764

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

Secure and Policy-Compliant Source Routing

Barath Raghavan, Patrick Verkaik, and Alex C. Snoeren, Member, IEEE

Abstract—In today’s Internet, inter-domain route control
remains elusive; nevertheless, such control could improve the
performance, reliability, and utility of the network for end users
and ISPs alike. While researchers have proposed a number of
source routing techniques to combat this limitation, there has
thus far been no way for independent ASes to ensure that such
traffic does not circumvent local traffic policies, nor to accurately
determine the correct party to charge for forwarding the traffic.

We present Platypus, an authenticated source routing system
built around the concept of network capabilities, which allow for
accountable, fine-grained path selection by cryptographically at-
testing to policy compliance at each hop along a source route. Ca-
pabilities can be composed to construct routes through multiple
ASes and can be delegated to third parties. Platypus caters to the
needs of both end users and ISPs: users gain the ability to pool
their resources and select routes other than the default, while ISPs
maintain control over where, when, and whose packets traverse
their networks. We describe the design and implementation of an
extensive Platypus policy framework that can be used to address
several issues in wide-area routing at both the edge and the core,
and evaluate its performance and security. Our results show that
incremental deployment of Platypus can achieve immediate gains.

Index Terms—Authentication, capabilities, overlay networks,
source routing.

1. INTRODUCTION

ETWORK operators and academic researchers alike rec-
N ognize that today’s wide-area Internet routing does not
realize the full potential of the existing network infrastructure
in terms of performance [37], reliability [1], [4], [26], or flexi-
bility [15], [23], [45]. While a number of techniques for intel-
ligent, source-controlled path selection have been proposed to
improve end-to-end performance [37], [43], reliability [1], [4],
[26], [47], and flexibility [13], [17], [23], [42], [45], they have
proven problematic to deploy due to concerns about security and
network instability. We attempt to address these issues in de-
veloping a scalable, authenticated, policy-compliant, wide-area
source routing protocol.

We argue that many of the deficiencies of today’s routing in-
frastructure are symptoms of the coupling of routing policy and
routing mechanism [39]. In particular, today’s primary wide-
area routing protocol, the Border Gateway Protocol (BGP), is
extraordinarily difficult to describe, analyze, or manage [29].

Manuscript received June 25, 2007; revised January 25, 2008; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor B. Levine. First published
December 22, 2008; current version published June 17, 2009. This work was
supported in part by the National Science Foundation through NSF CAREER
Award CNS-0347949. An earlier version of this manuscript appeared in ACM
SIGCOMM 2004.

The authors are with the Department of Computer Science and Engineering,
University of California at San Diego, La Jolla, CA 92093-0404 USA (e-mail:
barath@cs.ucsd.edu; pverkaik @cs.ucsd.edu; snoeren@cs.ucsd.edu).

Digital Object Identifier 10.1109/TNET.2008.2007949

Autonomous systems (ASes) express their local routing policy
during BGP route advertisement by affecting the routes that are
chosen and exported to neighbors. Similarly, ASes often adjust a
number of attributes on routes they accept from their neighbors
according to local guidelines [10], [20], [32]. As a result, con-
figuring BGP becomes an overly complex task, one for which
the outcome is rarely certain. BGP’s complexity affects Internet
Service Providers (ISPs) and end users alike; ISPs struggle to
understand and configure their networks while end users are left
to wonder why end-to-end connectivity is so poor.

Our approach to reducing this complexity is to separate the
issues of connectivity discovery and path selection. Removing
policy constraints from route discovery presents an opportunity
for end users and edge networks: routes previously hidden by
overly conservative policy filters can be revealed by ASes and
traversed by packets. The key challenge becomes determining
whether a particular source route is appropriate. ASes have no
incentive to forward arbitrary traffic; currently they only wish
to forward traffic for their customers or peers. We argue, how-
ever, that this is simply a poor approximation of the real goal:
ASes want to forward traffic only if they are compensated for it.
Henceforth, we will consider traffic policy compliant at a partic-
ular point in the network if the AS can identify the appropriate
party to bill, and that party has been authorized by the AS to use
the portion of the network in question.

We present the design and evaluation of Platypus, a source
routing system that, like many source-routing protocols before
it, can be used to implement efficient overlay forwarding, se-
lect among multiple ingress/egress routers, provide virtual AS
multi-homing, and address many other common routing defi-
ciencies [39]. The key advantage of Platypus is its ability to
ensure policy compliance during packet forwarding. Platypus
enables packets to be stamped at the source as being policy
compliant, reducing policy enforcement to stamp verification.
Hence, Platypus allows for management of routing policy inde-
pendent of route export and path selection.

Platypus uses network capabilities, primitives that are placed
within individual packets, to securely attest to the policy com-
pliance of source routing requests. Network capabilities are
i) transferable: an entity can delegate capabilities to others,
ii) composable: a packet may be accompanied by a set of ca-
pabilities, and iii) cryptographically authenticated. Capabilities
can be issued by ASes to any parties they know how to bill. Each
capability specifies a desired transit point (called a waypoint),
a resource principal responsible for the traffic, and a stamp of
authorization. By presenting a capability along with a routing
request, end users and ISPs express their willingness to be
held accountable for the traffic, and the included authorization
ensures the policy compliance of the request.

In addition to its basic design, we also aim to understand
how Platypus might be deployed in today’s Internet. To this

1063-6692/$25.00 © 2008 IEEE

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

end, we detail the design and implementation of a policy frame-
work for managing Platypus in an AS. Incremental deploya-
bility is key in our setting, as it would be unreasonable to expect
ASes to cooperate in the deployment of a system that affects
local policy. Thus, we present results from wide-area measure-
ments and performance evaluation of a prototype UNIX-based
Platypus router, which indicate that incremental deployment of
Platypus is feasible and may yield substantial benefit even using
only a few routers.

II. OVERVIEW AND APPLICATIONS

It is well known that multiple paths often exist between any
two points in today’s Internet. The central tenet of any source-
routing scheme is that no single route will be best for all parties.
Instead, sources should be empowered to select their own routes
according to whatever criteria they determine. Protocols for effi-
cient wide-area route discovery and selection, however, are be-
yond the scope of this paper. We assume that the network is
configured (using BGP, for example) with a set of default routes
and that certain motivated parties become aware of alternative
paths, either through active probing [4], [40] or route discovery
services [31]. Platypus builds on this basic infrastructure, al-
lowing entities to select paths other than the default. Packets
may specify a set of waypoints to be traversed on the way to a
destination, but are not required to specify each router along the
path. A source-routed packet is forwarded using default paths
between the specified waypoints; an end-to-end path is there-
fore a concatenation of default paths provided by the existing
routing system.

Platypus is designed to be deployed selectively by ASes at
choice locations in their networks. To support incremental de-
ployment, Platypus waypoints are specified using routable IP
addresses. When source routing a packet, the routing entity,
which may be an end host or a device inside the network, en-
capsulates the payload and replaces the original destination IP
address of the packet with the address of the first waypoint. The
original destination IP address is stored in the packet for replace-
ment at the last waypoint. When a Platypus packet arrives at a
waypoint, the router updates the Platypus headers and forwards
the packet on to the next waypoint.

A. Sample Applications

We motivate the design of Platypus by describing several pos-
sible applications below. These examples are meant to be il-
lustrative, not necessarily comprehensive. Moreover, we do not
claim that Platypus is the only (or best) solution to each of the
problems; instead, we suggest that it reprsents a single, elegant
approach that addresses them all simultaneously.

1) Efficient Overlay Routing/On-Demand Transit: Consider
the partial network topology shown in Fig. 1. Nodes S4, Sg,
and S¢ are all willing to cooperate to forward each other’s
traffic. Assume that S 4 wishes to send a packet to S, but the
default route S4 — R4 — Rp — Sp is unsatisfactory, per-
haps because the link R4 < Rp is congested or down. With
prior overlay systems [4], S4 could use S¢ as a transit point by
tunneling its traffic directly to S, who would then forward it
along to Sp. While effective at avoiding the bad link, this route
is clearly sub-optimal for all involved, since:

765

Ry
/ i ISPC Y }
N ISPA S R N IsPB /7
C2

Fig. 1. A simple network topology. Hosts S 4, S5, and S¢ all have different
ISPs, as indicated by the different shading. Note that R4 and Rp are directly
connected, bypassing ISP C'.

1) S¢ is forced to forward each packet itself, consuming both
its bandwidth (in both directions) and processor resources.
It would prefer that a router forward the traffic instead.

2) If avoiding R4 < Rp is the objective, an alternate route
exists using the R4 < R¢1 < Rp path. If S¢’s ISP also
owns Rc¢1, S¢ should be able to authorize use of the path
RA — RCl — RB.

Both of these issues could be addressed by traditional
source-routing schemes. In the example, S4 can specify the
route R4 — Rc1 — Rp — Sp. The challenge is in commu-
nicating to ISP C that such a route request is reasonable. In this
case, assuming ISP C' is not a transit provider, it is permissible
only because S¢ is a customer of the ISP and is willing to be
charged for S 4’s traffic. With existing source-routing mecha-
nisms, an AS cannot determine whether a forwarding request
complies with local policy, and, if so, who to charge for the
service. Currently, an AS assumes that packets should arrive
at its border only if it advertised a route to their destinations.
In our example, ISP C' does not expect Rc2 to receive packets
from ISP A that are destined for Sp. Source-routed packets
can obviously be made to explicitly transit any AS, violating
this precondition. While ISPs can (and do) use filters to prevent
unauthorized traffic from entering their network, filters can
only act upon information contained within a packet—source
and destination addresses, protocol, type of service, etc.—and
current network location. These attributes are insufficient to
determine policy compliance or the responsible party in this
case. Nothing about the source-routed packet from S4 to Sp
indicates S¢’s cooperation (and resulting policy compliance).

In Platypus, S¢, by virtue of being a customer of its ISP, may
have authority to source route through any of the ISP’s routers.
In that case, ISP C' would issue S¢ a capability and a secret key
that can be used to stamp packets. The capability would name
C as the resource principal—the party responsible for all traffic
bearing the capability. Platypus ensures the policy compliance
of a given source route by requiring that source-routed packets
contain a capability for each waypoint in a packet’s source route.
Because the secret key needed to stamp packets is known only
to the indicated resource principal (or its associates), properly
stamped packets certify their policy compliance and allow way-
points to appropriately account for usage.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

766

We posit that ASes conduct a priori negotiations with cus-
tomers and each other to determine mutually agreeable poli-
cies about who may source route traffic through which way-
points (similar to today’s peering agreements [32]). Efficiently
describing or constructing such policies is a complex problem
on its own; we do not discuss it here. Instead, we assume the
output of this process is a set of rights which can be encoded as
a matrix of binary entries: for each waypoint in the network, a
given resource principal may or may not forward traffic through
it. Capabilities expire periodically and can be revoked, allowing
ASes to dynamically update their policies.

Returning to our example, S¢ could transfer a capability to
S 4 allowing S4 to construct a source route that can alleviate
both issues enumerated above. In particular, If the capability
specifies any router in ISP C' as a waypoint, the first problem is
solved—S¢ no longer needs to forward the packet itself. More-
over, if S¢ were to transfer a capability specifically naming R¢
as a next hop, the second issue can also be addressed.

While we have described S 4, Sp, and S¢ as end hosts for
simplicity, Platypus is designed to allow in-network stamping.
Hence, each of these entities could correspond to entire ASes,
allowing the example to be recast as a type of secondary transit,
where Sc—a stub domain—can resell its transit privileges to
other, non-adjacent stub domains without prior involvement of
its provider.

2) Preferential Ingress Points: Multi-homed ASes often
select multiple upstream providers and send different traffic
through each depending on network conditions and destina-
tion—so-called policy routing. Unfortunately, an AS remains
at the mercy of its upstream providers to control how incoming
traffic arrives; there currently exists no widely deployed mech-
anism to affect ingress points [1], short of assigning multiple
addresses to the AS’s hosts and advertising different addresses
to different providers. Using Platypus, however, an AS can
delegate multiple capabilities naming waypoints corresponding
to its different upstream providers. Just as with toll-free phone
numbers, an AS may be willing to be the resource principal re-
sponsible for incoming traffic if it can affect how that incoming
traffic arrives. In Section IV we demonstrate our design of a
mechanism for safely broadcasting delegated capabilities using
DNS.

3) Virtual Multi-Homing: A stub AS with a single up-
stream connection is currently limited to the default routes
of its provider. Without multi-homing, an AS is incapable of
selecting backbone providers to carry its traffic—it must use
the backbone selected by its upstream AS. With Platypus,
however, a stub AS could request capabilities from providers
of its choice, and place these on its out-bound traffic indi-
cating which of its regional provider’s upstream backbones to
use for particular traffic—in effect making the AS virtually
multi-homed. Using delegated capabilities, in-bound traffic can
be similarly affected. Thus, a stub AS could implement its own
policy routing without the need for any configuration on the
part of its upstream provider.

As a concrete example, suppose an AS, X, wishes to choose
between two indirectly upstream providers A and B. X’s ISP,
Y, need not provide Platypus support. At the X « Y gateway,
X classifies traffic it wishes to route through either A or B and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

stamps them with appropriate capabilities. Though Y does not
support Platypus forwarding, it faithfully delivers packets to A’s
or B’s edge routers, which are aware of Platypus headers, and,
thus, deliver the packets as X desired. In such a scenario A and
B clearly have a financial motivation to provide such a service
since they can bill X, while X benefits by having choice in its
indirect upstream providers, potentially providing fail-over or
optimized routing. X ’s provider, Y, has no disincentive to allow
Platypus -enabled packets to traverse its network since it has an
already established relationship with X.

B. Challenges

As these examples demonstrate, source routing can be used to
address a number of issues with the existing routing infrastruc-
ture. We believe, therefore, that the unavailability or limited de-
ployment of source routing protocols stems not from a lack of
utility, but, instead, from the omission of two key features: a
mechanism for accountable and composable authorization, and
the ability for ISPs to effectively manage link utilization. The
need for authorization should be clear from the examples. The
relationship to load management, however, is a bit more subtle.
Recent research indicates that self-interested source routing can
achieve performance gains even in wide deployment, but raises
concerns about possible negative interactions with traffic engi-
neering—highly reactive sources may make existing traffic en-
gineering mechanisms ineffective by constantly changing fine-
grained route requests [34].

III. NETWORK CAPABILITIES

Platypus addresses both of these issues through the use of
network capabilities. Abstractly, a network capability is made
up of two fields: a waypoint and a resource principal identifier.
The waypoint specifies a topological network location through
which the packet should be routed and the resource principal
specifies the entity willing to be charged for the routing request.
Using intra-AS routing mechanisms, an AS can route packets
for a given waypoint to different Platypus routers, thus giving it
more control over the effects of source-routed traffic on an ISP’s
traffic engineering. We return to this issue in Section VII-D.
For now, we will consider waypoints to correspond to a specific
router within an AS.

In Platypus, packets are stamped with a source-routing
request by inserting a Platypus header immediately after the
IP header of each packet and including some number of ca-
pabilities, encapsulating the existing payload. Fig. 2 shows
the Platypus header format with one capability attached. The
header contains fields for the protocol version (currently 0),
a set of bit flags (whose use is described in Section IV-A.1),
a length field (specified in terms of 32-bit words), a pointer
to the current capability (also in terms of 32-bit words), and
an encapsulated protocol field to facilitate de-encapsulation.
Capabilities are appended immediately after the Platypus
header. The Platypus header and capabilities may be added by
in-network stampers while the packet is in transit.

Since anyone can use a capability to forward packets through
the specified waypoint and bill the indicated resource principal,
Platypus must ensure that eavesdroppers watching packets in the
network cannot use capabilities they observe in flight for their

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

4 bytes

Versior| Flags Capability ListCapability ListEncapsulated

Length Pointer Protocol
Platypus header Original Source Address
Final Destination Address
Waypoint address
Capability, ¢
Resource principal Key ID| Flags

Binding, b

Fig. 2. Platypus header format with a single capability and binding attached.

own packets. Similarly, attackers should not be able to modify
capabilities or construct new ones that enable them to use way-
points for which they are not authorized, or to bill other resource
principals. To prevent this, each capability in a packet is accom-
panied by a binding that cryptographically ensures the capa-
bility is valid and being used by the appropriate party. Bind-
ings are a function of the capability, the packet contents, and
a secret known only to the owner of the capability. When a
Platypus packet arrives at a waypoint, the Platypus router val-
idates the corresponding capability and its binding. If the ca-
pability/binding pair is valid, the router updates the waypoint
pointer (indicating the packet has already passed through this
waypoint), sets the packet’s current destination IP to the way-
point field of the next capability in the capability list, replaces
the current source IP with its own (to prevent ingress filters from
dropping the packet), and forwards the packet on. If no addi-
tional capabilities remain, the router replaces the original desti-
nation address.

A. MAC-Based Authentication

Platypus prevents forgery of capabilities or their bindings
with the cascade construction of Bellare et al. [7], which is
provably secure given an underlying MAC that is a pseudo-
random function (PRF), as most modern MACs are believed to
be. We define a secret temporal key, s = MACy(c), generated
from the capability, ¢, using a message authentication code
(MAC) such as HMAC [24]. The MAC is keyed with k, the key
of the specified waypoint. This value s is securely transferred to
the resource principal (in a manner described in Section IV). In
order to use a capability, an individual packet must be stamped
with the capability and a binding, b = MAC,(MASK(P)),
where MASK(P) is the invariant [16] contents of the packet
(not including Platypus headers) with the end-to-end source
and destination addresses substituted and the packet length field
omitted. Both b and ¢ are included in the packet, as shown in
Fig. 2. In this way, the binding is dependent upon both the se-
cret key s and the packet’s contents, and thus cannot be reused
for other packets. Similarly, any changes to the capability c
would render bindings computed with the secret temporal key
s invalid.

767

R: Revocation set, ID: Current key ID
PROCESS(P: Packet)
¢ «— *(P.phdr.ptr)
if |c.id—ID| > 1 or ¢ € R then
ICMPERROR(P)
s < MAC(c||GETTIME(c.id))
b — MAC,(MASK(P))
if c.b = b’ then
ACCOUNT(c.xrp, P)
P.phdr.ptr «— P.phdr.ptr + ||
if P.phdr.ptr > P.phdr.len then
P.dst «— P.phdr.dst
else
¢ « *(P.phdr.ptr)
P.dst « cway
FORWARD(P)
else
ICMPERROR(P)

Fig. 3. Pseudocode for Platypus forwarding. P is a packet, P.src is the
packet’s source IP address, and P.phdr is the Platypus header in which
src(dst) is the source (destination) address, ptr is the pointer to the current
capability and len is the length of the capability list. ¢ is a capability, c.way is
its waypoint field, c.rp is its resource principal field, c.id is its key ID, and ¢.b
is the binding accompanying c. || denotes concatenation.

Fig. 3 presents pseudocode for Platypus packet verification
and forwarding. To verify a packet’s binding (and, therefore, ca-
pability), a Platypus router only needs the local waypoint key, &,
since b' = MACy1ac, (o) (MASK(P)) = MAC,(MASK(P)).
If b # ', either the capability or the binding (or both) has been
forged and the packet should be discarded. An advantage of this
construction is that the router needs to maintain only a constant
amount of state irrespective of the number of resource princi-
pals. In addition, rejected packets elicit ICMP responses to the
sender to quell further invalid transmissions (subject to standard
ICMP rate limiting).

B. Key Expiration and Timing

If temporal secret keys were never to expire, ASes would
have no means to enforce changing policies—resource princi-
pals could use their capabilities forever. In addition, if a key
were transferred to a third party or compromised, the resource
principal would have no way to regain control over its associ-
ated capability. To address these issues, Platypus provides au-
tomatic key expiration. Once a temporal secret key expires, re-
source principals must retrieve a new one from the key server.
To simplify the task of authenticating resource principals to the
key server, we introduce the notion of a capability master key,
cr, which is shared between the resource principal and the key
server. The capability master key is not used to generate capa-
bilities or bindings, it is only needed to retrieve a new temporal
secret key from the key server.

Platypus is designed to avoid the need for tight time synchro-
nization between stamping parties and Platypus routers. Each
capability includes a key identifier (key ID) which is a small
(4-bit) integer that identifies the temporal secret used to compute
each packet’s binding. This key ID value changes on a regular

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

768

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

TABLE I
CAPABILITY KNOWLEDGE HIERARCHY. ® DENOTES THAT THE VALUE IS/CAN BE KNOWN, o INDICATES IT IS GENERATED ON THE FLY
Waypoint Key k | Revocation List R | Capability Master Key c;, | Temporal Secret Key s | Binding b

Key Server . . B o

Platypus Router ° ° o o
Resource Principal B ° o
Trusted Third Party . o
Others .

basis (e.g., every hour) and a new corresponding temporal se-
cret generated. Since the key ID space is small, the key ID may
wrap around often, yielding what would be identical temporal
secrets if s = MACy(c¢). We address this issue by incorporating
the current time during generation of temporal secrets.! In this
way, temporal secrets are guaranteed to be unique despite key
ID wraparound.

To ensure that both stamping agents and routers agree on the
current key ID, capabilities are associated with a key expiration
interval upon issuance. The length of the expiration interval
presents a natural tradeoff between control and overhead—short
expiration intervals provide fine-grained control over secrets,
but require more frequent key lookup. Expiration intervals must
be chosen based upon operational experience with Platypus
to suit the needs of the issuing AS and its resource principals.
Our only synchronization requirement is that stampers have
clocks that do not drift on the order of the expiration interval. In
addition, to allow for transitions between secrets, we consider
three secrets to be valid at any time: those for the current,
previous, and next key IDs. To combat clock drift between
Platypus routers, we expect that the routers are loosely time
synchronized using a standard service such as NTP [30];
synchronization without NTP is an open problem.

C. Security

Security in Platypus is provided by the fact that not all par-
ties have the information needed to bind known capabilities to
new packets or create new, usable capabilities. Table I shows
the types of information known to various parties. To generate
a temporal secret key, a party must have the waypoint key, k,
which is known only to the router and the router’s key server.
Binding a capability to a packet requires only the temporal se-
cretkey, s, which is generated based upon k and the current time.
Knowledge of one capability’s temporal secret key, however,
does not allow a party to generate temporal secrets for others.
Resource principals wishing to transfer their full rights for a par-
ticular waypoint to a trusted third party can pass both the capa-
bility and corresponding temporal secret key.

While the capability can be passed in the clear, the temporal
secret key must be communicated privately, ensuring that only
the chosen third parties are able to receive it. These third parties
can then use s to generate bindings to stamp their own packets.
Others, including those sniffing packets on the network, can see
capabilities and their bindings, but lack the secret s required

ISpecifically, for a given time ¢, where ¢ is the seconds part of a 32-bit UNIX
timestamp in UTC, and an expiration interval of 2™, the corresponding key ID
i = (t > n) & 0xF. That is, the key ID is the last 4 bits of ¢ after removal of
the lower n bits; the key ID changes every 2" seconds. To compute a temporal
secret s as in Fig. 3, acall to GETTIME(¢) = ((¢ > n) & OxFFFFFFFO)| i,
which returns the time value that corresponds to the given key ID.

to generate valid bindings. Periodic key expiration ensures that
third parties cannot use temporal secrets indefinitely. In addi-
tion, any temporal secret key may be revoked by the resource
principal through communication with the key server as will be
described in Section IV-B.4.

Unfortunately, since bindings include almost all the invariant
contents of a packet, intermediate nodes are restricted in power.
For example, since the binding covers the payload (including
TCP port numbers) Platypus packets are not compatible with
port-altering network address translators (NATSs), nor can they
be fragmented. We do not consider the inability to fragment
a significant limitation, as hosts typically perform path MTU
discovery for all destinations. The NAT restriction, however,
may be more significant. Any port-altering NATS traversed by
Platypus packets on their way to a waypoint must be Platypus-
aware. Once a packet has passed through its final Platypus way-
point, however, it may pass through NATs without ill effect.
Similarly, packets may traverse any number of NATs before
being stamped. Since most NATs are deployed at the edges of
networks, the above suffices when packets are stamped inside
the network. End hosts wishing to stamp their own packets,
however, cannot be behind a port-altering NAT.

IV. CAPABILITY MANAGEMENT

Platypus gains significant flexibility from the ability to
transfer capabilities. Entities can collect capabilities from mul-
tiple resource principals and construct source routes to which
no single entity would otherwise have rights. We describe
capability management in several steps: First, we detail how
capabilities are generated both in general and in special cases.
Second, we describe how resource principals obtain temporal
secrets for their own capabilities and capabilities delegated
to them by others. Third, we present a policy framework for
applying capabilities to IP packets.

A. Capability Generation

While capabilities are generally minted by an ISP, there are
two important cases when individuals may wish to create new
capabilities based on those provided to them by their ISPs.

1) Reply Capabilities: Protocols such as TCP have been
shown to work best when forward and reverse path character-
istics are similar [6]. In order to use Platypus source routes,
however, both ends of a flow must have their own capabilities
and perform their own routing. Fortunately, it may often be
the case that one of the communicating parties may wish to be
responsible for both directions of the flow. For example, a client
may wish to provide a server with a capability to enable the
server to provide it with better performance. Platypus allows
for resource principals to include a reply capability and its

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

corresponding temporal secret as part of a packet stream for the
recipient to use in response.

For concreteness, we describe reply capabilities in the con-
text of an HTTP flow. Suppose the client possesses a capability
to route through some Platypus router to reach a Web server.
The client wishes to provide a capability to the server for reply
packets back to the client. (Obviously, the server or some router
near the server must support Platypus stamping to make this pos-
sible.)

There must be some degree of trust in this relationship: the
client must expect that the server is going to send it useful data
if it is willing to provide a capability for the traffic. However,
the client may not wish to divulge its capability and temporal
secret key entirely. In particular, the client may want to transfer
the appropriate capabilities with a restriction that they be used
only to send packets to its address. Thus, the server would only
be able to use the restricted capability to route to the client, who
would be able to detect any abuse. Such a restricted delegation
mechanism is of use in a more general setting; we turn to this
problem next, and use the fully restricted variant for reply capa-
bilities.

2) General Delegation: In general, a resource principal may
want to specify a particular IP address prefix to which a third
party may send packets using the principal’s capability. Further-
more, the third party should be able to sub-delegate (specify a
subnet of the previously delegated prefix) the capability without
needing to contact the resource principal or key server. For ex-
ample, as part of its services, a data center may offer (delegated)
capabilities to owners of servers hosted at the data center that
the server owners can then pass on to their clients (sub-dele-
gation). To prevent abuse, the data center would like these del-
egated capabilities to be used only to send traffic to the data
center. In turn, each server owner would want its customers to
use its capabilities only to send traffic to its servers (and not to
other servers hosted at the same data center). Platypus therefore
allows the minting of delegated capabilities, which are derived
from normal (or previously delegated) capabilities, but limited
in their scope.

To facilitate the use of delegated capabilities, we extend the
capability format as follows. First, when a packet is stamped
with a delegated capability, a bit is set in the flags field of the ca-
pability specifying that the capability is a delegated capability.
Immediately before the associated binding, the stamper places
the constraining prefix (a 32-bit value), the prefix length (an
8-bit value), and a delegation ID (a 24-bit value). These values
allow a Platypus router to verify both that the binding is valid
and that the “next hop” of the packet (waypoint or final desti-
nation) is within the restricted prefix. Note that it is essential to
check that the next waypoint in the capability list is within the
restricted prefix in order to prevent hosts from colluding with
fake waypoints to misuse delegated capabilities. Finally, the re-
source principal and ISP can use the delegation ID to track the
use of delegated capabilities.

Here we present one protocol for building delegated capa-
bilities—chaining delegation—which is simply a multi-round
variant of the double-MAC, once again under the assumption

769

that the MAC is a secure pseudorandom function.2 Similar to
the manner in which routers generate secrets to give to resource
principals, each party that wishes to delegate computes a del-
egation key d = MAC,(id) where s is an ordinary capability
secret and id is the delegation ID. Next, for each bit p; of the
constraining prefix p, the party further restricts the delegation
key by iteratively computing d = MAC,(p;). Other parties can
be given the key d to compute bindings for packets; they can
also subdelegate through the same delegation key generation ap-
proach by iteratively constraining prefix bits.

B. Capability Distribution

There are three main aspects to wide-area capability distri-
bution: bootstrapping, lookup, and revocation. We describe our
approaches to each in turn.

1) Bootstrapping: To bootstrap the capability distribution
process, we expect that each AS provides an interface (likely
a Web server) through which resource principals establish their
accounts. This can occur in many ways. For example, the server
and resource principal can set up a secure channel (using SSL,
for example), and, after negotiating payment, the server sends
a resource principal ID, randomly generated capability master
key ¢, and the capability information to the resource principal.

2) Ordinary Capability Lookup: To look up the current
temporal secret s associated with a capability, a resource
principal generates a request by encoding the capability
and a special request opcode as a string and prepends it
to the key-lookup subdomain (specified during the boot-
strap process) in a DNS TXT lookup request, which is
routed by DNS to an appropriate key server. For example,
a request for a capability issued by ucsd.edu with
key-lookup subdomain platypus.ucsd.edu would be
(request).platypus.ucsd.edu. The DNS response is
a similarly encoded DNS TXT record containing the temporal
secret for the requested key ID encrypted under the capability
master key. The resource principal decrypts and verifies the
response, yielding the current temporal secret s for the specified
capability.

The use of DNS for key lookup may seem clumsy; a more nat-
ural approach might be to contact the key server directly. To con-
tact the server, however, a resource principal would have to first
perform a DNS lookup for the key server and then transmit its
lookup request, requiring multiple round trips. Instead, Platypus
piggybacks the request for a key, shortening the lookup latency
to about one RTT, allowing for extremely short expiration inter-
vals. By using DNS to distribute keys, Platypus realizes caching,
distributed authority, and failure resistance without having to
build a separate key distribution infrastructure. In particular,
Platypus key lookups are cacheable since requests are plain text
and replies are encrypted under the capability master key for the
requested capability. If multiple requests are made for the same
shared capability, DNS caching will automatically decrease the
load on the key server.

3) Delegated Capability Lookup: Lookup of delegated ca-
pabilities is fundamentally different from ordinary capability

2We can alternatively use a block cipher instead of a MAC for generating
delegated keys.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

770

lookup: parties must receive capabilities from a resource prin-
cipal rather than from a capability server. We have devised a
DNS-based mechanism that allows a server to distribute del-
egated capabilities to clients, leveraging the DNS lookup that
typically precedes client-server exchanges on the Internet. If
both the client and the server are Platypus-aware, the server
can delegate a capability to the client as follows. Suppose a
client wishes to contact a server server .ucsd.edu. Nor-
mally, a DNS resolver near the client issues a DNS query asking
for the A record (IP address record) for server.ucsd.edu,
which eventually is answered by the name server authoritative
for ucsd.edu. Instead, we have the resolver issue a query
for a TXT record for deleg.server.ucsd. edu (that is, it
prepends deleg to the DNS name). The DNS server recognises
this as a request for (a) the IP address of server.ucsd.edu
and (b) a delegated capability for sending traffic to server.
ucsd. edu;itreturns a TXT response to the resolver containing
these two items. The DNS resolver installs the received dele-
gated capability in a client-side stamper and returns the address
to the client; the stamper can subsequently stamp traffic from
the client to the server. The server remains compatible with
non-Platypus-aware clients by answering A queries in addition
to TXT queries. Similarly, the client’s resolver remains compat-
ible with non-Platypus-aware servers by requesting an A record
if no TXT record is returned.

An attacker may attempt to intercept a DNS response con-
taining a delegated capability and use the delegated capability
to flood the server, overwhelm the waypoint, or incur cost for
the server’s resource principal. Such an attack, however, is not
fundamentally different from an ordinary flood attack against
the server’s access link. Alternatively, an attacker may tamper
with the TXT record in the DNS response and insert a different
delegated capability to divert traffic intended for the server to
another location. Once again, this attack can be accomplished
today by modifying a DNS A record reply.

4) Revocation: While expiration provides for coarse-grained
control of temporal secrets, a resource principal may want to
immediately revoke the current temporal secret when it sus-
pects compromise. Platypus enables such revocation: to revoke
a particular temporal secret, the resource principal computes
the MAC of the capability and the current time under the capa-
bility master key and sends the {capability, time} pair, MAC,
and the revocation opcode encoded as a DNS request. Platypus
routers periodically receive updated revocation lists from their
associated key servers which they consult whenever validating
packets. The revocation list for the current key ID is flushed
upon key ID rotation.

C. Policy

So far we have discussed the mechanisms for stamping and
delegation, deferring questions such as (a) how a stamper de-
cides to stamp a particular packet and with which capabilities,
(b) how a resource principal decides to delegate a capability to
a peer, and (c) how its peer decides to accept a delegated capa-
bility. We now present a per-AS policy framework designed to
address these questions.

Fig. 4 shows an instance of our policy framework in an in-net-
work stamping scenario that uses DNS-based delegation. Cen-

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

Client AS C Server AS S
70 Vs 9
I I S
Host é} Stamper ‘,_ - W“i’)g“m' Server
Lo o -
1 6 's
[I [t I [I ITTT T T]
' DNS L. 4_! Policy ! " DNs = 0 policy |
| Resolver | | Engine | | Server | | Engine |
Lo v [I
| 3 v
2
! platypus router component - === policy protocol
== [P packet = == cncapsulated IP packet
— DNS message

Fig. 4. Delegation and stamping in our policy framework.

tral to the framework is the Policy Engine, which implements
the AS’s policy. The policy engine instructs the stamper and
DNS components based on policy, and obtains delegated capa-
bilities through them. The stamper and policy engine are imple-
mented inside a Platypus router, which is located on the path
of inbound and outbound traffic. (Multihomed ASes would use
several Platypus routers.) In Fig. 4 we assume AS S hosts a
server and owns a capability ¢ for waypoint W. AS S wishes
clients in AS C to use this capability when they communicate
with the server, and has therefore installed ¢ and the policy in
the policy engine.

We illustrate the interaction between these components by
walking through the steps shown in the figure. First, S”s policy
engine derives a delegated capability d and sends it to the DNS
server, instructing it to “receive traffic from C' through waypoint
W” using d (Step 0). Next, a host in AS C wishes to contact the
server and issues a DNS A query to C”s DNS resolver, which
transforms it into a TXT query and forwards it to S’s DNS server
(Steps 1-2). At this point the DNS server includes d in the DNS
TXT response to the DNS resolver (Step 3), complying with the
directive it received from the policy engine in Step 0. The DNS
resolver passes any received delegated capabilities to C’s policy
engine (Step 4), whose responsibility it is to select delegated
capababilities for use. In this example we assume that AS C’s
policy is to accept and use any delegated capabilities sent by
peers. Therefore, the policy engine passes d to the stamper and
tells it to “send traffic to S through W using d” (Step 5). Mean-
while, the DNS resolver also sends a DNS A response to the host
(Step 6), which can now start sending traffic to the server (Step
7). Traffic to the server is stamped by C"’s stamper and passes
through W (Steps 8-9), in accordance with both ASes’ policy.

V. IMPLEMENTATION

We have built prototype software components for UNIX
that provide Platypus stamping, key distribution, distribution
of delegated capabilities, policy specification, and forwarding
services. Fig. 5 depicts some of the key components in our
prototype. Each is described in turn below.

A. Forwarding and Stamping

We have implemented Platypus forwarding and stamping
functionality as user-space daemons, (prd and psd), which
runs in Linux and on Planetlab, and as Linux kernel modules,

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

platypus router waypoint
dns dns wla_\'pz)im
alterna—
resolver ser@ver tives
i a ki policy i a 1
stamper | /| psd [t ; | prd [\ | user
alterna—| : engine .| space
tives -~ [? ' T .
i ; : /| kerne
| pskm | 70! | prkm | | space
-] implemented _:

Fig. 5. Overview of implemented components.

(prkm and pskm). While prd implements our full policy
framework, user-level packet capture and forwarding requires
multiple user/kernel context switches, resulting in poor for-
warding performance. Thus, we use prkm to better the potential
forwarding performance of an in-kernel implementation. prkm
processes Platypus packets entirely inside the kernel. Upon a
packet arrival, in the kernel soft-IRQ context, prkm verifies
the packet; if the binding is valid, the packet is updated and
forwarded. By binding interrupt handling for different network
interfaces to different CPUs on a machine, prkm can provide
good scaling across multiple processors.

B. Distribution of Delegated Capabilities

We implemented DNS-based distribution of delegated ca-
pabilities (Section IV-B.3) using the Poslib DNS library [33].
We leverage deployed DNS infrastructure by deferring DNS
lookup work to existing DNS resolvers and servers, only
performing transformations on DNS messages. For example,
when a Platypus DNS server receives a TXT query, it trans-
forms the query into the corresponding A query and lets a local
conventional DNS server handle the query. On receiving the A
response from the DNS server, the Platypus DNS server trans-
forms the response into a TXT response, includes delegated
capabilities as needed, and replies to the query.

C. Policy

The policy engine is implemented as a user-level process that
communicates with other components in the Platypus router
using an XDR-based [41] policy protocol. The policy protocol
allows the engine to give instructions to the stamper and DNS
server (Steps 0 and 5 in Fig. 4) and receive delegated capabili-
ties from a DNS resolver (Step 4). The engine’s instructions cur-
rently resemble the rule set of a firewall. (In reality these would
be derived from high-level objectives created by an AS admin-
istrator.)

The policy specification supports prefix-based matching of
traffic, allowing traffic to be sent to and received from specific
remote ASes through specified waypoints, and load-sharing, al-
lowing some proportion of traffic to be forwarded through spec-
ified waypoints. This proportion is specified as a percentage of
packets or flows (for the stamper) or as a percentage of DNS
queries (for the DNS server). The policy protocol consists of
messages that update a database of rules and (delegated) capa-
bilities stored by the stamper. Rules and capabilities in the data-

771
TABLE II
EXAMPLE POLICY DATABASE
[Rule | Source Prefix [Dest Prefix [Prob [Action |
1 0.0.0.0/0 132.239.50.184/32 [1.0 apply 1
2 0.0.0.0/0 132.239.50.184/25 | 1.0 apply 0
3 130.37.30.7/32 | 132.239.50.0/24 1.0 apply 2
TABLE III
DATABASE USING THE ‘PROBABILITY’ FIELD AND ‘GOTO’ ACTION
[Rule | Source Prefix | Dest Prefix | Prob | Action |
1 none not 132.239.50.184/32 | 1.0 goto 4
2 none none 0.4 apply 1
3 none none 1.0 apply 0
4 .

base are identified using numeric identifiers that are assigned by
the policy engine.

Next we highlight the key features of the policy database
using the example databases in Tables II and III. Table II de-
fines three rules. When given a packet to forward, the stamper
searches the rules in order of rule ID until it finds a match.
Rule 1 specifies that traffic from any address (a zero-length IP
prefix)to 132.239.50. 184 must be stamped with capability
1 (apply 1). Rule 2 specifies that any other traffic to an address in
132.239.50.184/25 should not be stamped: capability ID
0 denotes do not stamp. Rule 3 specifies to stamp packets to ad-
dresses in 132.239.50.0/24 using capability 2, but only if
sentbyhost 130.37.30. 7. Finally, if none of the rules match,
the packet is not stamped.

Table IIT highlights the probability field—a value in the range
[0,1]—that performs an action with the given probability. If the
action is not taken, searching continues at the next rule. Using
the ruleset in Table III, the stamper applies capability 1 to 40%
of packets destined for 132.239.50.184 (rule 2). The other
60% of traffic for 132.239.50.184 is not stamped (rule 3).
Remaining traffic is processed beginning from rule 4 (goto 4 in
rule 1), which is not shown.

The DNS server uses the database in a similar manner but in-
fers a source and destination IP address from a DNS query that
it receives; it expects that upon completion of the query, the host
making the request will use the inferred addresses when sending
traffic. The DNS server determines the destination address as the
IP address that it returns in the response to a query. Similarly,
we would like the DNS server to determine the IP address of
the querying host and use that as the source address, but, in gen-
eral, the querying DNS resolver may not be the originating host.
However, we expect resolvers and DNS servers that perform re-
cursive queries to be relatively close to the querying hosts, and
that therefore the IP address of the querying host and that of the
resolver are related (such as part of the same, small IP prefix)
[22]. The DNS server thus uses the address of the querier as the
traffic source IP address when searching its rules. This behavior
also makes it safe for DNS to cache TXT records.

The policy database is structured and searched in a similar
manner to a firewall’s rule database and can be similarly opti-
mised using techniques such as ternary CAMs.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

772

D. Protocol Interactions

We have attempted to design around possible negative in-
teractions between Platypus and existing protocols. In partic-
ular, proper ICMP delivery is complicated by source routing.
Since ICMP responses can occur for many reasons, the appro-
priate recipient of such messages can be ambiguous. For ex-
ample, should an ICMP time expired message be sent to the
last Platypus waypoint in the source route, the stamper, or the
original source? The cause of such expiration may be due to
in-network stamping or other problems such as routing loops.
Further complicating the matter, non-Platypus routers may gen-
erate ICMP responses for source-routed packets and send them
to the last waypoint in the source route. In both of the two pri-
mary cases—end-host stamping and in-network stamping—the
end-host perceives its Platypus-enabled connectivity to be the
same as ordinary network connectivity, thus we send all ICMP
packets back to the original source address. The first 64 bits
of the Platypus header contain the original source address, en-
abling RFC-compliant routers to include the original source ad-
dress in ICMP error response packets; Platypus routers forward
such ICMP packets along to the source, subject to standard
ICMP rate limiting.

VI. EVALUATION

In this section we consider the standalone performance of our
prototype router and stamper, how many waypoints are needed
in a real-world deployment, and how Platypus stamping can be
used to improve the performance of wide-area file transfers.

A. Forwarding and Stamping Performance

Our experimental testbed consists of a central Linux-based
router that performs both forwarding and stamping and several
load generators connected through a gigabit Ethernet switch.
The server is configured with two 64-bit, 2.2-GHz AMD
Opteron 248 processors, two GB of PC2700 DDR memory,
and three Intel Pro/1000 XT gigabit NICs; our tests used two of
the NICs installed on a 100-Mhz, 64-bit PCI-X bus. The load
generating machines have 1.1-GHz Pentium III processors and
Intel Pro/1000 XT gigabit NICs.

First we consider the absolute performance of forwarding and
stamping. Fig. 6 compares the performance of Linux’s in-kernel
IP forwarding to prkm’s forwarding performance and pskm’s
stamping performance for worst-case (minimum-size) packets.
For forwarding tests, the load generators each direct identical
68-byte (20-byte IP header + 28-byte Platypus header + 20-byte
TCP header, excluding the Ethernet header) Platypus packets at
the router which validates the bindings and forwards the packets
to the indicated waypoint. For stamping, the load generators
send 40-byte packets which are stamped and forwarded by the
router (by insertion of the 28-byte Platypus header with a capa-
bility and binding). To increase the offered load in a controlled
fashion, we first saturate one router interface and then load the
two interfaces at equal levels.

As seen in the figure, prkm is capable of forwarding packets
with full UMAC authentication [8] at a maximum loss-free
forwarding rate of approximately 767 Kpps (using a warm
UMAC context cache; initializing the context takes 41.3 us),

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

900

850 P

800 -

700 |

Output Rate (Kpps)

600 Linux native forwarding ------
Platypus null forwarding -
Platypus UMAC forwarding

Platypus UMAC stamping - -®

500 L L L L L
500 600 700 800 900 1000

Input Rate (Kpps)

Fig. 6. 68-byte packet forwarding/stamping performance.

which is only slightly less than the performance of native
Linux. To help calibrate for the fact that the kernel’s forwarding
code is more streamlined than that of prkm, we plot the per-
formance of the prkm forwarding path without verification
(labeled null forwarding in the figure). The results indicate
that a significant portion of the performance degradation is due
to factors other than capability verification. When forwarding
MTU (1500-byte) packets, prkm is able to fully validate at
approximately 2.5 Gbps without loss. Stamping performance
is slightly worse: pskm is capable of loss-free stamping at
approximately 633 Kpps. These results indicate that Platypus
software routers and in-network stampers can yield good per-
formance on modern hardware, enabling low-cost deployment
of Platypus.

In addition to absolute forwarding numbers, we measured the
amount of time actually spent validating bindings, as this la-
tency may be observed by end hosts (as opposed to forwarding
performance, which is largely a concern of the ISP). Table IV
shows micro-benchmarks of prkm in its several stages. We per-
formed these measurements by averaging three runs of prkm
forwarding 1 000 000 packets spaced 16 us apart. For tests in
which packet size affected performance, we benchmarked for-
warding of 68-byte, 348-byte, and 1500-byte packets (including
IP and Platypus headers, but excluding Ethernet headers), which
correspond to minimum, moderate, and maximum packet sizes.
Packet processing includes time to parse the packet headers,
verify the binding, and update Platypus headers. Destination
cache lookup includes retrieval of a dst _entry structure, and
IP header building and verification includes time to place a new
IP header on the packet. Finally, packet transmission time in-
cludes time until the packet is queued for transmission by the
device.

B. Waypoint Deployment

We now consider the impact of waypoint deployment on the
effectiveness of Platypus -like source routing. Clearly, the more
numerous the waypoints, the more control Platypus can assert
over a packet’s path. By clustering the routers into groups which
could be represented by a single Platypus waypoint, we attempt
to determine the number of Platypus waypoints an ISP must
deploy to provide a useful service to customers.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

TABLE 1V
MICRO-BENCHMARKS FOR PRKM. ALL TIMES ARE AS MEASURED
BY THE CPU CYCLE COUNTER

Packet size | 68 byte | 348 byte [1500 byte
Packet processing
Null 172 ns 173 ns 181 ns
UMAC 695 ns 998 ns 1908 ns
Destination cache lookup 289 ns
IP hdr build and verify 145 ns
Packet transmission 1480 ns | 1482 ns | 1493 ns

In particular, we study the impact on end-to-end one-way path
latency of routing indirectly through a set of waypoints; we vary
the number of waypoints available. Previous research indicates
that it is often possible to achieve significant performance im-
provements by inserting one level of indirection in a packet’s
route [4], [37], [21]. We consider how the best achievable path
latency increases as more waypoint choices are available, as
this indicates how well chosen waypoints must be. Intuitively,
since POPs represent a collection of routers in a region, and net-
works are dense near large cities and sparse elsewhere, routers
that have similar latencies to a given set of observation points
can be naturally clustered together. It may be sufficient to place
Platypus routers in only a few locations, as speed of light de-
lays comprise most of the delay seen by packets in uncongested
wide-area backbones. Thus, multiple, local waypoints would
not significantly affect latency (but, conversely, might be useful
for load balancing, for example).

We consider as potential waypoints router IP addresses re-
ported by Skitter [11] for four major ISPs: MCI, Sprint, Qwest,
and Global Crossing. We select five geographically diverse
monitoring locations in the RON testbed [4], UC San Diego,
Nortel (Nepean, Ontario, Canada), Coloco (Laurel, Maryland),
Lulea (Sweden), and KAIST (Korea). From each monitoring
location, we use ICMP timestamp probes to measure both
the forward and reverse path latencies for each known router
interface of the ISP in question [28]. This set of measurements
was collected over a period of six days between January 22-27,
2004. We obtain approximately 240 measurements for each
location/router pair and use the mean value. With this data, we
compute a one-way, indirect end-to-end path delay between
any two monitoring locations through each router interface.

As our goal is to understand the performance of limited num-
bers of waypoints, for each potential value, we cluster routers
using k-means [27], designate their centers as waypoints, and
compute the best end-to-end path latency between two locations
via the optimal center router. Each k-means run is given an ar-
gument n representing the desired number of clusters, and thus
the number of deployed waypoints; we have no control over how
clusters form, and thus, the resulting performance is an upper
bound on what can be achieved. Finally we compare the perfor-
mance of the optimal cluster with the performance of the op-
timal router interface (which may or may not be a member of
the optimal cluster).

Fig. 7 shows the results for MCI, the largest ISP we studied
(8591 router interfaces); results for the other three ISP are sim-
ilar [35]. As expected, the more waypoints, the closer the perfor-
mance of the optimal cluster comes to performance of the op-

773

180 T T T T T T T T

£+ UCSD-Lulea
UCSD-Lulea opt
UCSD-KAIST
UCSD-KAIST opt
6~ Coloco-Lulea i
Coloco-Lulea opt
UCSD-Nortel
UCSD-Nortel opt

XM

*00

Latency (ms)

L L L L L
2 4 8 16 32 64 128 256 512 1024
of clusters

Fig. 7. We consider the impact of cluster size on indirection effectiveness
for MCI (UUNet). We vary the number of clusters generated based upon
observed latencies between the two specified measurement points and every
known router interface. For each indicated source/destination pair, we plot the
measured one-way path latency using the ISP’s optimal indirection router (opt)
against the calculated path latency through the center of the optimal cluster.
Data points represent averages; ten different clusterings were generated for
each k-means input size. Error bars show the standard deviation.

timal router. Somewhat surprisingly, however, the best cluster
centers approach the optimal at a relatively small number of
clusters, suggesting that a small number of indirection points
are likely sufficient for substantial benefit; this applies equally
to Platypus and any overlay or source-routing system; this is
likely due to geographic or POP locality among potential way-
points.

C. Waypoint Overlay Routing Performance

Next, to demonstrate the applicability of Platypus to common
wide-area network problems such as violations of delay-based
triangle inequalities, we consider improving the performance of
wide-area file transfers over PlanetLab using Platypus. As has
been shown in the past [4], [37], we can improve the end-to-end
latency of some Internet paths via overlay routing; we imple-
ment this indirection via a Platypus waypoint.

To evaluate the potential performance gains, we consider 1
MB file transfers between two PlanetLab nodes: a client at Cor-
nell and a server at Laboratoire d’informatique de Paris 6; the
RTT between these nodes on Oct. 31, 2006 was 305 ms. We se-
lect a PlanetLab node at TU Ilmenau in Germany as a potential
Platypus waypoint; the indirect RTT between Cornell and Paris
through this waypoint was 140 ms. Upon each file transfer ini-
tiation, the client resolves a DNS name that queries the DNS
name of the server. The DNS request is handled by a Platypus
DNS server and subsequently cached in DNS. Using our policy
framework (Section V-C) and DNS-based distribution of dele-
gated capabilities (Section IV-B.3) we configure our DNS server
with two distinct policies: direct, in which a DNS response to
the client does not include a delegated capability, and indirect,
in which a DNS response to the client contains a delegated ca-
pability specifying the waypoint.

Table V shows the transfer times of 50 file transfers between
Cornell and Paris with and without indirection. The transfer time
for non-waypoint transfers includes at most a 3.7-second DNS

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

774

TABLE V
TRANSFER TIMES (IN SECONDS) OF 1 MB FILE TRANSFERS BETWEEN
PLANETLAB NODES AT CORNELL AND PARIS WITH OR WITHOUT
INDIRECTION THROUGH A PLATYPUS WAYPOINT IN GERMANY

| [5% | median | 95% |
Direct 13.9 14.1 16.9
Indirect | 5.06 522 | 6.35

350000 T T T T T T

Iwaypoin(1I
waypoint2 —-x--—-

300000 |

250000

200000

rate(bytes/s)

150000

100000

50000

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
time(s)

Fig. 8. Load-balancing across two waypoints. During the first half of the ex-
periment the policy is to send traffic through waypoint 1. During the second half
the policy load-balances across both waypoints at a per-flow granularity.

lookup overhead (due to a DNS failover after it fails to find a
TXT record for the delegated capability). Even if we account
for this inefficiency we find over 50% improvement in transfer
time when using the waypoint.

D. Waypoint Load Balancing

In all our application scenarios (from Section II-A), Platypus
users forward their traffic through selected waypoints. Consider,
for example, a Web site that purchases Platypus service from an
ISP; traffic that the server sends to specific clients uses Platypus
to selectively improve performance. However, given the popu-
larity of the website, it may overload a single waypoint at cer-
tain times of the day. To remedy this issue, we consider a policy
in which the server selects a set of waypoints to forward traffic
through and load balances across them. This functionality is im-
portant in many applications, since it is unlikely that a single
waypoint can suffice for an arbitrarily large traffic volume.

Using the Platypus policy framework described in
Section V-C, we evaluate a Web server application scenario
with probabilistic load balancing across two waypoints. Each
client makes ordinary HTTP requests to the server. The server’s
replies are stamped according to a policy that begins by sending
all response traffic through a single waypoint. Halfway through
the experiment we change the policy such that the response
traffic is load balanced at the granularity of a TCP flow. Fig. 8
shows the effect of the policy change in the traffic demands at
each waypoint.

VII. DISCUSSION

During the design of Platypus, we have considered issues of
performance, security, accounting, the effect of source-routed

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

traffic upon the network, and alternative means of capability
delegation. In this section we discuss these considerations.

A. Distributed Accounting

Fine-grained flow accounting is an established problem in
other contexts, but Platypus complicates the use of several
common approaches. For example, many end hosts receive
flat-rate pricing for their Internet service. ISPs can provide
this service with bounded risk because the rate at which an
end host can inject packets into the network is limited by the
capacity of its access link. More sophisticated pricing plans
may depend on the actual utilization, which requires the ISP to
meter a customer’s traffic, but such metering can be done at the
customer’s access link.

In Platypus, however, a customer may authorize third parties
to inject packets into its ISP as part of a source route. Any ac-
counting scheme that only charges customers for packets that
traverse their access link clearly will not properly account for the
customer’s additional use. A straightforward approach would
maintain counters for each resource principal at all Platypus
routers within an AS, and bill for the total consumption. While
auditing challenges may dissuade many ISPs from per-packet
accounting, aggregate rate limiting is likely to be needed to
support those customers that wish to pay a flat rate for a fixed
amount of bandwidth. In order to implement such a pricing
model in Platypus, an AS must have some way to restrict band-
width consumption for a particular resource principal at one
or more routers. We have developed mechanisms for such dis-
tributed rate limiting in separate work [36].

B. Replay Attacks

For rate-based accounting, we can constrain resource prin-
cipals to a fixed, aggregate bandwidth. However, while packet
bindings cannot be forged (modulo standard cryptographic
hardness assumptions), they may be replayed by an adversary,
who may wish to waste a resource principal’s limited bandwidth
for a given capability. Since capabilities expire periodically,
a natural countermeasure to replay attacks is to track packets
that traverse a router within some time window and only count
each distinct packet once. A Bloom filter allows for tracking
of packets in such a way, but may fill up over time, resulting
in false positives. This issue can be addressed by maintaining
a small circular array of Bloom filters which are cleared as
they fill up [2], [38]. While an adversary may be able to log
all packets and replay them after the corresponding Bloom
filter is emptied, if the filters are emptied only at key expiration
intervals, stored packets cannot be replayed.

C. Scalability

Previous work [3] has explored the use of access control lists
for network resources. In contrast, a Platypus router does not
need to keep track of permissions for end hosts, potentially
providing for greater scalability. In particular, by using capa-
bilities, Platypus is able to implement capability delegation
without involving Platypus routers or key servers. The down-
side, of course, of capabilities is communication overhead (28
bytes per-packet in our prototype).

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

Careful selection of MAC algorithms is crucial for peak ver-
ification performance. We use UMAC in our software imple-
mentation, but expect PMAC [9] would be selected for hard-
ware implementations. Since MAC computations are done with
local information only, capability issuers can choose a MAC al-
gorithm appropriate to their forwarding hardware or software.
In addition, Platypus’s double-MAC design requires constant
state for capability verification, regardless of the number of re-
source principals. ISPs may wish to keep additional accounting
state for billing purposes, however. In the extreme case of per-
packet billing, an ISP would need to keep a packet counter cor-
responding to each resource principal. While deployments of
Platypus in the core may only need to handle a few thousand
resource principals, deployments for a broadband ISP may have
several million. Fortunately, Kumar ef al. have shown that ap-
proximate counters with bounded error can be maintained per
flow at very high speeds (OC-768) [25].

We contend that Platypus key management can also be scaled
to support large numbers of resource principals. For key dis-
tribution, it is unlikely that all requests will arrive exactly at
key ID-change boundaries, since Platypus does not require tight
time synchronization between resource principals and routers.
Even in such an unlikely event, Platypus key servers need only
perform two MAC and one block-cipher calls for each request;
servicing ten million such requests in one second is well within
the limits of approximately 20 well-provisioned key servers.
Furthermore, since key lookup requests and responses are small,
each lookup requires only one packet receipt and transmission
on the part of a key server.

Key servers must periodically distribute revocation lists to
Platypus routers; while distribution can occur off the critical
path, lookup cannot, so revocation lists must be stored in high-
speed memory. In our current design, each revocation entry is
twelve bytes, so a 16-MB SRAM chip could store about 1.4
million revoked capabilities.

A final aspect of scalability is the administrative overhead im-
posed on a source routing network that keeps track of available
waypoints and their performance metrics. While it might appear
that a network must keep in touch with the thousands of ASes
that exist in the Internet, we argue that the ability to delegate
capabilities allows capabilities to be resold by third parties that
can take on the burden of waypoint discovery and performance
measurement.

D. Traffic Engineering

Conventional wisdom holds that widespread source routing
deployment would complicate traffic-engineering efforts. While
there admittedly is cause for concern, we have reasons for opti-
mism. Recent simulations by Qiu ef al. show that while source-
routed traffic can have deleterious interactions with intra-AS
traffic engineering mechanisms in extreme cases, certain tech-
niques may be able to mitigate these effects [34]. In their studies,
however, source-routed traffic was capable of completely spec-
ifying intra-AS paths. Our design for Platypus is meant to allow
ISPs to specify any globally routable IP address within their IP
space as a Platypus waypoint and dynamically adjust the ac-
tual (set of) internal router(s) to which the IP corresponds in
response to traffic load. By dilating waypoints in this way, an

775

ISP can meet its traffic engineering goals while delivering im-
proved service to end hosts; we discuss this in greater detail in an
earlier version of this work [35]. In addition, an ISP has the op-
tion of pricing capabilities in a way that attracts traffic to lightly
loaded links or that compensates for the use of links that have
little spare capacity.

Independent of its interaction with traditional traffic engi-
neering, Platypus opens up a new dimension for traffic provi-
sioning: time. Routing in today’s Internet has no temporal di-
mension—the advertisement of a route makes it immediately
available. With Platypus, however, routes may have time-limited
availability; that is, a route is available only when users possess
the correct temporal secrets. By appropriately choosing expi-
ration intervals and expressing route selection policy upon key
lookup, ISPs can control the temporal aspects of traffic flow; in
this way, Platypus may even serve to help achieve traffic engi-
neering goals.

E. Alternatives for Capability Distribution

The use of DNS for distribution of delegated capabilities
(Section I'V-B.3) is suited to a usage model in which a server is
interested in delegating a capability to a large number of clients.
While this design choice entails modifications to DNS servers
and resolvers, we have found that the required changes can be
made in a modular fashion, i.e., without making DNS imple-
mentations more complex. By using interposition as described
in Section V-B, we maintain the separation of concerns between
domain administration and capability management. Indeed,
while testing capability distribution for the UCSD website, we
leveraged both UCSD DNS servers and our department’s DNS
resolvers without having (or needing) to modify either.

Alternatively, the server can opt to use in-band distribution,
which is designed for transmitting delegated capabilities from
receivers to senders of particular flows and does not distinguish
between client and server roles. Consider a Platypus-aware
traffic receiver R with IP address dst—we show how R
transmits a delegated capability to a Platypus-aware traffic
sender .S with IP address src. The mechanism is based on
inserting “Platypus signaling packets” within the flow. A
Platypus signaling packet is an IP packet that has the same
source and destination addresses as the flow but uses a Platypus
transport protocol. Thus, the signaling packet follows the same
forwarding path as the flow. S periodically inserts a delegation
listen packet, which contains a randomly generated key kg,
into the flow, advertising that it is capable of receiving dele-
gated capabilities. S also stores the time at which it generated
ks. In response, R inserts a delegation packet containing the
delegated capability ¢,t,dst and Hr = MACg,(c). Upon
receiving the delegation packet, S verifies Hg and checks that
the corresponding key kg is recent. This process ensures that
only parties on a recent default forwarding path from the .S to
R can have created the delegated capability, and thus prevents
unauthorised diversion of packets.

VIII. RELATED WORK

Source routing has been included as a feature in many
Internet architectures over the years. For example, Nimrod
[13] defined mechanisms for packets to be forwarded in both

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

776

flow-based and source-routed, per-packet fashions. Similarly,
IPv6 provides support for the source demand routing protocol,
SDRP [17]. SDRP allows for hosts to specify a strict or loose
source route of ASes or IP addresses through which to route
a packet. More recently, Yang described a new addressing ar-
chitecture called NIRA [45] with the explicit goal of providing
AS-level source routing. NIRA path selection consists of two
stages: an initial discovery phase followed by an availability
phase in which a host determines the quality of a particular
route. A contemporary proposal, BANANAS, allows for ex-
plicit path selection in a multi-path environment, but does not
allow for the insertion of arbitrary intermediate hops [44]. None
of these proposals, however, have addressed the need to verify
policy compliance of the specified route on the forwarding
plane. To the best of our knowledge, we are the first to present
a fully decentralized, authenticated source-routing architecture.

Frustrated with the lack of control provided by current wide-
area Internet routing, researchers have proposed circumventing
it entirely by forwarding packets between end hosts in an effort
to construct routes with more desirable path characteristics [4],
[37]. Unfortunately, the effectiveness of any overlay-based ap-
proach is fundamentally limited by both the number and the lo-
cations of the hosts involved in the overlay. We believe Platypus
addresses both of these issues: overlay networks can view far
away Platypus routers as additional members of the overlay and
use nearby Platypus routers to increase the efficiency of their
forwarding mechanisms.

Stoica et al. suggest that indirection be explicitly supported
as an overlay network primitive; in the Internet Indirection In-
frastructure (23) packets may include a set of indirection points
through which they wish to be forwarded [42]. Unlike Platypus
waypoints, however, 3 IDs specify logical entities, not nec-
essarily network routing hops. Each ID is associated with one
or more application-installed triggers that can involve arbitrary
packet processing; there are no guarantees about the topological
location of the overlay node(s) responsible for a particular ID.

Packet-level authentication credentials have been suggested
in a number of other contexts. [Psec-enabled packets may con-
tain an authentication header with information similar to a net-
work capability [5], except without a routing request. In order to
verify authentication headers, however, IPsec routers must hold
one key for each source, far more than with Platypus. Per-packet
authenticators have also been proposed to prevent DoS attacks
[3], [12], [46]; it would be straightforward to implement a sim-
ilar scheme using Platypus.

Perhaps the most closely related use is due to Estrin ef al.,
who introduced the notion of visas that confer rights of exit from
one organization and entry into another [18]. Stateless visas pro-
vide a mechanism for per-packet authentication between two
independent organizations, but not for expressing routing re-
quests. Visas are the result of a bilateral agreement between a
packet’s source and destination; each packet contains exactly
two visas—one for the source organization and one for the desti-
nation. In contrast, network capabilities are concerned with au-
thentication and routing through intermediate ASes. In a sub-
sequent paper [19], the authors also considered implementing
preventative security measures within Clark’s policy routing
framework [14].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

IX. CONCLUSIONS AND FUTURE WORK

We argue that capabilities are uniquely well-suited for use
in wide-area Internet routing. The Internet serves an extremely
large number of users with an even larger number of motiva-
tions, all attempting to simultaneously share widely distributed
resources. Most importantly, there exists no single arbiter (for
example, a system administrator or user logged in at the con-
sole) who can make informed access decisions. Moreover, we
believe that much of the complexity of Internet routing policy
stems from inflexibility of existing routing protocols. We aim
to study how one might implement inter-AS traffic engineering
policies through capability pricing strategies. For example, an
AS with multiple peering routers that wishes to encourage load
balancing may be able to do so through variable pricing of capa-
bilities for the corresponding Platypus waypoints. While prop-
erly modeling the self-interested behavior of external entities
may be difficult, we are hopeful that this challenge is simplified
by the direct mapping between Platypus waypoints and path se-
lection (as compared, for example, to the intricate interactions
of various BGP parameters).

ACKNOWLEDGMENT

The authors thank A. AuYoung, M. Bellare, N. Feamster,
R. Mahajan, D. Micciancio, T. Newhouse, S. Panjwani,
S. Ramabhadran, J. Rexford, C. Tuttle, A. Vahdat,
K. van der Merwe, and D. Wetherall for helpful discussions
and feedback. The authors are indebted to N. Alldrin for his
help with k-means clustering and to D. Andersen for the use
of the RON testbed. Finally, the authors would like to thank K.
Calvert and the anonymous reviewers for their comments.

REFERENCES

[1] S. Agarwal, C.-N. Chuah, and R. H. Katz, “OPCA: Robust interdomain
policy routing and traffic control,” in Proc. IEEE OPENARCH, Apr.
2003, pp. 55-64.

[2] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. G.
Andersen, M. Burrows, T. Mann, and C. A. Thekkath, “Block-level se-
curity for network-attached disks,” in Proc. USENIX FAST, Apr. 2003.

[3] D. G. Andersen, “Mayday: Distributed filtering for Internet services,”
in Proc. USITS, Mar. 2003.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. T. Morris,
“Resilient overlay networks,” in Proc. ACM SOSP, Oct. 2001.

[5] R. Atkinson, “Security architecture for the Internet protocol,” in IETF,
RFC 1825, Aug. 1995.

[6] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The effects of
asymmetry on TCP performance,” in Proc. ACM Mobicom, Sep. 1997.

[7]1 M. Bellare, R. Canetti, and H. Krawczyk, “Pseudorandom functions
revisited: the cascade construction and its concrete security,” in Proc.
IEEE FOCS, 1996, pp. 514-523.

[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
“UMAC: Fast and secure message authentication,” in Advances in
Cryptology (CRYPTO’99), 1999, vol. LNCS 1666.

[9] J. Black and P. Rogaway, “A block-cipher mode of operation for paral-
lelizable message authentication,” in Advances in Cryptology (EURO-
CRYPT’02), 2002, vol. LNCS 2332.

[10] M. Caesar and J. Rexford, “BGP policies in ISP networks,” IEEE Net-
work, vol. 19, no. 6, pp. 5-11, Nov. 2005.

[11] CAIDA Skitter Project. [Online]. Available: http://www.caida.org/
tools/measurement/skitter/

[12] M. Casado, T. Garfinkel, A. Akella, D. Boneh, N. McKeown, and S.
Shenker, “SANE: A protection architecture for enterprise networks,”
in Proc. ACM/USENIX NSDI, May 2006.

[13] 1. Castifieyra, N. Chiappa, and M. Steenstrup, “The Nimrod routing
architecture,” in IETF, RFC 1992, Aug. 1996.

[14] D.D. Clark, “Policy routing in Internet protocols,” in I[ETF, RFC 1102,
May 1989.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

RAGHAVAN et al.: SECURE AND POLICY-COMPLIANT SOURCE ROUTING

[15] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle in
cyberspace: Defining tomorrow’s Internet,” in Proc. ACM SIGCOMM,
Aug. 2002.

[16] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,” in Proc. ACM SIGCOMM, Aug. 2000.

[17] D. Estrin, T. Li, Y. Rekhter, K. Varadhan, and D. Zappala, “Source
demand routing: Packet format and forwarding specification,” in IETF,
RFC 1940, May 1996.

[18] D. Estrin, J. C. Mogul, and G. Tsudik, “Visa protocols for controlling
interorganizational datagram flow,” IEEE J. Sel. Areas Commun., vol.
7, no. 4, pp. 486498, May 1989.

[19] D. Estrin and G. Tsudik, “Security issues in policy routing,” in Proc.
IEEE Symp. Security and Privacy, May 1989, pp. 183-193.

[20] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdo-
main traffic engineering,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 5, pp. 19-30, 2003.

[21] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of Internet paths with one-hop
source routing,” in Proc. USENIX OSDI, 2004.

[22] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating la-
tency between arbitrary Internet end hosts,” in ACM SIGCOMM In-
ternet Measurement Workshop 2002, Nov. 2002.

[23] G. Huston, “Commentary on inter-domain routing in the Internet,” in
IETF, RFC 3221, Dec. 2001.

[24] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” in /[ETF, RFC 2104, Feb. 1997.

[25] A.Kumar,J. Xu, L. Li, J. Wang, and O. Spatschek, “Space-code Bloom
filter for efficient per-flow traffic measurement,” in Proc. IEEE IN-
FOCOM 2004, Mar. 2004, vol. 3, pp. 1762-1773.

[26] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” [EEE/ACM Trans. Networking, vol. 9, no. 3, pp.
293-306, Jun. 2001.

[27] J. B. MacQueen, “On convergence of k-means and partitions with min-
imum average variance,” Ann. Math. Stat., vol. 36, 1965.

[28] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level
Internet path diagnosis,” in Proc. ACM SOSP, Oct. 2003.

[29] R.Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP mis-
configuration,” in Proc. ACM SIGCOMM, Aug. 2002.

[30] D.L.Mills, “A brief history of NTP time: Memoirs of an Internet time-
keeper,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 2, pp.
9-21, 2003.

[31] A. Nakao, L. L. Peterson, and A. Bavier, “A routing underlay for
overlay networks,” in Proc. ACM SIGCOMM, Aug. 2003.

[32] W. B. Norton, “Internet service providers and peering,” in Proc.
NANOG, Jun. 2000.

[33] Poslib DNS Library. [Online]. Available: http://www.posadis.org/
poslib/

[34] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in
Internet-like environments,” in Proc. ACM SIGCOMM, Aug. 2003.

[35] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” in Proc. ACM SIGCOMM, Aug. 2004.

[36] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud control with distributed rate limiting,” in Proc. ACM
SIGCOMM, Aug. 2007.

[37] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of Internet path selection,” in Proc. ACM SIG-
COMM, Sep. 1999.

[38] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchak-
ountio, B. Schwartz, S. T. Kent, and W. T. Strayer, “Single-packet IP
traceback,” IEEE/ACM Trans. Networking, vol. 10, no. 6, pp. 721-734,
Dec. 2002.

777

[39] A. C. Snoeren and B. Raghavan, “Decoupling policy from mechanism
in Internet routing,” in Proc. HotNets, Nov. 2003.

[40] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proc. ACM SIGCOMM, Aug. 2002.

[41] R. Srinivasan, “XDR: External data representation standard,” in IETF,
RFC 1812, Aug. 1995.

[42] 1. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in Proc. ACM SIGCOMM, Aug. 2002.

[43] I Stoica and H. Zhang, “LIRA: An approach for service differentiation
in the Internet,” in Proc. NOSSDAV, Jun. 1998.

[44] H. Tahilramani Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A.
Gandhi, “BANANAS: An evolutionary framework for explicit and
multipath routing in the Internet,” in Proc. ACM SIGCOMM FDNA,
Aug. 2003.

[45] X. Yang, “NIRA: A new Internet routing architecture,” in Proc. ACM
SIGCOMM FDNA, Aug. 2003.

[46] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network ar-
chitecture,” in Proc. ACM SIGCOMM, Aug. 2005.

[47] D. Zhu, M. Gritter, and D. R. Cheriton, “Feedback based routing,” in
Proc. HotNets, Oct. 2002.

Barath Raghavan is a graduate student in the
Computer Science and Engineering Department
at the University of California at San Diego. His
research interests include network protocol design,
applied cryptography, network security, Internet
architecture, game theory, and distributed systems.

Patrick Verkaik received the M.S. and B.S. de-
grees in computer science from Vrije Universiteit
Amsterdam. He is a Ph.D. student in the Computer
Science and Engineering Department at the Univer-
sity of California at San Diego.

He has worked as a researcher at CAIDA, AT&T
Research, and Microsoft Research. His research
interests include wireless networking, inter-domain
routing and machine learning.

Alex C. Snoeren (S’00-M’03) received the Ph.D. de-
gree in computer science from the Massachusetts In-
stitute of Technology (2003) and the M.S. degree in
computer science (1997) and B.S. degree in computer
science (1996) and applied mathematics (1997) from
the Georgia Institute of Technology, Atlanta.

He is an Associate Professor in the Computer Sci-
ence and Engineering Department at the University
of California at San Diego. His research interests in-
clude operating systems, distributed computing, and
mobile and wide-area networking. Prof. Snoeren has

been a member of the Association for Computing Machinery (ACM) since 1999.

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:41:36 EDT from IEEE Xplore. Restrictions apply.

