
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009 15

Monitoring the Application-Layer DDoS Attacks for
Popular Websites

Yi Xie and Shun-Zheng Yu, Member, IEEE

Abstract—Distributed denial of service (DDoS) attack is a
continuous critical threat to the Internet. Derived from the low
layers, new application-layer-based DDoS attacks utilizing legit-
imate HTTP requests to overwhelm victim resources are more
undetectable. The case may be more serious when such attacks
mimic or occur during the flash crowd event of a popular Website.
Focusing on the detection for such new DDoS attacks, a scheme
based on document popularity is introduced. An Access Matrix is
defined to capture the spatial-temporal patterns of a normal flash
crowd. Principal component analysis and independent component
analysis are applied to abstract the multidimensional Access
Matrix. A novel anomaly detector based on hidden semi-Markov
model is proposed to describe the dynamics of Access Matrix
and to detect the attacks. The entropy of document popularity
fitting to the model is used to detect the potential application-layer
DDoS attacks. Numerical results based on real Web traffic data
are presented to demonstrate the effectiveness of the proposed
method.

Index Terms—Application-layer, distributed denial of service
(DDoS), popular Website.

I. INTRODUCTION

D ISTRIBUTED denial of service (DDoS) attack has
caused severe damage to servers and will cause even

greater intimidation to the development of new Internet
services. Traditionally, DDoS attacks are carried out at the
network layer, such as ICMP flooding, SYN flooding, and
UDP flooding, which are called Net-DDoS attacks in this
paper. The intent of these attacks is to consume the network
bandwidth and deny service to legitimate users of the victim
systems. Since many studies have noticed this type of attack
and have proposed different schemes (e.g., network measure or
anomaly detection) to protect the network and equipment from
bandwidth attacks, it is not as easy as in the past for attackers
to launch the DDoS attacks based on network layer. When the
simple Net-DDoS attacks fail, attackers shift their offensive
strategies to application-layer attacks and establish a more
sophisticated type of DDoS attacks. To circumvent detection,
they attack the victim Web servers by HTTP GET requests

Manuscript received August 25, 2006; revised March 31, 2007 and November
08, 2007; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
G. Pacifici. First published June 20, 2008; current version published February
19, 2009. This work was supported in part by the The National High Tech-
nology Research and Development Program of China (2007AA01Z449 and by
The Research Fund for the Doctoral Program of Higher Education under Grant
20040558043.

The authors are with the Department of Electrical and Communication En-
gineering, School of Information Science and Technology, Sun Yat-Sen Uni-
versity, Guangzhou 510275, China (e-mail: xieyicn@163.com; syu@mail.sysu.
edu.cn).

Digital Object Identifier 10.1109/TNET.2008.925628

(e.g., HTTP Flooding) and pulling large image files from the
victim server in overwhelming numbers. In another instance,
attackers run a massive number of queries through the victim’s
search engine or database query to bring the server down [1].
We call such attacks application-layer DDoS (App-DDoS)
attacks. The MyDoom worm [2] and the CyberSlam [3] are all
instances of this type attack.

On the other hand, a new special phenomenon of network
traffic called flash crowd [4], [5] has been noticed by researchers
during the past several years. On the Web, “flash crowd” refers
to the situation when a very large number of users simultane-
ously accesses a popular Website, which produces a surge in
traffic to the Website and might cause the site to be virtually un-
reachable.

Because burst traffic and high volume are the common char-
acteristics of App-DDoS attacks and flash crowds, it is not easy
for current techniques to distinguish them merely by statistical
characteristics of traffic. Therefore, App-DDoS attacks may be
stealthier and more dangerous for the popular Websites than the
general Net-DDoS attacks when they mimic (or hide in) the
normal flash crowd. In this paper, we meet this challenge by
a novel monitoring scheme.

To the best of our knowledge, few existing papers focus on
the detection of App-DDoS attacks during the flash crowd event.
This paper introduces a scheme to capture the spatial-temporal
patterns of a normal flash crowd event and to implement the
App-DDoS attacks detection. Since the traffic characteristics
of low layers are not enough to distinguish the App-DDoS at-
tacks from the normal flash crowd event, the objective of this
paper is to find an effective method to identify whether the surge
in traffic is caused by App-DDoS attackers or by normal Web
surfers. Our contributions in this paper are fourfold: 1) we de-
fine the Access Matrix (AM) to capture spatial-temporal pat-
terns of normal flash crowd and to monitor App-DDoS attacks
during flash crowd event; 2) based on our previous work [6],
[7], we use hidden semi-Markov model (HsMM) [8] to describe
the dynamics of AM and to achieve a numerical and automatic
detection; 3) we apply principal component analysis (PCA) [9]
and independent component analysis (ICA) [10], [11] to deal
with the multidimensional data for HsMM; and 4) we design
the monitoring architecture and validate it by a real flash crowd
traffic and three emulated App-DDoS attacks.

The remainder of this paper is organized as follows. In
Section II, we put our ideas within the context of prior and
ongoing research related to DDoS detection. In Section III, we
discuss the App-DDoS attacks and detail their properties. In
Section IV, we explain our technique to detect the App-DDoS
attacks. In Section V, we conduct experiments using real traffic

1063-6692/$25.00 © 2008 IEEE

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

data and three emulated App-DDoS attacks to validate our
detection model. In Section VI, we discuss the strengths and
limitations of our proposed technique. We conclude our paper
in Section VII.

II. RELATED WORK

Our literature survey has noted that researchers attempt to
detect DDoS attacks from three different layers: IP layer, TCP
layer, and application layer. From all of these perspectives, re-
searchers are investigating various approaches to distinguish
normal traffic from the attack one. Here, we survey represen-
tative research from each perspective.

Most DDoS-related research has focused on the IP layer.
These mechanisms attempt to detect attacks by analyzing
specific features, e.g., arrival rate or header information. For
example, Cabrera et al. [12] used the management informa-
tion base (MIB) data which include parameters that indicate
different packet and routing statistics from routers to achieve
the early detection. Yuan et al. [13] used the cross-correlation
analysis to capture the traffic patterns and then to decide where
and when a DDoS attack possibly arises. Mirkovic et al. [14]
monitored the asymmetry of two-way packet rates and to
identify attacks in edge routers. Other statistical approaches
for detection of DDoS attacks includes IP addresses [15] and
time-to-live (TTL) values [16].

The TCP layer is another main battlefield for detecting DDoS
attack. For example, authors [12] mapped ICMP, UDP, and TCP
packet statistical abnormalities to specific DDoS attacks based
on MIB. Wang et al. [17] used the TCP SYN/FIN packets for
detecting SYN flooding attacks. In [18], DDoS attacks were dis-
covered by analyzing the TCP packet header against the well-
defined rules and conditions and distinguished the difference be-
tween normal and abnormal traffic. Noh et al. [19] attempted to
detect attacks by computing the ratio of TCP flags (including
FIN, SYN, RST, PSH, ACK, and URG) to TCP packets received
at a Web server.

However, little work has been done on the detection of App-
DDoS attacks because there were few such attacks in the past.
Ranjan et al. [20] used statistical methods to detect character-
istics of HTTP sessions and employed rate-limiting as the pri-
mary defense mechanism. Yen et al. [21] defended the applica-
tion DDoS attacks with constraint random request attacks by the
statistical methods. Other researchers combated the App-DDoS
attacks by “puzzle,” see, e.g., [3]. Jung et al.’s work [5] is most
closely related to our own, as they used two properties to dis-
tinguish the DoS and normal flash crowd: 1) a DoS event is due
to an increase in the request rates for a small group of clients
while flash crowds are due to increase in the number of clients
and 2) DoS clients originate from new client clusters as com-
pared to flash crowd clients which originate from clusters that
had been seen before the flash event.

III. App-DDoS ATTACKS

In our opinion, the DDoS attack detection approaches in
different scenario can be clustered as: 1) Net-DDoS attacks
versus stable background traffic; 2) Net-DDoS attacks versus
flash crowd (i.e., burst background traffic); 3) App-DDoS

attacks versus stable background traffic; and 4) App-DDoS
attacks versus flash crowd. The first two scenarios have been
well studied and can be dealt with by most existing DDoS
detection schemes (e.g., those presented in Section II) while
the other two groups are quite different from the previous ones.

Besides the flooding attack pattern, App-DDoS attacks may
focus on exhausting the server resources such as Sockets,
CPU, memory, disk/database bandwidth, and I/O bandwidth.
Research [22] has found, with increasing computational com-
plexity in Internet applications and larger network bandwidth,
that server resources may become the bottleneck of those
applications. Thus, the App-DDoS attacks may cause more
serious problems in the high-speed Internet than in the past.

The first characteristic of App-DDoS attacks is that the appli-
cation-layer requests originating from the compromised hosts
are indistinguishable from those generated by legitimate users.
Unlike the Net-DDoS attacks, App-DDoS attacks do not nec-
essarily rely on inadequacies in the underlying protocols or op-
erating systems; they can be mounted with legitimate requests
from legitimately connected network machines. Usually, App-
DDoS attacks utilize the weakness enabled by the standard prac-
tice of opening services such as HTTP and HTTPS (TCP port 80
and 443) through most firewalls to launch the attack. Many pro-
tocols and applications, both legitimate and illegitimate, can use
these openings to tunnel through firewalls by connecting over a
standard TCP port 80 (e.g., Code Red virus) or encapsulating in
SSL tunnels (HTTPS). Attack requests aimed at these services
may pass through the firewall without being identified. Further-
more, attackers may request services to the point where other
clients are unable to complete their transactions or are inconve-
nienced to the point where they give up trying.

This shows, to deal with the third scenario of DDoS attacks,
that four issues have to be considered: 1) the Net-DDoS at-
tacks detection methods are unable to collect enough offen-
sive signals for detecting the App-DDoS attacks because they
belong to different layers respectively; 2) TCP anomaly de-
tection mechanisms can hardly identify the App-DDoS attacks
launched by HTTP requests based on successful TCP connec-
tions; 3) in order to establish the TCP connection, attackers
have to use the legitimate IP addresses and IP packets, which
makes the anomaly detection mechanisms for IP packet become
invalid; and 4) the implied premise of most current detection
schemes is that the characteristics of DDoS attack traffic differ
from normal traffic, which might fail because App-DDoS at-
tacks may mimic the access behaviors of normal users. How-
ever, because the background traffic of this scenario is assumed
to be stable, some simple App-DDoS attacks (e.g., Flood) still
can be monitored by improving existing methods designed for
Net-DDoS attacks, e.g., we can apply the HTTP request rate,
HTTP session rate, and duration of user’s access for detecting.

The second characteristic of App-DDoS attacks is that the
attackers aiming at some special popular Websites are increas-
ingly moving away from pure bandwidth flooding to more sur-
reptitious attacks that masquerade as (or hide in) normal flash
crowds of the Websites. Since such Websites become more and
more for the increasing demands of information broadcast and
electronic commerce, network security has to face a new chal-
lenge: how to detect and respond to the App-DDoS attacks if

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

XIE AND YU: MONITORING THE APPLICATION-LAYER DDoS ATTACKS FOR POPULAR WEBSITES 17

Fig. 1. DDoS and flash crowds. (a) App-DDoS attacks on SCO. (b) Flash
crowds from the 1998 World Cup.

they occur during a flash crowd event, i.e., the fourth scenario
of our clusters for DDoS attacks.

Besides the issues discussed for the third scenario, the diffi-
culties of dealing with such scenario include: 1) both the flash
crowd and App-DDoS attacks are unstable, bursty and huge
traffic volume, which is shown in Fig. 1, where (a) [23] shows
the burst traffics caused by the typical App-DDoS attacks (My-
doom worm [2]) and (b) shows two flash crowds during the
semifinals of the 1998 World Cup [24] and 2) attack nodes
may arrange their vicious Web traffic to mimic the normal one
by HTTP synthetic tools (e.g., [25]), so the malicious requests
differ from the legitimate ones in intent but not in traffic char-
acteristics. Therefore, most current detection mechanisms (e.g.,
those based on traffic characteristics) become invalid.

The work of Jung et al. [5] may not help in this scenario
since: 1) it is difficult to associate the amount of resources
consumed to a client machine and 2) attack nodes consisting
of a large number of geographically widespread machines are
increasingly likely to belong to known client clusters. Thus,
they cannot be filtered on the IP prefix. Other existing defense
methods may be those based on man–machine interaction, e.g.,
puzzles, passwords, and the CAPTCHAs. However, as Kandula
et al. in [3] and Ranjan et al. in [22] have pointed out, those
schemes are not effective for the DDoS attack detection because
they may annoy users and introduce additional service delays.

Fig. 2. Flash crowd.

Furthermore, they may deny search engines access to the Web
site, and the machine hosting authentication mechanism may
be easy to become the new attack targets.

Finally, compared with the consumption of resources such
as CPU, memory, and database, App-DDoS attacks may not
need to consume a lot of network bandwidth. Therefore, the tra-
ditional DDoS detection schemes designed for bandwidth ex-
hausting attacks become ineffective.

IV. DETECTION PRINCIPLE

Web user behavior is mainly influenced by the structure of
Website (e.g., the Web documents and hyperlink) and the way
users access web pages. In this paper, our monitoring scheme
considers the App-DDoS attack as anomaly browsing behavior.

We investigate the characteristic of Web access behavior in
Figs. 2 and 6. Fig. 2 plots the HTTP request number and the
user number per 5 s during the burst Web workload of a semi-
final collected from the logs of the 1998 World Cup. From the
maximum correlation coefficient 0.9986, between the series of
request numbers and that of the user numbers, we can see that
the normal flash crowd is mainly caused by the sudden incre-
ment of user amount. Fig. 6 plotted in the following experiment
section shows that the entropy of the aggregate access behavior
against our model does not change much during the flash crowd
event, which implies that both the main access behavior pro-
file of normal users and the structure of Website do not have
obvious varieties during the flash crowd event and its vicinity
area. This conclusion is the same as [5] and is similar to those
of other HTTP traces, e.g., Calgary-HTTP, ClarkNet-HTTP, and
NASA-HTTP, which can be downloaded freely from [24].

These results are significant to our work. They show that
the users’ access behavior profile can be used to detect the ab-
normal varieties of users’ browsing process during the flash
crowd. Since the document popularity has been widely used to
characterize the user behavior and improve the performance of
Web server and Internet cache, e.g., [29] and [30], we will ex-
tend it to our detection in the rest of this paper.

A. Access Matrix

Traditionally, document popularity is defined by the Request
Hit Rate as , where is the request number

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

18 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

of the th document at the th time unit, and the number of the
Web server’s documents. We extend this definition as given in
(1), shown at the bottom of the page, where is the number of
users who request the th document at the th time unit, is
the user’s average revisitation to the th document at the th time
unit, is the normalized revisitation, and is the number of
observation time units. Then, we construct a dimensional
Access Matrix (AM), , as follows:

(2)

where , , and
or . We will use for the experiment in this paper

because it is more suitable to detect the attacks that repeatedly
request the same pages such as homepage, “hot” pages, or ran-
domly selected pages from a given set. We note that, in some
other cases when the attacks may cause the document popularity
away from the Zipf-like distribution, we should let . We
consider a spatial-temporal space constructed by AM in which

presents the spatial distribution of popu-
larity at the th time unit and presents the
th document’s popularity varying with time. is mainly related

to users’ interest and Website’s structure (e.g., the distribution
of contents and hyperlinks between Web pages); is mainly
controlled by users’ actions (e.g., click rate and browsing time).

Then, we have the following detection rationale: in consid-
ering that most existing methods used on document popularity
for modeling user behavior merely focus on the average charac-
teristics (e.g., mean and variance), we use a stochastic process
to model the variety of the document popularity, in which a
random vector is used to represent the spatial distribution of doc-
ument popularity and is assumed to be changing with time (i.e.,

, for). The process is controlled by an under-
lying semi-Markov chain, and a hidden state describes a cluster
of document popularities or a type of user behavior. Transition
from one hidden state to another implies that user behavior has
changed from one type to another. Dwell time of the state can be
considered as persistence of the user behavior. Since the model
is trained by the normal behavior obtained from a lot of users of
the target server, attackers are supposed to be unable to obtain
historical access records from the victim Web server or unable
to stay in front of the victim to intercept and collect all users’
HTTP requests sent to the target and spoof the detector based
on the model.

B. Hidden Semi-Markov Model

Based on our previous work [6], [7], we extend the HsMM
algorithm to describe the stochastic process on document pop-
ularity’s spatial distribution varying with time and monitor the
App-DDoS attacks occurring during flash crowd event.

HsMM is a hidden Markov model (HMM) with variable
state duration. The HsMM is a stochastic finite state ma-
chine, specified by , where

is a discrete set of hidden states with car-
dinality ; denotes the state that the system takes at
time ; is the probability distribution for the
initial state satisfying ;
is the state transition probability from state to state sat-
isfying , for ; denotes
the remaining (or residual) time of the current state with
representing the maximum interval between any two consec-
utive state transitions; is the state
residual time distribution satisfying , for ,

; is the output
distribution for given state , satisfying , for

, ; and denotes the observed vector at
time , taking values from .

Then, if the pair process takes on value , the
semi-Markov chain will remain in the current state until
time and transits to another state at time , for

. The states themselves are not observable.
The observables are a series of observations .
We adopt the notation to represents the observation se-
quence from time to time (i.e.,) and
assume the “conditional independence” of outputs so that

.
We consider the AM as a multiple-dimensional stochastic

process which is controlled by an underlying semi-Markov
process. For a given HsMM, the hidden state of the HsMM
can be used to represent the spatial distribution of popularity of
the documents at the th time unit. A transition of the hidden
state (i.e., from to) can be considered as the change of
access behaviors from one spatial distribution to another one.
Residential duration of the hidden state can be considered
as the time units that the current spatial distribution (or state)
will persist.

The parameter estimation of HsMM can be done by the fol-
lowing forward and backward algorithm [8]. The forward and
backward variables are defined as follows:

(3)

(4)

which can be iteratively calculated by the forward and backward
algorithms. Three joint probability functions are defined by

(5)

(6)

(7)

average request number per user on the document at time unit
average request amount per user at time unit

(1)

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

XIE AND YU: MONITORING THE APPLICATION-LAYER DDoS ATTACKS FOR POPULAR WEBSITES 19

which can be readily determined by the forward and backward
variables. Then, the model parameters can be estimated by the
following formulas:

(8)

(9)

(10)

(11)

We define the entropy of observations fitting to the
HsMM and the average logarithmic entropy per obser-
vation as follows:

(12)

(13)

The details of the above algorithm can be found in [8]. How-
ever, existing algorithms of HsMM will be very complex when
the observation is a high-dimension vector with dependent el-
ements in the spatial-temporal matrix of AM. Hence, we use
PCA to reduce the dimension of AM and apply the independent
component analysis to obtain independent elements.

C. Principal Component Analysis

PCA, also called the Karhunen–Loeve transform, is one of the
most widely used dimensionality reduction techniques for data
analysis and compression. It is based on transforming a rela-
tively large number of variables into a smaller number of uncor-
related variables by finding a few orthogonal linear combina-
tions of the original variables with the largest variance. The first
principal component of the transformation is the linear combi-
nation of the original variables with the largest variance; the
second principal component is the linear combination of the
original variables with the second largest variance and orthog-
onal to the first principal component, and so on. In many data
sets, the first several principal components contribute most of
the variance in the original data set, so that the rest can be disre-
garded with minimal loss of the variance for dimension reduc-
tion of the data [9]. The transformation works as follows.

The average vector of samples is defined as

(14)

where is the total number of samples in the data set,
is the th sample, and is the popularity of

document as defined in (2). The deviation from the average is
defined as

(15)

The sample covariance matrix of the data set is defined as

(16)

where . To apply PCA to reduce high
dimensional data, eigenvalues and corresponding eigenvectors
of the sample covariance matrix are usually computed
by the singular value decomposition (SVD) [9]. Suppose

are eigenvalue–eigenvector pairs
of the sample covariance matrix . We choose the largest
eigenvectors. Often there will be just a few of large eigenvalues,
and therefore is the inherent dimensionality of the subspace
governing the “signal,” while the remaining dimen-
sions generally contain noise [9]. The dimensionality of the
subspace can be determined by

(17)

where is given, which represents the contribution ratio of vari-
ation in the subspace to the total variation in the original space.
We form an matrix whose columns consist of the
eigenvectors. The representation of the data by principal com-
ponents consists of projecting the data onto the -dimensional
subspace according to the following rules:

(18)

D. Independent Component Analysis

ICA is a statistical signal processing technique. In contrast
to the PCA which is sensitive to high-order relationships, the
basic idea of ICA is to represent a set of random variables using
basis function, where the components are statistically indepen-
dent and as non-Gaussian as possible.

The ICA task is briefly described as follows. Given the set of
input samples , where is the number of sam-
ples, and is the -dimensional observed
vector at the time unit. The observed vector is assumed
to be generated by a linear combination of statistically indepen-
dent and stationary components (sources), i.e.,

(19)

where is the -dimensional statis-
tically independent signal vector at time unit and

is the mixing matrix. Corresponding to the
sample dataset , the source data set can be denoted as

. The issue is how to deter-
mine the invertible de-mixing matrix so
as to recover the components of by exploiting information
hidden in , i.e., to determine such that the components

of the transformed vector

(20)

are mutually independent. We denote by its components
or vectors as , where is the transpose
vector of the row of with constraint .

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

20 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

The estimation of the data model of ICA is usually performed
by formulating an objective function and then minimizing or
maximizing it, e.g., maximizing some function
that measures the independence. Different algorithms [10] have
been proposed to achieve this objective. This paper applies
the FastICA [11] which has been widely used for its good
performance and fast convergence during estimation of the
parameters. Note that the FastICA algorithms require a prelim-
inary whitening (or sphering) of the sample , which means
the observed data is linearly transformed into a variable
by , such that the covariance matrix of is unity, i.e.,

. This transformation can be accomplished with
the above PCA process [10]. In the following paper, we use
symbol to denote the whitened data, i.e., .

The FastICA algorithm is based on negentropy. It defines a
contrast function that measures the nonnormality of a zero-
mean random variable . The objective of this algorithm is then
to find which maximizes the contrast function , defined by

(21)

where is practically any nonquadratic function, is a stan-
dardized Gaussian variable with zero mean and unit variance,
and . Thus, is a Gaussian variable of

the same variance as . Note that the optimum that max-
imizes can be determined by

(22)

Based on the constraints and
, we have . Then, the

item of (21) can be replaced by ,

and (22) can be rewritten as

(23)

where is the derivative function of , is a constant that can
be evaluated by , and is the
value of at the optimum. Newton’s method is used to solve
this equation. Denoting the function on the middle part of (23)
by and its Jacobian matrix by , then

(24)

where is the derivative of . Since satisfies ,
a reasonable approximation of the first term of (24) seems to be

(25)

Thus, the Jacobian matrix becomes diagonal and can easily be
inverted. is also approximated by using the current value
instead of , and then the following approximate Newton
iteration is

(26)

(27)

where denotes the new value of .

Using the above algorithm, we can compute all vectors for
all of the de-mixing matrix .

We use the iterative algorithms proposed in [11] to achieve
this objective. The iterative algorithm includes three steps which
are implemented after a round iteration of all components.

Step 1) Let .

Step 2) Let .
Step 3) Repeat Step 2) until convergence.

E. Detection Architecture

The overall procedure of our detection architecture is illus-
trated in Fig. 3. The scheme is divided into three phases: data
preparation, training, and monitoring.

The main purpose of data preparation is to compute the AM
by the logs of the Web server.

The training phase includes the three parts, given here.
1) PCA transition. The steps are as follows.

a) Compute the average matrix and difference matrix,
respectively.

b) Compute the eigenvectors and eigenvalues of the co-
variance matrix.

c) Sort the eigenvalues and select the first eigenvec-
tors, where is given in this paper.

d) Construct the eigenmatrix by the first
eigenvectors.

e) Transform the AM into -dimensional uncorrelated
principal component dataset.

2) ICA transition. The steps are as follows.
a) Use the outputs of the PCA module (i.e., -di-

mensional uncorrelated principal component dataset
) to estimate the unmixing matrix by ICA

algorithm.
b) Transform the -dimensional dataset into indepen-

dent signals.
3) HsMM training

a) Use the outputs of ICA module as the model training
data set to estimate the parameters of HsMM.

b) Compute the entropy of the training data set and the
threshold.

The monitoring phase includes the following steps:
1) Compute the difference matrix between the testing AM

and the average matrix obtained in the training phase
by the PCA.

2) Using the eigenmatrix , compute the feature dataset
of the testing AM.

3) Using the de-mixing matrix , compute the indepen-
dent signals.

4) The independent signals are inputted to the HsMM;
entropies of the testing dataset are computed.

5) Output the result based on the threshold of entropy that
was determined in the training phase based on the en-
tropy distribution of the training data set.

In the practical implementation, the model is first trained by
the stable and low-volume Web workload whose normality can
be ensured by most existing anomaly detection systems, and
then it is used to monitor the following Web workload for a
period of 10 min. When the period is past, the model will be

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

XIE AND YU: MONITORING THE APPLICATION-LAYER DDoS ATTACKS FOR POPULAR WEBSITES 21

Fig. 3. Monitoring architecture.

updated by the new collected Web workload whose normality
is ensured by its entropy fitting to the model. Then, the model
is used in anomaly detection for the next cycle.

If some abnormities hiding in the incoming Web traffic are
found, the “defense” system will be implemented. For example,
we can cluster the Web surfers and evaluate their contributions
to the anomalies in the aggregate Web traffic. Then, different pri-
orities are given to the clusters according to their abnormalities
and serve them in different priority queues. The most abnormal
traffic may be filtered when the network is heavy loaded.

V. EXPERIMENTS

We implement the algorithm in the NS2 simulator [26]. The
network topology is generated by GT-ITM Topology Gener-
ator provide by NS2. The simulation includes 1000 client nodes
each of which replays one user’s trace collected from one of the
semifinals of FIFA WorldCup98 [24]. The ratio of randomly se-
lected attack nodes to whole nodes is 10%. Furthermore, we as-
sume the attackers can intercept some of the request segment of
normal surfers and replay this segment or "hot" pages to launch
the App-DDoS attacks to the victim Web server. Thus, when the
attack begins, each potential attack node replays a snippet of an-
other historical flash crowd trace. The interval between two con-
secutive attack requests is decided by three patterns including
constant rate attacks, increasing rate attacks and random pulsing
attacks. We use the size of requested document to estimate the
victim node’s processing time (delay) of each request, i.e., if the
requested document is larger, the corresponding processing time
will be longer. By this way, we simulate the victim’s resource
(e.g., CPU) cost by client’s requests. Fig. 4(a) shows our sim-
ulation scenario. The whole process lasts about 6 h. As shown
in Fig. 4(b), the first 2 h data are used to train the model, and
the remaining 4 h of data including a flash crowd event are used
for test. The emulated App-DDoS attacks are mixed with the
trace chose from the period of [3.5 h, 5.5 h]. Fig. 4(c) shows our
method on how to collect the observed sequences for detection
system. The time unit of this experiment is 5 s. We group 12
consecutive observations into one sequence, the “moving” step
is one observation unit and a new sequence is formed using the
current observation and the preceding 11 observations. Thus,
two consecutive sequences will have 11 overlapped observa-
tions. We used 25 consecutive sequences, which last for 36 ob-
servation units or 3 min, to detect anomaly accesses. Therefore,

in every 5 s when a new observation is obtained, a new sequence
is formed by 12 consecutive samples (corresponding to 60 s of
traffic). This sequence is then measured by calculation of its en-
tropy for the HsMM. The moving average of entropies over 25
consecutive sequences (corresponding to 36 samples or 180 s of
traffic) is used for detection of the attacks.

A. Constant Rate Attack

Constant rate attack, the simplest attack technique, is typ-
ical among known DDoS attacks. We do not arrange the attack
sources to simultaneously launch constant rate App-DDoS at-
tacks and to generate requests at full rate, so that they cannot be
easily identified through attack intensity. As shown in Fig. 5(a),
we use to denote the parameters of the constant
rate attack. The notation is listed in Fig. 4(d). Three parameters
(i.e.,) are set randomly by each attack node before it
launches the attacks.

Fig. 6(a) shows the entropy varying with the time, where
curve represents the normal flash crowd’s entropy and curve

represents the entropy of flash crowd mixed with constant rate
App-DDoS attacks in zone B. Therefore, it is easy to find out
that there exist attacks in the period B.

B. Increasing Rate Attack

An abrupt change in traffic volume is an important signal
to initiate anomaly detection. The attacker may use the grad-
ually increasing rate, as shown in Fig. 5(b). The state change
in the victim network could be so gradual that services degrade
slowly over a long period, delaying detection of the attack. We
use to denote the parameters of the in-
creasing rate attack. Five variables (i.e., are set
randomly by each attack node before it launches the attacks.
Fig. 6(b) shows the entropy changing with the time, where curve

represents the normal flash crowd’s entropy and curve rep-
resents entropy of the traffic that mixes normal flash crowd with
increasing rate App-DDoS attacks, where the attacks start grad-
ually in zone B and end gradually in zone D. As it shows, the en-
tropy can be used to discover the attacks in the early beginning.

C. Stochastic Pulsing Attacks

Instead of constantly injecting traffic flows with huge rates
into the network, pulsing attacks, which are also called shrew
attacks, are much more difficult to be detected and therefore

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

22 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

Fig. 4. Simulation configuration. (a) Compendious simulation scenarios; (b) Composition of the dataset. (c) Grouping of the dataset. (d) Definition of attack
parameters.

Fig. 5. Different emulated App-DDoS attacks. (a) Constant rate attacks. (b) Increasing rate attacks. (c) Stochastic pulsing attacks.

can damage the victim for a long time without being noticed.
Pulsing attackers launch attacks by sending burst pulses period-
ically. Such attacks have high peak rate while maintaining a low
average rate to exhibit “stealthy” behavior.

We emulate a stochastic-type pulsing attack of App-DDoS.
As shown in Fig. 5(c), a single source stochastic pulsing attack
is modeled as a square waveform HTTP request stream with at-
tack period , burst length , and burst rate . Among the vari-
ables, , , , and are preset by each attack node randomly
before it is going to fire the next pulsing attack, which makes the
different attack nodes have different attack parameters and the
same attack node have different attack parameters in different
attack periods. Thus, the attacks exhibit a fluctuating rate oscil-
lating between different and zero, appearing as a stochastic
ON/OFF process. Such stochastic pulses are very difficult to be
detected by the existing methods that are based on traffic volume
analysis, because the average rate of the attacks is not remark-
ably higher than that of a normal user.

Fig. 6(c) shows the entropy varies with the time, where curve
represents the normal flash crowd’s entropy and curve in

zone B represents the entropy of the mixed traffic that contains
the normal flash crowd and the stochastic pulsing rate of App-
DDoS attacks. As it shows, the attacks can be easily discovered
from the normal flash crowd workload by the entropy.

The fact that the entropy series is stable shows that the docu-
ment popularity is stable. Although the attackers can inject vi-
cious requests into the flash crowd traffic, the original popularity

distribution of documents is changed, which causes the entropy
series lower than the normal level. Therefore, we can detect the
potential App-DDoS attacks by the entropy of document popu-
larity fitting to the model.

D. Performance

In the above scenarios, based on the entropy outputted by
the algorithm, we can detect the anomaly caused by the App-
DDoS attack. Fig. 7(a) shows the distributions of average en-
tropy. There exist significant differences in entropy distribu-
tions between two groups: the normal Web traffic’s entropies
are larger than 6, but most entropies of the traffic containing
attacks are less than 8. The statistical results of the entropy of
normal training data and emulated App-DDoS attacks are given
as

Fig. 7(b) shows that, if we take 5.3 as threshold value of
normal Web traffic’s average entropy, the false negative ratio
(FNR) is about 1%, and the detection rate is about 90%. Be-
cause the number of the remaining principal components will

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

XIE AND YU: MONITORING THE APPLICATION-LAYER DDoS ATTACKS FOR POPULAR WEBSITES 23

Fig. 6. Entropy versus time of different attacks. (a) Detection for constant rate attacks. (b) Detection for increasing rate attacks. (c) Detection for stochastic pulsing
attacks.

Fig. 7. Performance. (a) Distribution of entropy. (b) Entropy, DR, and FPR. (c)
ROC curve. (d) Dontribution ratio versus number of PCs.

affect the precision of detection, we use the contribution ratio
defined in (17) to decide the first principal components (PCs).
We compared the performance of the proposed scheme with the
moving average in implementing anomaly detection. The length
of moving average is 60 samples (i.e., 5 min); step of moving av-
erage is 12 samples (i.e., 1 min); the cosine distance between the
observed vector and the average vector of training data is used
as the detection criterion. Fig. 7(c) shows the receiver operating
characteristics (ROCs) of our scheme and the moving average
method. As it shows, our method is remarkably better than the
moving average in the detection rate given the false positive rate.
Fig. 7(d) shows the variance versus number of PCs. From this
figure, we find the variance is mainly contributed by the first ten
PCs whose cumulative ratio is about 80%. This means we can
keep the first ten PCs at the cost of losing 20% information.

VI. DISCUSSION

A. Performance of Our Approach

We discuss the performance by the following aspects.
1) Multidimensional Data Processing: Multidimensional

detection may become a mainstream method in anomaly
detection. However, it is very difficult to deal with the mul-
tidimensional observation vector sequence without mass

computation or assuming a special distribution for the observed
data. Thus, PCA and ICA are used before the HsMM-based
detector. Because the elements of each vector obtained through
ICA are independent, the joint output probability distribution
function of HsMM can be simplified as ,
where is the element of vector , which enables the
detector to implement the multidimensional monitoring with
less computation and without special assumption for the distri-
bution of the original data.

The basic goal of PCA is to reduce the dimension of the
data. Indeed, it can be proven that the representation given by
PCA is an optimal linear dimension reduction technique in the
mean-square sense. Such a reduction in dimension has impor-
tant effect. The computational overhead in the subsequent pro-
cessing stages is reduced, and the noise that is not contained in
the first components is removed. The main reasons for using
the PCA in this paper are: 1) the principle components are typ-
ical for the high dimensional data of the problem without sacri-
ficing valuable information and 2) it does not require any spe-
cial distributional assumption, compared with many statistical
methods that often assume a normal distribution or resort to the
use of central limit theorem.

2) Advantages of HsMM: HsMM can describe most prac-
tical stochastic signals, including non-stationary and the
non-Markovian. It has been widely applied in many areas such
as mobility tracking in wireless networks, activity recognition
in smart environments, and inference for structured video
sequences. Many effective algorithms for HsMM parameter
estimation have been developed in the literature. In contrast to
existing anomaly detection methods developed in biosurveil-
lance [37], the nonstationary and the non-Markovian properties
of HsMM can best describe the self-similarity or long-range
dependence of network traffic that has been proved by vast
observations on the Internet [32], [33].

3) Self-Adaptive Scheme: Based on our experiment (Fig. 6),
we found the normal user’s access behavior and the Website
structure exhibit hours-long stability regardless of whether or
not there are flash crowd events occurring during the period,
i.e., the popularity of documents is mainly affected by the daily
life of the users or information update of the Web pages. There-
fore, the model parameters of document popularity change in
the period of ten minutes or hours. Hereby, the model param-
eters can be updated by the self-adaptive implementation [34]
in a period of ten minutes, in the way of implementing off-line
or asynchronously, which will not affect the online detection. In

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

24 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

our experiments in this paper, the model parameters are updated
once per hour.

4) Computational Complexity: In the training phase, it re-
quires computations and memory
capacity, where is the number of HsMM’s states, is the
maximum interval between any two consecutive state transi-
tions, is the length of the training samples, and is the number
of iterations. In fact, we can implement off-line training in-
stead of online training in practice. In our experiment, ,

, and . With the convergence criteria of 0.01,
the iteration times is about 10. The training can be finished
within 10 min by MATLAB.

In the detection phase, the computation comes from PCA,
ICA, and HsMM. The computational complexities of the first
two modules are and , respectively, where
in our experiment is the dimension of the original
observed vector, is the number of selected principal
components, and is the length of each test sequence
(i.e., one test sequence contains 12 samples and one sample is
collected in every 5 s). Because the entropy of the test sequence
fitting to the model can be determined by the forward formula
given by (12), which requires only computa-
tions. Thus, the computational complexity for a test sequence is

, which means about 0.3 M
multiplications in this instance. For the computer that is config-
ured with Intel Core 2 1.83-GHz CPU, 2-G RAM and 32 bits
operation system, our simulation experiments showed that it re-
quires about 500 ms for performing the anomaly detection in
every 5 s of sampling period.

B. Parameter Settings

Before the scheme is applied to detection, some parameters
have to be preset, which includes the time unit of observed data,
the length of the observed vector sequence, the number of the
remaining principal components, and the detection threshold of
entropy for anomaly detection in HsMM. We discuss each of
them as follows.

The time unit and the length of the observed vector sequence
can be set according to the computation ability and memory of
the detection system. In this paper, we set the time unit to be 5 s
and the length of one observed sequence to be 1 min. Although
the small scale of the time unit may bring us high precision, the
length of sequence can not be set too short because it may not
contain sufficient attack signals for reliable detection. For these
considerations, we suggest the time unit is selected in between
[5 s, 20 s] and the length of sequence is selected in between
[1 min, 5 min].

The number of remaining PCs can be decided by the cumula-
tive variance. We select the largest PCs whose cumulative vari-
ance is over 80% in our experiments, which actually resulted in
ten PCs in the experiments. The PCs can be selected by a higher
cumulative variance, but this may require more computational
capacity and memory amount.

In contrast to most current work that decides the detection
threshold by subjectivism or empiricism, we use Gaussian dis-
tribution to provide a universal and reasonable method for the
detection threshold. The Central Limit Theorem (CLT) has told

TABLE I
GAUSSIAN DISTRIBUTIONS’ DETECTION THRESHOLD

us that given a distribution with a mean and variance ,
the sampling distribution approaches a Gaussian distribution.
Thus, we can describe the entropy distribution of training data
by Gaussian distribution. From the rational of Gaussian distri-
bution, we know error level could give us a confidence
interval of 99.7% which is good enough even in high precision
detection scenarios. Table I lists the detection threshold setting
and their corresponding FPR and DR of our experiments (the
mean and variance have been given in Section V). As in-
dicated in this table, the detection level could be reasonably se-
lected to be , and this choice ensures us with FPR
smaller than 1.5% and DR larger than 90%. This shows that the
detection threshold determined by the CLT can achieve pretty
high accuracy in detection.

VII. CONCLUSION

Creating defenses for attacks requires monitoring dynamic
network activities in order to obtain timely and signification
information. While most current effort focuses on detecting
Net-DDoS attacks with stable background traffic, we proposed
a detection architecture in this paper aiming at monitoring
Web traffic in order to reveal dynamic shifts in normal burst
traffic, which might signal onset of App-DDoS attacks during
the flash crowd event. Our method reveals early attacks merely
depending on the document popularity obtained from the server
log. The proposed method is based on PCA, ICA, and HsMM.
We conducted the experiment with different App-DDoS attack
modes (i.e., constant rate attacks, increasing rate attacks and
stochastic pulsing attack) during a flash crowd event collected
from a real trace. Our simulation results show that the system
could capture the shift of Web traffic caused by attacks under
the flash crowd and the entropy of the observed data fitting
to the HsMM can be used as the measure of abnormality. In
our experiments, when the detection threshold of entropy is set

5.3, the DR is 90% and the FPR is 1%. It also demonstrates
that the proposed architecture is expected to be practical in
monitoring App-DDoS attacks and in triggering more dedicated
detection on victim network.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their helpful comments and suggestions to improve this work.
The authors would also like to thank Prof. Z. Lin (Sun Yat-Sen
University, China) for his careful reading and valuable sugges-
tions for the improvement of the paper’s presentation.

REFERENCES

[1] K. Poulsen, “FBI Busts Alleged DDoS Mafia,” 2004. [Online]. Avail-
able: http://www.securityfocus.com/news/9411

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

XIE AND YU: MONITORING THE APPLICATION-LAYER DDoS ATTACKS FOR POPULAR WEBSITES 25

[2] “Incident Note IN-2004-01 W32/Novarg. A Virus,” CERT, 2004. [On-
line]. Available: http://www.cert.org/incident_notes/ IN-2004-01.html

[3] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger, “Botz-4-Sale: Sur-
viving Organized DDoS Attacks that Mimic Flash Crowds,” MIT, Tech.
Rep. TR-969, 2004 [Online]. Available: http://www.usenix.org/events/
nsdi05/tech/ kandula/kandula.pdf

[4] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E. Long,
“Modeling, Analysis and Simulation of Flash Crowds on the In-
ternet,” Storage Systems Research Center Jack Baskin School of
Engineering University of California, Santa Cruz Santa Cruz, CA,
Tech. Rep. UCSC-CRL-03-15, Feb. 28, 2004 [Online]. Available:
http://ssrc.cse.ucsc.edu/, 95064

[5] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and de-
nial of service attacks: Characterization and implications for CDNs and
web sites,” in Proc. 11th IEEE Int. World Wide Web Conf., May 2002,
pp. 252–262.

[6] Y. Xie and S. Yu, “A detection approach of user behaviors based
on HsMM,” in Proc. 19th Int. Teletraffic Congress (ITC19), Beijing,
China, Aug. 29–Sep. 2 2005, pp. 451–460.

[7] Y. Xie and S. Yu, “A novel model for detecting application layer DDoS
attacks,” in Proc. 1st IEEE Int. Multi-Symp. Comput. Computat. Sci.
(IMSCCS|06), Hangzhou, China, Jun. 20–24, 2006, vol. 2, pp. 56–63.

[8] S.-Z. Yu and H. Kobayashi, “An efficient forward-backward algorithm
for an explicit duration hidden Markov model,” IEEE Signal Process.
Lett., vol. 10, no. 1, pp. 11–14, Jan. 2003.

[9] L. I. Smith, A Tutorial on Principal Components Analysis [EB/OL],
2003 [Online]. Available: http://www.snl.salk.edu/~shlens/pub/ notes/
pca.pdf

[10] A. Hyvärinen, “Survey on independent component analysis,” Neural
Comput. Surveys, vol. 2, pp. 94–128, 1999.

[11] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp.
626–634, Jun. 1999.

[12] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B.
Ravichandran, and R. K. Mehra, “Proactive detection of distributed
denial of service attacks using MIB traffic variables a feasibility
study,” in Proc. IEEE/IFIP Int. Symp. Integr. Netw. Manag., May
2001, pp. 609–622.

[13] J. Yuan and K. Mills, “Monitoring the macroscopic effect of DDoS
flooding attacks,” IEEE Trans. Dependable and Secure Computing, vol.
2, no. 4, pp. 324–335, Oct.-Dec. 2005.

[14] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the source,”
in Proc. Int. Conf. Network Protocols, 2002, pp. 312–321.

[15] T. Peng and K. R. M. C. Leckie, “Protection from distributed denial
of service attacks using history-based IP filtering,” in Proc. IEEE Int.
Conf. Commun., May 2003, vol. 1, pp. 482–486.

[16] B. Xiao, W. Chen, Y. He, and E. H.-M. Sha, “An active detecting
method against SYN flooding attack,” in Proc. 11th Int. Conf. Parallel
Distrib. Syst., Jul. 20–22, 2005, vol. 1, pp. 709–715.

[17] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,”
in Proc. IEEE INFOCOM, 2002, vol. 3, pp. 1530–1539.

[18] L. Limwiwatkul and A. Rungsawangr, “Distributed denial of service
detection using TCP/IP header and traffic measurement analysis,” in
Proc. Int. Symp. Commun. Inf. Technol., Sappoo, Japan, Oct. 26–29,
2004, pp. 605–610.

[19] S. Noh, C. Lee, K. Choi, and G. Jung, “Detecting Distributed Denial
of Service (DDoS) attacks through inductive learning,” Lecture Notes
in Computer Science, vol. 2690, pp. 286–295, 2003.

[20] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “DDoS-re-
silient scheduling to counter application layer attacks under imperfect
detection,” in Proc. IEEE INFOCOM, Apr. 2006 [Online]. Available:
http://www-ece.rice.edu/networks/papers/dos-sched.pdf

[21] W. Yen and M.-F. Lee, “Defending application DDoS with constraint
random request attacks,” in Proc. Asia-Pacific Conf. Commun., Perth,
Western Australia, Oct. 3–5, 2005, pp. 620–624.

[22] S. Ranjan, R. Karrer, and Knightly, “Wide area redirection of dynamic
content by Internet data centers,” in Proc. 23rd Ann. Joint Conf. IEEE
Comput. Commun. Soc., Mar. 7–11, 2004, vol. 2, pp. 816–826.

[23] [Online]. Available: http://www.caida.org/analysis/security/sco-dos/
[24] [Online]. Available: http://ita.ee.lbl.gov/html/traces.html
[25] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and M. Weigle,

“Stochastic models for generating synthetic HTTP source traffic,” in
Proc. IEEE INFOCOM, 2004, vol. 3, pp. 1546–1557.

[26] NS2 [Online]. Available: http://www.isi.edu/nsnam/ns/
[27] W. Wang, X. Guan, and X. Zhang, “A novel intrusion detection method

based on principle component analysis in computer security,” in Proc.
Int. Symp. Neural Networks, Dalian, China, Aug. 19–21, 2004, pp.
657–662, Part II.

[28] Y. Xie and S. Yu, “A dynamic anomaly detection model for web user
behavior based on HsMM,” in Proc. 10th Int. Conf. Comput. Supported
Cooperative Work in Design (CSCWD 2006), Nanjing, China, May
3–5, 2006, vol. 2, pp. 811–816.

[29] S. Burklen, P. J. Marron, S. Fritsch, and K. Rothermel, “User centric
walk: An integrated approach for modeling the browsing behavior of
users on the Web,” in Proc. 38th Ann. Simulation Symp., Apr. 4–6,
2005, pp. 149–159.

[30] C. Roadknight, l. Marshall, and D. Vearer, “File popularity characteri-
sation,” ACM SIGMETRICS Performance Eval. Rev., vol. 23, no. 4, pp.
45–50, Mar. 2000.

[31] A. M. G. Cooper, R. Tsui, and M. Wagner, Summary of Biosurveil-
lance-Relevant Technologies. [Online]. Available: http://www.cs.cmu.
edu/~awm/biosurv-methods.pdf

[32] S. Z. Yu, Z. Liu, M. Squillante, C. Xia, and L. Zhang, “A hidden semi-
Markov model for web workload self-similarity,” in Proc. 21st IEEE
Int. Performance, Computing, Commun. Conf., Phoenix, AZ, Apr. 3–5,
2002, pp. 65–72.

[33] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the selfsim-
ilar nature of ethernet traffic (extended version),” IEEE/ACM Trans.
Networking, vol. 2, no. 1, pp. 1–15, Feb. 1994.

Yi Xie received the B.S. and M.S. degrees from
Sun Yat-Sen University, Guangzhou, China, where
he is currently working toward the Ph.D. degree in
the Department of Electrical and Communication
Engineering, School of Information Science and
Technology.

From July 1996 to July 2004, he was with the Civil
Aviation Administration of China (CAAC). He was a
Visiting Scholar with George Mason University from
2007 to 2008. His research interests are in network
security and Web-user behavior model algorithm.

Shun-Zheng Yu (M’08) received the B.Sc. degree
from Peking University, Peking, China, and the M.Sc.
and Ph.D. degrees from Beijing University of Posts
and Telecommunications, Beijing, China.

He was a Visiting Scholar with Princeton Univer-
sity and IBM Thomas J. Watson Research Center
during 1999 to 2002. He is currently a Professor
with the School of Information Science and Tech-
nology, Sun Yat-Sen University, Guangzhou, China.
Networking, traffic modeling, anomaly detection,
and algorithms for hidden semi-Markov model have

been of particular interest over recent years.

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:42:52 EDT from IEEE Xplore. Restrictions apply.

