need to decode its reception.5

It is important to note that in our algorithm the overhead intro-
duced by the control signaling can be made arbitrarily small by
increasing the length of a stage to a high enough value. This fact
follows from the fixed amount of control messages required by

5This assumption is not critical, but simplifies the PICK algorithm description
and analysis. When it is relaxed, the first step of the algorithm need to be mod-
ified to let each transceiver transmit randomly to a random neighbor without
sending a previous RTS.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 7

Fig. 1. Division of time into data transmission and control signaling intervals.

our algorithm per stage. Thus, the number of control messages
versus the data messages in a stage can be made negligible by
increasing the stage duration. This will naturally result in slower
convergence, but the stability and fairness results of Theorem 2
will continue to hold.

We assume that each node has a unique ID number picked
from a totally ordered set. Let denote the ID number of
node . Then, unique ID numbers can be assigned to links, de-
noted by for link . This assump-
tion is essential for each node (and link) to identify its neigh-
boring nodes (and links), and will be used in the distributed im-
plementation of our algorithms.

A. PICK Algorithm

In this section, we present a distributed algorithm that ran-
domly picks a feasible allocation with the property that any
feasible allocation has a positive probability of being chosen as
required by (5). In the description of the algorithm, when we say
a node withdraws, we mean that the node stops its search for a
feasible link during the current stage, but continues to listen to
other transmissions. The algorithm makes sure that each node
has a positive probability of attempting transmission at the be-
ginning of the algorithm. The idea is to send Ready-to-Send
(RTS) and Clear-to-Send (CTS) packets including the ID num-
bers of the nodes in order to create a feasible allocation. By ap-
pending ID numbers to the RTS/CTS packets, the algorithm en-
ables each node to have a list of those links in its local neigh-
borhood that are picked by the algorithm.

Definition 6 (PICK Algorithm): At every node perform
the following steps:

(A1) In step 1, with probability for some
transmits a (RTS) message.

(A1a) If senses another transmission during its (RTS) trans-
mission, it withdraws.

(A2a) If does not sense another transmission, in step 2,
it chooses one of its neighbors, say randomly with equal
probabilities, and transmits (RTS,).

(A2b) If observes a collision, it withdraws.
(A3a) If gets ’s message, in step 3, it sends back a (CTS)

message.
(A3b) If senses another transmission during its (CTS)

transmission, it withdraws.
(A3c) If observes an idle, it withdraws.
(A4a) If does not sense another transmission during its

(CTS) transmission, in step 4, it transmits (CTS,).
(A4b) If does not receive ’s response, it withdraws.
(A5) In step 5, transmits (CTS,), and the link

between and is activated; link is added to .
The algorithm assures between steps (A1) and (A2a) that no

two transmitters are neighboring each other; at (A2b), that no
transmitter is a neighbor to a receiver; between (A3a) and (A4a),
that no two receivers are neighbors. Finally, during (A4a) and

(A5), the picked link is announced to the neighbors of the re-
ceiver and the transmitter, respectively.

Notice that the algorithm need not result in a maximal feasible
allocation6 at its termination. This does not influence the results
of Theorem 2, but will have an effect on the rate of convergence
of the algorithm. With a simple modification, the above algo-
rithm can be extended to obtain a maximal feasible allocation
and hence better convergence properties.

Proposition 1: The above PICK algorithm satisfies the fol-
lowing:

(i) The resulting is a feasible allocation.
(ii) It takes at most five transmissions per node to terminate.

(iii) The probability of picking any feasible allocation is at
least where is the

maximum degree7 of . In particular, since is a fea-

sible schedule, we have
.

(iv) At the termination, for any link all the neigh-
bors of and are aware of ’s state, i.e., know
whether is in or not.

Proof: Step (A1a) assures that if two neighboring nodes
attempt to transmit, they sense each other and withdraw. In
step (A2b), the event that more than one neighbors of a node
are attempting to transmit is detected, and in that event, all of
the transmitters withdraw from transmission in step (A3c). Fi-
nally, step (A3b) guarantees that two neighbors do not become
receiving ends of two different links. Thus, all the events that
leads to interfering links are eliminated in these steps, and the
resulting allocation must be feasible, which proves (i). Claim (ii)
follows immediately from the construction of the algorithm.

To prove Claim (iii), note that if the initially picked set of
links in steps (A1) and (A2a) happen to be feasible, they are
not eliminated throughout the algorithm because the algorithm
is designed to eliminate only those links that interfere with each
other. Thus, we are interested in finding a lower bound on the
probability of picking a given feasible schedule, say at
the start. Thus, we need to have exactly nodes, one from
each link in choose to transmit in step (A1) (which hap-
pens with probability , and all the remaining nodes must
be silent (which happens with probability).
If each of those nodes which chose to transmit, picks its out-
going link that lies in for transmission in step (A2a) (which
happens with probability), then the resulting
schedule will be exactly . Hence, the probability that PICK

yields a given feasible schedule is
where the last step fol-

lows from .
Claim (iv) follows from the fact that the links that are ac-

tivated are announced to neighboring nodes via the message
(CTS,), and therefore all the neighbors know the IDs
of the activated links in their two-hop neighborhood.

We note that this algorithm does not depend on the queue-
lengths, which greatly simplifies its implementation, because no
queue-length information exchange is necessary between neigh-
boring nodes. Furthermore, due to part (iii), the best allocation
must also have a positive probability. This fact together with

6A maximal feasible allocation is a set of links to which no new link that does
not interfere with any of the existing links can be added.

7������ ��� � � � ����� � �� �� ����� � ���.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

parts (i)–(iii) prove that the algorithm is actually sufficient for
Theorem 2 to hold. At the end of PICK, gives a feasible allo-
cation, that is known only locally. In particular, due to part (iv)
of Proposition 1, every node knows those links of its neighbors
that are in .

B. COMPARE Algorithm

In this section, we propose and analyze a distributed al-
gorithm that compares the total weight associated with two
feasible schedules, and , with local control signal
transmissions and choose the one with the larger weight as the
schedule to be used during the next stage. We note that this
algorithm also applies to interference models other than the
secondary interference model. In the following, we will omit
the time index for ease of presentation.

The algorithm relies on constructing the conflict graph as-
sociated with and , which contains information about inter-
fering links in the two schedules. The conflict graph

of and can be generated as follows:8 Each link
in corresponds to a node in the conflict graph, and if
links and interfere with each other, an edge is
drawn between the nodes corresponding to and in the con-
flict graph. Note that since both and are feasible schedules,
no two links in the same schedule (or) can interfere with
each other, i.e., there is no edge between two nodes of the same
schedule in . Every node in can compute its own weight [as
defined in (3)] and has a list of its neighbors in by part (iv)
of Proposition 1. We will develop the algorithms using the con-
flict graph and show at the end of this section that the special
structure enables us to map the operations to the graph .

Our COMPARE Algorithm is composed of two procedures
that are implemented consecutively: FIND SPANNING TREE

and COMMUNICATE & DECIDE. The FIND SPANNING TREE

procedure finds a spanning tree for each connected component
of in a distributed fashion. Then, the COMMUNICATE and
DECIDE procedure exploits the constructed tree structure to
communicate and compare the weights of the two schedules in
a distributed manner.

To illustrate the definitions and operation of the algorithms,
we consider the grid network depicted in Fig. 2. In this net-
work, nodes are located on the corner points of a grid, and each
interior node has four links incident to it. To demonstrate the
construction of the conflict graph, suppose we are given two
feasible schedules, and . In the figure, solid bold links be-
long to schedule while dashed bold links are in . We use
dash-dotted thin lines to connect the links of the two schedules
that interfere with each other. In general, it is not necessary that
the conflict graph be connected. For example, in Fig. 2, we ob-
serve six disconnected components. The conflict graph corre-
sponding to the largest connected component is given in Fig. 3,
where links in are drawn as circular dots, while links in are
drawn as square dots.

Remark 1: Disconnected components of the conflict graph
can decide on which schedule to use, independent of each other.
This is possible because by construction of the conflict graph
the resulting schedule is guaranteed to be feasible even if the
choices of two disconnected components are different. This de-
composition contributes to the distributed nature of the algo-

8We use � �� to denote the cardinalities of � �� . Also, we will refer to
� ����� simply as � for convenience.

Fig. 2. 8� 10 grid network example with two feasible schedules indicated by
solid and dashed bold links. The conflict graph decomposes into six discon-
nected components.

Fig. 3. A connected component of the conflict graph from which the link
crossed is eliminated to obtain a spanning tree. The path of the minimum
token is indicated with arrows. The nodes are labeled with numbers for future
reference.

rithm. Namely, the size of the graph within which the compar-
ison is to be performed is likely to be reduced. Notice that with
this approach, the chosen schedule may be a combination of the
two candidate schedules, and because different connected
components may prefer different schedules. This merging oper-
ation will result in a schedule that is better than both and .

Based on this remark, henceforth our algorithm will focus on
the decision of a single connected component.

1) FIND SPANNING TREE Procedure: The object of the FIND

SPANNING TREE procedure is to find, in a distributed fashion,
a spanning tree for each of the connected components in the
conflict graph. In our model, every node in the conflict graph

corresponds to an undirected link in the original graph
and has a unique ID.9 In order to compare two link IDs, we use
lexicographical ordering.10

Our distributed FIND SPANNING TREE procedure is based on
token generation and forwarding operations. For the construc-
tion of a spanning tree, at least one token needs to be generated
within each connected component. This can be guaranteed by
requiring every node in the conflict graph that has the lowest ID
number among its neighbors to generate a token. Each token,
carrying the ID of its generator, performs a depth-first traversal
(cf. [9]) within the connected component to construct a span-

9In [18], it was shown that unique IDs are required to be able to find a spanning
tree in a distributed fashion.

10Without loss of generality, assume ����� � ����� and ����� � ����� �
If ����� � �����, then ������� � ����� �� for all �� �; if ����� � �����
and ����� � ������ then ������� � ����� ��.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 9

ning tree. This token progressively adds nodes into its spanning
tree while avoiding the construction of cycles. An example is de-
picted in Fig. 3 for the largest connected component of Fig. 2.

The above procedure focuses on the operation of a single
token generated at one of the nodes within the connected
component. In general, there may be multiple tokens generated
within the same connected component. Each token attempts
to form its spanning tree labeled with its ID number (i.e., the
ID number of the token’s generator). Since only one spanning
tree is required at the end of the procedure, our algorithm is
designed to keep the spanning tree with the smallest ID number
while eliminating the others. This elimination is performed
when the token of a spanning tree enters a node that has already
been traversed by another token. If the incoming token has
smaller ID, then the token ignores the previous token and
continues the construction of its tree, and if its ID is larger, then
it is immediately deleted. We have the following proposition
for this algorithm.

Proposition 2: Consider the conflict graph
and let denote the maximum degree of . The FIND

SPANNING TREE Procedure finds a spanning tree of all com-
ponents of the conflict graph in time11, and with

message exchanges for each . Also, at the
termination of the procedure, every node has a list of
its neighbors in the constructed spanning tree.

Proof: To prove that the constructed subgraph by the
smallest token is in fact a spanning tree, we need to show that
every node is in the formed subgraph, and that the subgraph
contains no cycles. To argue that every node must be in the
subgraph, let us assume, to arrive at a contradiction, there is
a node, say that is not in the subgraph but is within
the connected component. If any of ’s neighbors had held the
token at any time, then it must have attempted to forward the
token to before it sends the token back to its parent. However,
if a token attempt is made to , it will ACCEPT it because it
is the first time it encounters such an attempt. This argument
implies that none of the neighbors of can be in the subgraph.
If the same arguments are made repeatedly, this implies that
the whole subgraph must be empty. However, we know that
the node that generates the token is in the subgraph by default.
Hence, we get a contradiction, and the subgraph must contain
every node within the connected component. The argument
that the subgraph contains no cycles follows from the fact that
every node ACCEPTs only those token transmissions that do
not form a cycle. Thus, the resulting subgraph must be acyclic.

The procedure is constructed so that whenever a token with
a larger ID crosses any node of the spanning tree being con-
structed by a token with a smaller ID, the token with the larger
ID along with its spanning tree is eliminated. By definition, a
spanning tree has to contain every node and thus all the tokens
must meet with the spanning tree of the smallest token some-
time. Therefore, by the end of the procedure, only the spanning
tree of the smallest token survives.

To compute the complexity, we take into account the com-
plexity of resolving potential collisions of tokens. It is not diffi-
cult to see that each such collision can be resolved in
message exchanges. Since an operation of operations
must be performed for times, we need time

11���� � ������� means that there exists a constant � � � such that
���� � ����� for � large enough.

Fig. 4. The iterative communication of the weights of the two schedules from
the leaves to the root for the spanning tree of Fig. 3.

for the operation to complete. However, each node will only
transmit messages in the process only when it is re-
ceiving and transmitting a token. Since, there are at most
tokens in the system, the number of messages transmitted by
each node is .

We note that the FIND SPANNING TREE procedure that we de-
scribed here is deterministic and achieves in the context
of the generic cross-layer scheme of Definition 3. Alternatively,
a randomized gossip style mechanism can be used that yields

(see [30]). Theorem 2 can be used to understand the fair-
ness characteristics of both approaches.

2) COMMUNICATE and DECIDE Procedure: We use the span-
ning tree formed on the conflict graph to compare weights. The
idea is to convey the necessary information from the leaves up
to the root of the tree (i.e., COMMUNICATE Procedure) so that
the schedule with the higher weight is chosen [cf. (6)], and then
send back the decision to the leaves (i.e., DECIDE Procedure).
The COMMUNICATE and DECIDE procedure can be explained in
two parts as follows.

COMMUNICATE: The leaves communicate their weights to
their parents. If the parent is in it adds its weight to the sum
of the weights announced by its children. If, on the other hand,
it is in it subtracts its weight from the sum of its children’s
weights. The resulting value becomes the new weight of the
parent. Then, the parent acts as a leaf with the updated weight
in the next iteration. This recursive update is repeated until the
root is reached.

DECIDE: At the end of COMMUNICATE, the weight of the root
of the spanning tree will be . Depending
on whether the root’s weight is positive or negative, the root de-
cides or respectively, as the better schedule, and broadcasts
its decision down the tree.

An example of this procedure is provided in Fig. 4 for the
spanning tree given in Fig. 3. We have the following complexity
result for this procedure.

Proposition 3: Consider the conflict graph
and let denote the maximum degree of . The
COMMUNICATE and DECIDE procedure correctly finds the
schedule with the larger weight in time.

Proof: The algorithm is designed so that when node
transmits its current sum to its parent, the value of the sum is
the difference of the weights of schedule and only for the

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

subtree rooted at . Thus, the sum at the root of the spanning
tree is the difference of two weights of schedule and . The
decision is a simple comparison of the sign of this sum. This
decision is broadcast to the children of the root, and hence all
the nodes in the connected component knows about the better
schedule and can switch to it by the end of the procedure. The
depth of the spanning tree can be at most , and each colli-
sion resolution operation can take at most time. Thus,
the whole algorithm terminates in time.

Notice that the complexity results in the propositions are
given in terms of . We can translate them into bounds on

through the following inequalities: .
Thus, combining Propositions 1–3 with Theorem 2 yields the
following theorem.

Theorem 3: The distributed implementations of PICK and
COMPARE Algorithms designed for the secondary interference
model asymptotically achieve throughput-optimality and fair-
ness with time and message exchanges per node,
per stage.
We conclude the section with a few important remarks.

Remark 2: The algorithms we develop in this section operate
over the conflict graph . The transformation of these opera-
tions into operations in the actual graph would be difficult for
a general conflict graph. However, in our scenario the graph has
a special structure that enables the mapping. The critical obser-
vation is that transmissions within a feasible schedule has no
interference. Thus, links that form and can perform op-
erations in by partitioning CSI (cf. Fig. 1) into two disjoint
time intervals. During the first interval, only links that make up

communicate, while in the second interval only nodes that
make up communicate. The operation of each link can easily
be mapped into operations at its two end nodes by assigning one
node to each operation, who will then coordinate the operation.
With such a separation of time, the operations described for the
conflict graph can be translated into operations in the actual net-
work.

Remark 3: Recall from Remark 1 that the conflict graph is
likely to be composed of multiple disconnected components,
which increases the distributed nature of the algorithms. Even
though we did not pursue this direction here, this likelihood can
be increased by dynamically modifying the activation probabil-
ities, in the PICK Algorithm so that the picked schedule
has more disconnected components. This way, the localized na-
ture of the algorithm can be improved.

VI. SIMULATIONS

In this section, we provide simulation results for the dis-
tributed algorithms developed in Section V for the grid topology
(see Fig. 2). We use the notation to refer to the node at the

row and column of the grid. Throughout, we simulate
utility functions of the form which corre-
sponds to weighted proportionally fair allocation (see [23] and
[40]).

We first consider a network of size 6 6, with four flows:
Flow-1 from to , Flow-2 from to , Flow-3
from to , and Flow-4 from to . Here, we
are interested in the evolution of the throughputs of each flow
for and for each . The simula-
tion results are depicted in Fig. 5. We observe that the through-
puts of the flows converge to different values depending on their

Fig. 5. The throughput evolution of the 6� 6 network for� � ���� � � ���.

source-destination separation. For example, Flow-2 achieves the
highest throughput since its source is only two hops from its des-
tination. The fluctuations in the evolutions are due to the random
nature of the algorithm, which tracks the queue-length evolu-
tions.

Next, we simulate a 10 10 network with two flows: Flow-1
from to , and Flow-2 from to . Here, we
focus on the throughputs achieved for the flows as a function
of with varying for each flow. We aim to observe the
mean flow rates as functions of and . Notice that
each combination corresponds to a different weighting
for the weighted-proportionally fair allocation. Thus, for a fixed

the throughputs corresponding to different combina-
tions actually outline the rate region that the algorithm achieves
for that . Then, as grows Theorem 2 implies that this region
grows at a decreasing rate, until it converges to the stability re-
gion .

We performed simulations for varying from 10 to 100,
and ranging from to with at
each intermediate point. The simulation results are provided in
Fig. 6. We observe that for a given , the rate region is a convex
region. Also, as grows, the region expands at a decreasing rate
agreeing with our expectations. We further note that with this
algorithmic method, the stability region of a wireless network,
which is otherwise difficult to find, can be determined with high
accuracy.

While our work focuses on optimizing the long-term network
utilization metric, we note that, for many applications, delay
is just as important a metric to optimize. We note that the in-
terference-limited nature of the medium along with the ran-
domized implementations are causes of delay degradations. Our
simple, randomized algorithm is quite general and is oblivious
to network structure and scheduling constraints. Any low-com-
plexity algorithm with such generality is unlikely to achieve low
delay [10]. Yet, there is potential for delay performance im-
provements, which constitutes the motivation for our ongoing
works in this direction.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 11

Fig. 6. Throughputs of flows with varying � and �� � � �.

VII. CONCLUSION

We provided a framework for the design of distributed cross-
layer algorithms for full utilization of multihop wireless net-
works. To that end, we first described a generic scheduling-
routing-congestion control mechanism that allows for various
imperfections and relaxations in its operation which facilitates
the design of distributed implementations. We studied the sta-
bility and fairness characteristics of the generic cross-layer algo-
rithm and explicitly characterized the effect of different type of
imperfections on its performance. We saw that certain types of
imperfections are more detrimental than others, which revealed
the critical components in the design of algorithms.

Based on this foundation, we developed specific distributed
algorithms for the secondary interference model. For this model,
existing throughput-optimal strategies require that an NP-hard
problem be solved by a centralized controller at every time in-
stant. In this work, we showed that this is not necessary, and
full utilization of the network can be achieved with distributed
algorithms having only polynomial communication and compu-
tational complexity.

An important by-product of our approach is the use of the de-
veloped cross-layer algorithms to find (with high accuracy) the
stability region of ad hoc wireless networks, which are other-
wise difficult to characterize.

APPENDIX

We defined the notion of capacity (stability) region in Defini-
tion 2. A characterization of this region in terms of flow conser-
vation and feasibility constraints is provided by Tassiulas and
Ephremides in their seminal work [43], which is reproduced in
the following proposition to be used in the Proof of Theorem 1.

Proposition 4: Let be a given network and be
the set of feasible allocations. The capacity (or stability) region

of the network is given by the set of vectors
for which there exists for all and
such that both the flow conservation constraints at the nodes and
the feasibility constraints are satisfied, i.e.:

(C1) For all and we have

(C2) .12

Proof of Theorem 1: Before the start the proof, we note that it
closely follows the technique of [29], except that it is extended
to multihop flows and more general arrival processes. The mul-
tihop extension adds a routing component to the mechanism and
add some technical complications to the proof. More impor-
tantly, in this work we further include congestion control (cf.
Theorem 2) into the framework of [29] to investigate the fair-
ness characteristics of the joint congestion control, scheduling,
and routing mechanism.

We first derive an upper bound on the single-step mean drift
of the Lyapunov function, for a given .

(16)

(17)

where denotes the amount of unused service by
node to transmit packets of type in slot . Note that

can be nonzero only when is low. Also,
since the service rate over each link is upper-bounded by one,

must also be upper-bounded by the maximum degree
of the network. First, we show that (17) is upper-bounded.

12������� denotes the convex hull of set �� which is the smallest convex
set that includes �. The convex hull is included in view of the possibility of
timesharing between feasible allocations.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

where, in the last step, we used the fact that

and that .
Next, we study (16). We can rewrite it in inner-product form

after cancelations

(18)

where is a finite constant since: The service rate into or out
of any node is bounded by , and the second moment of the
arrival process is assumed to be bounded.

Next, we study the expectation in (18) in further detail. We
omit the time index in the following derivation for notational
convenience:

(19)

where is chosen according to (4). Since Propo-
sition 4 implies that there exists a nonnegative vector

such that:

, and

which can be written compactly as in vector
form, where is a vector of all ones. Substituting this into the
first inner product in (19) yields.

Note that

where follows from (4). Substituting this in the previous
expression yields

where the last inequality follows from the fact that

for all . We substitute this
upper bound in (19) with the new notation:

and
and .

We use this bound in (18) and bound the -step mean drift as

(20)

(21)

To bound (20) note that

(22)

where the first inequality follows from the fact that in a single
time slot, each queue can change by at most a bounded value,
and therefore there exists a constant such that

for any .
Next, we are interested in upper-bounding (21). For nota-

tional convenience, let us define . Hence, we
are interested in upper-bounding .
To that end, let us define

and

Thus, is the first slot after when the randomly picked
schedule according to (5) is equal to the optimum schedule,
and (6) is satisfied; is the first slot after when the condition
in (6) is violated. Note that in the interval between and ,
the system is well behaved, and no undesired event such as that
in (6) occurs. Finally, let us define as the
remaining time after until the end of slots, if any. The idea
is to show that if is sufficiently large, the duration between
and will dominate the interval of duration . Next, we make
this argument rigorous.

First note that for any we have

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ERYILMAZ et al.: DISTRIBUTED CROSS-LAYER ALGORITHMS 13

Next, note that at we have

due to (6). This is the same as

Using the fact that when the system is well behaved
(i.e., event (6) does not occur), we can further upper-bound

for as

where the last step follows from the sum of the previous two
differences being upper-bounded by . Hence, we can write

Note that we have since can be
bounded by a geometric random variable with parameter

. Also, note that
where the last step follows from union bound. Therefore,

we have the lower bound which
implies . Thus, we can write

Substituting (22) in (20), and the previous upper bound into (21)
yields

Letting we have

where and are bounded positive valued numbers for the
selected . This completes our proof.

REFERENCES

[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queueing system with asynchronously
varying service rates,” Probab. Eng. Inf. Sci., vol. 18, pp. 191–217,
2004.

[2] E. Arikan, “Some complexity results about packet radio networks,”
IEEE Trans. Inf. Theory, vol. IT-30, no. 4, pp. 681–685, Jul. 1984.

[3] S. Asmussen, Applied Probability and Queues. New York: Springer-
Verlag, 2003.

[4] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma, “Iterative sched-
uling algorithms,” in Proc. IEEE INFOCOM, 2007, pp. 445–453.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods.. Belmont, MA: Athena Scientific, 1997.

[6] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint asynchronous con-
gestion control and distributed scheduling for wireless networks,” pre-
sented at the IEEE INFOCOM, 2006.

[7] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” presented at the Allerton
Conf. Control, Commun. Comput., 2005.

[8] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Jointly optimal con-
gestion control, routing, and scheduling for wireless ad hoc networks,”
presented at the IEEE INFOCOM, Barcelona, Spain, Apr. 2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms.. London, U.K.: M.I.T. Press, McGraw-Hill, 2001.

[10] D. Shah, D. N. C. Tse, and J. N. Tsitsiklis, “Hardness of low delay net-
work scheduling,” IEEE Trans. Inf. Theory, 2009, submitted for publi-
cation.

[11] J. Dai and B. Prabhakar, “The throughput of switches with and without
speed-up,” in Proc. IEEE INFOCOM, 2000, pp. 556–564.

[12] A. Eryilmaz, E. Modiano, and A. Ozdaglar, “Randomized algorithms
for throughput-optimality and fairness in wireless networks,” in
Proc. IEEE Conf. Decision Control, San Diego, CA, Dec. 2006, pp.
1936–1941.

[13] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial complexity
algorithms for full utilization of multihop wireless networks,” in Proc.
IEEE INFOCOM, 2007, pp. 499–507.

[14] A. Eryilmaz, A. Ozdaglar, D. Shah, and E. Modiano, “Imperfect ran-
domized algorithms for the optimal control of wireless networks,” in
Proc. CISS, 2008, pp. 922–937.

[15] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length based scheduling and congestion control,” in
Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, vol. 3, pp. 1794–1803.

[16] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and mac
for stability and fairness in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 14, no. 8, pp. 1514–1524, Aug. 2006.

[17] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Trans. Netw., vol. 13, no. 2,
pp. 411–425, Apr. 2005.

[18] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algo-
rithm for minimum-weight spanning trees,” ACM Trans. Prog. Lang.
Syst., vol. 5, pp. 66–77, 1983.

[19] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling al-
gorithms for high-aggregate bandwidth switches,” IEEE J. Sel. Areas
Commun., vol. 21, no. 4, pp. 546–559, May 2003.

[20] C. Joo, X. Lin, and N. Shroff, “Understanding the capacity region of the
greedy maximal scheduling algorithm in multihop wireless networks,”
in Proc. IEEE INFOCOM, 2008, pp. 1103–1111.

[21] K. Jung and D. Shah, “Low delay scheduling in wireless networks,” in
Proc. ISIT, 2007, pp. 1396–1400.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[22] F. P. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecommun., vol. 8, pp. 33–37, 1997.

[23] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[24] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches,” presented at the
Allerton Conf. Contr., Commun. Comput., 2001.

[25] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. IEEE Conf. Decision Control, Paradise
Island, Bahamas, Dec. 2004, vol. 2, pp. 1484–1489.

[26] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks,” in Proc. IEEE IN-
FOCOM, Miami, FL, Mar. 2005, vol. 3, pp. 1804–1814.

[27] S. H. Low and D. E. Lapsley, “Optimization flow control, I: Basic al-
gorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
861–875, Dec. 1999.

[28] M. Marsan, E. Leonardi, M. Mellia, and F. Neri, “On the stability of
input-buffer cell switches with speed-up,” in Proc. IEEE INFOCOM,
2000, vol. 3, pp. 1604–1614.

[29] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proc. ACM SIGMETRICS/IFIP,
2006, pp. 27–38.

[30] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” in Proc. IEEE PODC, Denver, CO, 2006, pp. 113–122.

[31] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” in Proc. IEEE INFOCOM,
Miami, FL, Mar. 2005, pp. 1723–1734.

[32] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power alloca-
tion and routing for time varying wireless networks,” in Proc. IEEE
INFOCOM, Apr. 2003, pp. 745–755.

[33] L. Peterson and B. Davie, Computer Networks: A Systems Approach.,
2nd ed. San Mateo, CA: Morgan Kaufmann, 2000.

[34] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling with
constant overhead,” Tech. Rep., 2006.

[35] G. Sasaki and B. Hajek, “Link scheduling in polynomial time,” IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 910–917, 1988.

[36] D. Shah, “Stable algorithms for input queued switches,” presented at
the Allerton Conf. Control, Commun. Comput., 2001.

[37] D. Shah and D. J. Wischik, “Optimal scheduling algorithms for input-
queued switches,” presented at the IEEE INFOCOM, 2006.

[38] D. Shah and D. J. Wischik, “The teleology of scheduling algorithms for
switched networks under light load, critical load, and overload,” Ann.
Appl. Probab. 2009 [Online]. Available: http://www.cs.ucl.ac.uk/staff/
ucacdjw/Research/netsched.html, submitted for publication

[39] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing
a time-varying channel: The exponential rule,” Translat. AMS, ser. 2,
vol. 207, A volume in memory of F. Karpelevich, pp. 185–202, 2002.

[40] R. Srikant, The Mathematics of Internet Congestion Control..
Boston, MA: Birkhäuser, 2004.

[41] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4, pp.
401–457, 2005.

[42] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” in Proc. IEEE IN-
FOCOM, 1998, pp. 533–539.

[43] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[44] X. Wu and R. Srikant, “Regulated maximal matching: A distributed
scheduling algorithm for multihop wireless networks with node-exclu-
sive spectrum sharing,” in Proc. IEEE Conf. Decision Control., 2005,
pp. 5342–5347.

[45] X. Wu and R. Srikant, “Bounds on the capacity region of multihop
wireless networks under distributedgreedy scheduling,” presented at
the IEEE INFOCOM, 2006.

[46] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game-theoretic
framework for bandwidth allocation and pricing in broadband net-
works,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct.
2000.

Atilla Eryilmaz (S’00–M’06) received the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
in 2001 and 2005, respectively.

Between 2005 and 2007, he was a Post-Doctoral
Associate with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology, Cambridge. He is currently an Assistant Pro-
fessor of Electrical and Computer Engineering with
The Ohio State University, Columbus. His research
interests include communication networks, optimal

control of stochastic networks, optimization theory, distributed algorithms, sto-
chastic processes, and network coding.

Asu Ozdaglar received the S.M. and the Ph.D. de-
grees in electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT), Cambridge, in 1998 and 2003, respectively.

Since 2003, she has been a member of the faculty
of the Electrical Engineering and Computer Science
Department, MIT, where she is currently the Class of
1943 Career Development Associate Professor. She
is also a member of the Laboratory for Information
and Decision Systems and the Operations Research
Center. Her research interests include optimization

theory, with emphasis on nonlinear programming and convex analysis, game
theory, distributed optimization methods, and network optimization and con-
trol.

Dr. Ozdaglar is the recipient of the MIT Graduate Student Council Teaching
Award, the NSF CAREER Award, and the 2008 Donald P. Eckman Award of
the American Automatic Control Council.

Devavrat Shah received the Ph.D. degree from the
Computer Science Department, Stanford University,
Stanford, CA, in October 2004.

He has been with the Electrical Engineering and
Computer Science Department (EECS), Massachu-
setts Institute of Technology (MIT), Cambridge,
since Fall 2005, where he is currently an Assistant
Professor. He is a member of the Laboratory of
Information and Decision Systems (LIDS). He
was a Post-Doctoral Researcher with the Statistics
Department of Stanford University during 2004 to

2005. His research interests include network algorithms, stochastic networks,
network information theory, and statistical inference.

Dr. Shah was co-awarded the IEEE INFOCOM Best Paper Award in 2004 and
the ACM SIGMETRIC/Performance Best Paper Award in 2006. He received
the 2005 George B. Dantzig Best Disseration Award from the INFORMS. He
received a NSF CAREER Award in 2006.

Eytan Modiano received the M.S. and Ph.D. de-
grees in electrical engineering from the University
of Maryland, College Park, in 1989 and 1992,
respectively.

He was a Naval Research Laboratory Fellow
between 1987 and 1992 and a National Research
Council Post Doctoral Fellow during 1992 to 1993.
Between 1993 and 1999, he was with the Lincoln
Laboratory, Massachusetts Institute of Technology
(MIT), Cambridge, where he was the project leader
Lincoln Laboratory’s Next Generation Internet

(NGI) project. Since 1999, he has been on the faculty of MIT, where he is
presently an Associate Professor. His research is on communication networks
and protocols with emphasis on satellite, wireless, and optical networks.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:37:38 EDT from IEEE Xplore. Restrictions apply.

