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Abstract—We consider a class of wireless networks with general
interference constraints on the set of links that can be served simul-
taneously at any given time. We restrict the traffic to be single-hop,
but allow for simultaneous transmissions as long as they satisfy
the underlying interference constraints. We begin by proving a
lower bound on the delay performance of any scheduling scheme
for this system. We then analyze a large class of throughput op-
timal policies which have been studied extensively in the literature.
The delay analysis of these systems has been limited to asymptotic
behavior in the heavy traffic regime and order results. We obtain
a tighter upper bound on the delay performance for these systems.
We use the insights gained by the upper and lower bound anal-
ysis to develop an estimate for the expected delay of wireless net-
works with mutually independent arrival streams operating under
the well-known maximum weighted matching (MWM) scheduling
policy. We show via simulations that the delay performance of the
MWM policy is often close to the lower bound, which means that
it is not only throughput optimal, but also provides excellent delay
performance.

Index Terms—Delay analysis, interference, Lyapunov function,
scheduling, wireless networks.

1. INTRODUCTION

N A WIRELESS system, users compete for accessing
I a shared transmission medium. Since link transmissions
cause mutual interference, the medium access layer (MAC) is
needed to schedule the links carefully so that packets can be
transmitted with minimal collisions. Many scheduling poli-
cies have been studied at the MAC layer with the objective
of maximizing throughput. These schemes are often called
throughput-optimal scheduling schemes. However, the delay
analysis of these systems has largely been limited. Our focus in
this paper is to analyze the expected delay for this system. To
that end, we will derive upper and lower bounds on the expected
delay, and also provide an accurate estimate of the expected
delay for a well-known and extensively studied (e.g., [1]-[4])
throughput-optimal scheme called the maximum weighted
matching (MWM).
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Set of links that
A b interfere with link (g,h)

Fig. 1. Figure showing a wireless network with single-hop traffic. All packets
A9 transmitted on link (s, d) are exogenous and are queued (@5 4 denotes the
queue length). All the links that interfere with link (g, ») are shown.

To simplify the analysis we, in common with related work [3],
[5], [6], restrict the traffic model to single-hop traffic. Under the
single-hop traffic model, all packets transmitted on a link (s, d)
are generated by an exogenous arrival process A¢ at the source
node s. As shown in Fig. 1, the exogenous arrivals waiting
to be transmitted at each link are queued in their respective
queues. This approach has also been adopted in the literature
while studying the throughput performance of scheduling poli-
cies for wireless networks. This allows us to study the effect of
scheduling policy on the delay of the system, independent of
routing. We note that this model allows for simultaneous trans-
missions as long as they satisfy the underlying interference con-
straints. Such systems are more general than the cellular type
systems where the system is divided into noninterfering cells.
The results presented here work for any underlying model for
interference constraints.

The design of scheduling policies which stabilize the system
even under single-hop traffic is a challenging task. Intuitively,
the scheduler must schedule as many links as possible in every
time slot. Such schedulers are called maximal schedulers (as op-
posed to maximum weighted schedulers that also take the queue
length into account). However, even with maximal scheduling,
some of the queue lengths may become unbounded. The reason
is that if the scheduler does not use the queue length informa-
tion, some of the queues may grow large, while others remain
very small or become empty. This, in turn, does not allow the
scheduler to schedule a large number of queues and leads to
instability. Thus, a throughput optimal policy like MWM (see
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Fig. 3) carefully uses the information of the queue lengths while
scheduling the links.

The behavior caused by throughput-efficient schedulers sig-
nificantly complicates the delay analysis of these systems, be-
cause the service process of each link is governed not only by
the interference constraints, but also by its queue length.

For example, in a wireless network operating under a
throughput optimal policy, such as the MWM policy, the
expected delay at a link may be large even if the arrival rate
is small. This is because these policies try to schedule the
longer queues in the system or in other words, they prevent
the queues from becoming very large. This can be thought of
as a mechanism to balance the queue lengths in the system. It
is not clear how this effects the system-wide expected delay,
especially under light or medium traffic loads.

We now state our main contributions in this paper:

* Development of a fundamental lower bound on the ex-
pected queuing delay of a wireless network regardless of
the scheduling policy used.

* Development of an upper bound on the expected delay of
a throughput optimal scheduling policy, GMWM (a gener-
alization of MWM), under a single-hop traffic model.

¢ Development of an estimate for the expected delay in
a wireless network with mutually independent arrival
streams, under a MWM type policy, given the load and the
interference constraints. Further, the estimate is shown to
lie between the upper and lower bounds developed earlier.
We show through simulations that for single-hop traffic
and any given load within the capacity region, the estimate
is accurate.

II. RELATED WORK

Most of the analysis of scheduling policies for the wireless
systems has been limited to stability results. A stable scheduling
policy is guaranteed to keep the average queue lengths in the
system finite, but the tightness of the upper bound on the av-
erage queue length is not known. One of the techniques used
for deriving upper bounds on the average queue length for these
systems is the method of Lyapunov drifts developed in [2], [5],
[7], and [8]. However, these results are order results and pro-
vide only a limited understanding of the delay of the system.
For example, it has been shown in [5] that the maximal matching
policies achieve O(1) delay for networks with single-hop inde-
pendent Poisson traffic when the input load is in the reduced ca-
pacity region. However, for arbitrary networks, this region may
be only a small fraction of the capacity region, C' (see [9]). In-
formally, the (maximum) capacity region C' is the set of mean
flow rate vectors (Aq,..., An) such that there exists a sched-
uling rule making the queue length process stable.

Simulations have shown that two schemes that guarantee sta-
bility for the full capacity region can have very different delay
characteristics. The results presented in [3] suggest that a policy
that provides stability guarantees in the full capacity region may
have worse delay characteristics than another policy which pro-
vides weaker guarantees. The comparison of an implementa-
tion of a throughput optimal algorithm (Pick and Compare) with
suboptimal algorithms like maximal matching is studied in [9].
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It is shown that under Pick and Compare type scheduling algo-
rithms, queues in the system grow very large and are hence such
idealized algorithms are not realizable in practice.

Since throughput by itself does not seem to be a good metric
to differentiate between scheduling algorithms, the development
of analytical techniques to compare other metrics of perfor-
mance such as delay is crucial. In [10], the authors observe that
there is no theoretical result comparing the delay performance
of a RANDOM scheduler to the MWM algorithm. The upper
bound developed in this paper allows us to show that the ex-
pected delay performance of GMWM is no worse than the per-
formance of any stationary randomized policy.

In [11]-[13], cellular systems are analyzed and large devi-
ations results are obtained to calculate queue-overflow prob-
ability. The analysis is much harder for the wireless network
considered here, due to the complex interactions of the arrival,
service, and backlog process. Order-optimal results for the ex-
pected delay a wireless uplink downlink system are presented
in [8]. The bounds presented here are sharper than the those ob-
tained by [8] and are also order-optimal in the context of the
system studied in that paper.

One of the results that has been shown about the MWM
scheduling policy is that it is asymptotically optimal in the
heavy traffic regime [14], [15] under the assumption of resource
pooling. However, this result does not provide any estimate of
the delay. It is also not known whether these policies continue
to be optimal for an arbitrary load in the capacity region.

The lower bound presented in this paper uses the concept of
exclusive sets (defined in Section III) to characterize constraints
on the scheduling policy. We analyze a fictitious scheduling
policy based on exclusive sets that is amenable to analysis and
show that its expected delay is a lower bound on the perfor-
mance of any other scheduling policy. The exclusive sets corre-
spond to cliques in the constraint graph and were also studied
in [16] for the purpose of analyzing the impact of interference
on the throughput capacity of a multihop wireless network. The
authors proved that the polytope generated by these sets is an
upper bound on the capacity region C and may be loose. We find
that these exclusive set constraints are nonetheless very useful
for delay analysis, since they also constitute some of the faces
of the capacity polytope C. We observe in our simulations that
for several representative topologies, the performance of MWM
scheduling policy is close to the lower bound. The upper bound
on the other hand captures all the interference constraints in the
system and whenever the upper bound goes to infinity, the av-
erage delay of the system under the GMWM policy also be-
comes infinite.

Delay optimal schemes have been proposed in the litera-
ture [17] for wireless networks, which typically minimize an
expected delay metric (assuming that the system behaves as
M/M/1). We note that there is no reason to assume that M/M/1
approximation will be accurate because the service process
could be very complex in this system, given that the inter-
ference constraints have to be met at every time-slot. Neither
are we aware of any result which shows that a policy that
minimizes the M/M/1 delay metric also minimizes the delay
for the system. In fact, we expect that such an argument will
likely not be true given the complexity involved in scheduling
link transmissions in a wireless system. We provide a more
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accurate estimate of the expected delay for wireless networks,
which could be used as a delay metric that would be useful in
the development of such delay optimal schemes.

We begin with a brief description of the system model and
notations. We then derive the lower bound and the upper bound
on the expected delay in the system. We then propose a method
to estimate the expected delay of the system. We study the ac-
curacy of the results for several important classes of wireless
networks through simulations.

III. SYSTEM MODEL

We consider a wireless network G with N links denoted
by set L. Each link [ has its own exogenous arrival stream
{A;(t)}{2;. Each arrival stream is i.i.d. in time. The distribu-
tion of the number of packets A;(t) arriving to a link [ in any
given time slot ¢ may be arbitrary but time invariant. Assume
that the second moments, E [AZQ] of the arrival processes are
finite. Different input streams may be correlated with each
other. Let A(t) = (Ai(t),...,An(t)) represent the vector
of exogenous arrivals, where A;(t) is the number of packets
that arrive to link / during time slot ¢ (for [ € 1,..., N). Let
A = (A1,...,AN) represent the corresponding arrival rate
vector.

The packets arriving at each link are queued. Let ();(¢) denote
the queue length at link /. The queue length vector is denoted by
Q(t) = (Qi(t) : 1 =1,2,...,N). A link can be activated in
a time slot ¢ only if the queue is non empty. We use the term
activation (scheduling) of a link or a queue interchangeably in
the paper. At most, one packet is served at a queue in a given
time slot. After service, each packet leaves the system. There
is a slotted structure in service. For each link /, the indicator
function I;(t) indicates whether or not link [ received service at
time slot ¢. Note that

_J 1, if@Qi(t) > 0and! is scheduled
L(t) = {0./ otherwise. M
The evolution of the queue is as follows:

The vector of the scheduled queues is denoted by I(t) =
(In(t)) : n = 1,...N. Because of interference, there are
constraints on the combination of links that can be activated
simultaneously. We allow these constraints to be arbitrary. I(#)
is a valid activation vector if it satisfies these constraints. Let .S
be the collection of all valid activation vectors. Let I be the jth
activation vector in S. At each time-slot an activation vector
I(t) is scheduled. A scheduling policy decides which activation
vector is used in every time slot.

For any given link [, we define an exclusive set, xi, as a set of
links including / in which no more than one link can be sched-
uled at any given slot. In particular, we are interested in the max-
imal exclusive sets, i.e., sets in which no more links can be added
without violating the above property. A link may be present in
multiple exclusive sets.

In this paper, we will use exclusive sets to derive the funda-
mental lower bounds on the delay of the system. We will be
interested in those exclusive sets x;, where the sum of arrival

Maximal Exclusive Sets of Graph G

Fig. 2. Maximal exclusive sets under 2-hop interference model. Each link in
the exclusive set is within two hop distance of every other link.

rates is large. We use A, to denote the sum of arrival rates to
the queues in the set x;.

A=A ©)

1EX1

Similarly, A, and (), are used to denote the the sum of arrivals
and the sum of queues in the set x;, respectively

Ay (1) =D Ai(t) 4)

1€X1

Qv (t) =D Qilt). ®)

1EX

Fig. 2 shows all the maximal exclusive sets of a graph G
under an example interference model called the 2-hop interfer-
ence model. In a 2-hop interference model, any two active links
in I(¢) are always separated by two or more hops in the under-
lying network graph. Let us consider subgraph a in Fig. 2. Every
link in the subgraph interferes with any other link because it is
within two hop distance. Moreover, no more link from graph G
can be added to this subgraph without violating the above prop-
erty.

The 2-hop interference model is used again in our simulation
studies since it has been often used to model the behavior of
a large class of MAC protocols based on virtual carrier sensing
using RTS/CTS messages, which includes the IEEE 802.11 pro-
tocol [18], [19].

Let ||'Y|| denote the Euclidean norm of vector Y. The system
is considered to be stable [2] if lim;_, ., sup E[||Q(%)]|] < oo.
If the system is stable then the throughput is the same as the ar-
rival rates. A throughput vector A is admissible if there is some
scheduling policy under which the system is stable when the ar-
rival rate vector is A. Let us denote by A the closure of the convex
hull of the set of activation vectors, I and by C the interior of
the convex hull. Note that A is a closed convex set. It has been
shown in [1] that if each arrival process is i.i.d. in time, and the

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:08:54 EDT from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

MWM Scheduling Policy
~
I(¢t) = argmax Z QI

Les

(IIL6)

=1

where I7 is the i** component of the j** activation
vector, I7, in set S.

Fig. 3. MWM scheduling policy.

first two moments of all the arrival streams {A,(¢)}:2, are fi-
nite, then A € C'is a necessary condition for a stabilizing sched-
uling policy to exist. It is also shown that the MWM policy (see
Fig. 3) that chooses the maximum weighted activation vector
(matching) stabilizes the system for any arrival rate satisfying
the preceding condition.

The definition of the capacity region of these systems is re-
lated to the existence of a scheduler that chooses to activate the
queues by a stationary process. These results have been derived
in [7].

Lemma 3.1: For any feasible input rate vector A =
(A1,...,An) which lies in the interior of the capacity re-
gion, C there exists a vector g = (u1,...,un) € C such that
A < py for all queues | € L. Also, there exists a stationary
randomized scheduling policy which chooses activation vectors
I®(t) such that E [If(¢)] = 4 and, hence, stabilizes the
system.

The exclusive sets define the constraints on the rate vector
p. We let 1, denote the sum of service rates of the queues in
x: of a stationary randomized policy. A given vector p is in the
capacity region if |i, is less than one for all exclusive sets in
the system.

IV. FUNDAMENTAL LOWER BOUNDS ON THE SYSTEM

In this section, we develop an algorithm to calculate a lower
bound on the delay of the system, independent of the scheduling
policy used. Recall the definition of the exclusive sets, x; of link
[ in the system. Only one of the queues in x; can be scheduled
at any given time slot. The notion of exclusive sets is helpful for
deriving fundamental lower bounds on the expected delay of the
system.

Let us consider a fictitious scheduling policy ITjoye; that guar-
antees to schedule one of the links in x; whenever there is at
least one nonempty queue. Although IT),ye, policy satisfies the
interference constraints within y;, it ignores the interference of
the scheduled link with other links in the network. We denote
the sum of queue lengths in x; under the policy Il ower as Qy, .

Q. (1) =Y Qi(t). @)
1EX
Then, the queue evolution under Ilj,wer iS given by the fol-

lowing:

+
Qu(t+1) = (Qut) - Lo s +Au)  ®

where 1 is the indicator function and A,, is as defined in (4).
We now compare the evolution of queues in ); under the

Iower policy to an arbitrary scheduling policy. We assume that

both the systems are driven by the same sequence of arrivals.
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In Lemma 4.1, we compare the sum of queue lengths @, in x;
with @, , ata given time 7". The periods of time in which at least
one of the queues in x; is nonempty under the 11}, policy are
called busy periods.

Lemma 4.1: For any exclusive set x; in the system, the sum
of queue lengths @, in x;, under any scheduling policy is
no smaller than those under I,y policy at all times, 7, i.e.,
Qu(T) > Qy(T).

Proof: Depending on whether 71" lies in the busy period of
the system under the Ilj,wer policy or not, the following two
cases arise.

Case 1: Q,,(T) = 0.

Since @, (T') is always nonnegative, the result holds triv-

ially.

Case 2: 9Q,,(T) > 0.

Let T}, be the time that initiated the current busy period, i.e.,
T, < T. Then the queue length can obtained by summing (8),
is as follows:

T-1 T-1
Q.(T)= > Aut)— > Lo s O
t=T,—1 t=T,—1

Since the system is in the middle of a busy period,

]I{Qxl(t)>0} = 1forall 7, < t < T, and this equation
reduces to
T—1
Qu(T)= Y Aut)—(T-T,). (10)
t=T,—1

Now we consider the evolution of the queues in x; under an
arbitrary scheduling policy. By the definition of x;, not more
than one of the queues in ; can be scheduled at any given time-
slot, i.e.,

S L) =1,(t) < 1. (11)
1EXI
The evolution of the queues in x; is given by
Qi (t+1)= Qi (t) - Iy, (t) + Ay (t). 12)

In particular
QXz (T0> = QXz (To - 1) - Ix: (To - 1) + AXz (To - 1)- (13)

This system (under the arbitrary scheduling policy) may or may
not be in the middle of a busy period at T, — 1. If it is in the
middle of a busy period, Qy, (T, — 1) > 1 and, thus

(Qx: (To - 1) - IXI (To - 1)) 2 0. (14)
If the system is not in the middle of a busy period, then
Lu(To=1) =0 15)

since an empty queue cannot be scheduled at any time slot [see
(D]
Combining (14) and (15), we obtain the following:

QXI (TO) Z AXI (To - 1) (16)
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By summing (12) to obtain Q,,(T'), and simplifying using (16)
and (11), we obtain the desired result

T-1 T-1
QXI (T) = QXI (TO) + Z AXI (t) - Z IX} (f)
t=T, t=T,
T-1 T-1
2 AXI (TG - 1) + Z sz (t) - Z IXI (t)
t=T, t=T,
T-1 T-1
2 Z AXz (t) - 1
t=T,—1 t=T,
> Q,, (T). (17)

|
Using this lemma, we derive the following lower bound on
the queues in ;.
Theorem 4.1: For any exclusive set x; in the system, the ex-
pected value of the sum of queue lengths in x; under any sched-
uling policy is lower-bounded by

{(z2)

2(1 - >‘X1)

Xi +E — 2\,

E[Q.]> )"

1EXI

=1LB,,.

Proof: Lemma 4.1 shows that at all times T, Q,(T) >
Q,,(T). It follows then, that the expected value of the sum of
queue lengths in ); under any other scheduling policy II will be
lower-bounded by the expected value of sum of queue lengths
in x; under I} wer. Then

E[Qy] > E[Q,,]. (18)
The analysis of the exclusive set under the Ilj,wer policy re-
duces to that of single server queue being fed by multiple arrival
streams, i.e., Ay, . Since the arrival streams are assumed to inde-
pendent over time, the expected value of Q,, under the Ijgyer
policy can be derived using the standard GI/D/1 analysis and is
given by

)\Xl +E < Z Ai) - 2()\)(1)2

1EXL

E[Q,,]= 19)

2(1 - )\Xl)

It follows that

2 2
SANAE DA | -2 oA
1EXI 1EX1 1EX1

E[Qu] 2 2=
= E[Qy]
weefu (g )] (5 0)
> Z JG;C(Il — )\Xl) JEX1

1EX1

i+ E — 2)\,;)\)(1

()

2(1 = Ay,)-

=E[Qy]> )

1EXI

|
We use LB, to denote the lower bound derived earlier on the
set x;. We now develop a greedy algorithm (see Algorithm 1) to
compute a lower bound on the sum of expected queue lengths on
the entire system. At every iteration of the “repeat-until” loop,
an exclusive set with the highest value of LB,, is computed
among the links in set X. Note that this set is a maximal ex-
clusive set in X and may not be maximal in the original set of
links L. For any link [, we use x; to denote the set of links it was
grouped with by the greedy algorithm. Note that [ € x;.

Algorithm 1 Computing the Lower Bound

I: X «{1,2...N}

2: BOUND « 0

3: repeat

4:  Find an exclusive set Y C X which maximizes LB;
5: BOUND «— BOUND + LB;

6: X «— X\x

7:until X = ¢

8: return BOUND

Assume that the Ij,wer policy schedules one link in every
exclusive set x;, computed by Algorithm 1, whenever there is a
nonempty queue in the corresponding set. Since x; is an exclu-
sive set, a lower bound on the sum of its queues can be obtained
by applying Theorem 4.1. The value of the lower bound is in-
cremented and the links in the chosen exclusive set are removed
from further consideration. This process is repeated until every
link in the system has been used. Since each link appears in ex-
actly one exclusive set, the system-wide lower bound on the ex-
pected queue length can be obtained as the sum of the contribu-
tion of each link toward the lower bound given by Corollary 4.1.

Corollary4.1: The sum of expected value of the queue length

satisfies
N N N+ E|A; <€Z~ AJ> — 2)\1)\;

E[Q;] > =X 20
>_EQi]>3 2 =) (20)
=1 =1 Xi

The total expected network delay D satisfies

N

Z E[QL] N N+ E|A; <€ZN Aj) — 2)\1')\;7
A =1 JEX4
D= N = Z N

A =1 . — )\~
) 2 (]; A,) (1-25)
2D

Note, that this result only requires each arrival processes to be
independent over time. In the case where all the arrival stream
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are also independent of each other, we obtain the following re-
sult.

Proposition 4.1: When the arrival streams are independent,
the expected value of the sum of queue lengths in the system
under any scheduling policy satisfies

N N N + Var[4;] — A\
S EQi]>) (22)
i=1 i=1 2 (1 - )‘55-)
The total expected delay in the network D satisfies
Ai + Var[4;] — LA~
X (23)

by (E) 6o

A. Discussion

The lower bound is achieved by a fictitious scheduling policy,
T ower, which schedules one link in every exclusive set x;, com-
puted by the algorithm, whenever there is a nonempty queue
in the corresponding set. This policy may violate the interfer-
ence constraints, because the set of scheduled queues may not
be a valid activation vector. This is because the links in two ex-
clusive sets may interfere with each other. In other words, we
have relaxed the constraints in the queuing system to obtain this
bound. Therefore, in general, it is not possible to design a sched-
uling policy that achieves the lower bound. However, we ob-
serve through simulation studies that for several different values
of the input load, the performance of the MWM policy is indeed
quite close to this bound.

Since the exclusive sets do not completely characterize the
capacity region of the network, it may also be expected that if the
input load is close to a boundary of the capacity region C, which
is different from the boundaries generated by the exclusive sets,
the lower bound may perform poorly. Thus, in certain cases,
the delay of the system under MWM policy may be close to
infinity while the lower bound is much smaller. This motivates
the development of an upper bound for the system, which is
tight in the sense that whenever the upper bound goes to infinity,
the delay of the system under a throughput optimal policy also
becomes infinite.

V. DEVELOPMENT OF AN UPPER BOUND

In this section, we analyze a class of generalized maximum
weighted matching (GMWM(w)) policies, parametrized by
weights w; which is described in Fig. 4. The MWM policy is
a special case, where all the weights w; are unity. We prove
that GMWM achieves 100% throughput for every choice of w,
s.t. V4, w; > 0, using the Foster-Lyapunov drift criteria for
countable Markov chains. The following well-known theorem
provides Foster’s criteria for positive recurrent and ergodic
Markov chains [2], [20]

Theorem 5.1: A countable Markov chain is positive recurrent
and ergodic if and only if there exists a positive function V' > 0
and a finite set of states &,, such that the following hold:

* Bounded drift from the finite set &,: V Q(t) € &,,

A(Q(Y)) < oo

IEEE/ACM TRANSACTIONS ON NETWORKING

GMWM Scheduling Policy

I@—mme:wﬂl (V24)
ves i1
where Iij is the i*" component of the j** activation

vector, I/, in set S and w; > 0 are fixed constants.

Fig. 4. GMWM scheduling policy.

* Negative drift from the complement: V Q(t) ¢ &,, Je >
0s.t., A(Q(t)) < —e
where

A(Q(1) = EV(Q(t + 1)) = V(Q(1) Q)]

We first design an appropriate Lyapunov function for the
system.

(25)

(26)

1 N
= 2 Zwag(t)
i=1

Note that if all the weights w; are chosen to be 1, this is exactly
the quadratic Lyapunov function used in [1]. Before we move
on to prove the throughput optimality of GMWM, we state a
couple of useful definitions.

Definition 5.1: B(t) = (1/2) ZL Lwi(Ai(t) — Li(t))?
Since the second moments of the arrival processes are bounded,
it follows that E[B(t)|Q(t)] is bounded from above by a
positive constant c.

Definition 5.2: We define F,, := {0,1,2,...(c/ewmin)}" to
be a finite set of states as required by the Foster’s criteria, where
Wmin 18 the minimum of the weights among w; and ¢ > 0.

Theorem 5.2: For any input load A € C, the GMWM sched-
uling algorithm ensures that the resulting DTMC is positive re-
current and ergodic.

Proof: See Appendix A. ]

We now analyze GMWM and derive upper bounds using the
following lemma from Lyapunov drift theory [7], [8].

Lemma 5.1: Let V(Q) be anonnegative function of the queue
vector and the drift A(Q(t)) be as defined earlier. Let P(t) be
a nonnegative process and let ¢ > 0 such that for all time ¢
and all possible Q(t), A(Q(t)) < E[P(t) — eh(t)|Q(t)] where
h(t) represents a nonnegative process that might depend on the
queue state. Then the following holds:

lim sup — ZEh )] < limsup — Z ( )]

t—o00 t—o00

27

We are now ready to state our main result that bounds the sum of
the expected queue lengths and the expected delay in the system.

Theorem 5.3: Given any input load vector A € C and any
vector p € C' : Vi, p; > \;, the following bound on the ex-
pectation of the sum of lengths of queues holds true in a system
operating under the GMWM policy where the weights w; are
chosen as w; = = /\i) :

N
2 Plo]

)\ + Var[4,] —
Mz_)\)

A?)

(28)

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:08:54 EDT from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

GUPTA AND SHROFF: DELAY ANALYSIS FOR WIRELESS NETWORKS

The total expected network delay D satisfies

SZN:(A + Var[4;] = 23) 29)

(Z Ab) (ki = Ai)
Proof: See Appendix B. ]

A. Discussion

We have been able to obtain an upper bound that is explicit
in the statistics of the arrival process. Note that the upper bound
also decouples the contribution of each link toward the total net-
work delay. It is interesting to note that the correlations between
the arrival streams do not affect the upper bound. We have ana-
lyzed the system when each arrival process is i.i.d. in time. This
analysis can be extended to the case when each arrival process
{A;(t)}32,, is modulated by a discrete-time, stationary, ergodic
Markov chain using the techniques developed in [5].

The upper bound derived in [21] (Theorem 2) for the
same system has e in the denominator for each of the N
terms in the sum in (28) (with the same numerator), where
e = min;(u; — A;). Hence, the upper bound obtained here is
numerically smaller than the state-of-the-art. This has been
achieved by choosing the weights w;, such that the second term
on the right-hand side (RHS) of (48) in Appendix B is equal
to the negative of the sum of queues in the system. Thus, the
contribution of each queue toward the drift is equal to its queue
length, i.e., balanced, resulting in a tighter lower bound.

This analysis naturally leads us to the question of which g >
A should be selected in the capacity region C' such that the upper
bound is minimized. Intuitively this means that we have to se-
lect a point on the boundary of the capacity region that is the
farthest from the input load vector. This can be formulated as
an optimization problem to compute the value of p that mini-
mizes the upper bound.

The optimization problem in Fig. 5 is convex because the ob-
jective function is convex and the capacity region is also convex,
being a convex hull of the activation vectors. The formulation of
the problem is very similar to the network utility maximization
using convex optimization techniques (see [22]-[24]). Using
Lagrangian techniques, the dual U (a) of the above problem can
be decomposed into the following two subproblems. a is the set
of prices.

U(a) = Xi(a) + Y (a) (30)

_ (/\L + Var[Ai] — )\?)
Xi(a) = Jmax {— =) — aipi
i + Var[4;] — \?
= min {( + Var(Ai] L) +aiui} 3D

pi>A 2(pi — i)
and
N
Y(a) = arg maxz a; I} (32)
ves o

Upper Bounding Expected Delay
i + Var[4;] — )\2)
Minimize Qs + Varldi] = X))
Z 2(/% =X )
subJect topeC

Fig. 5. Optimization problem for minimizing the upper bound.

The dual problem can be solved using an iterative subgradient
method shown in Algorithm 2. The dual prices a; are updated
in each iteration. It has been shown in [22]-[24] that if the se-
quence of values of {h} are chosen such that lim,, . (™ — 0
and >2°°  h(™) = oo, then the values of /L,En) converge to the
optimal value /f;pt, which minimizes the upper bound on the

expected queue lengths in the system.

Algorithm 2 Computing the Optimal Value of p°Pt

l:n «— 1

2: Initialize the prices a™

3: repeat

4 pm \/,\< + Var[A;] — A2/24")

5. Y™ — I7 where I' = argmaxpies Yon, al™ 1
6: al(n+1) - a(n) + h ( (n) _ i(n))

70 n+—n+1

8: until g converges

9: return BOUND

The GMWM schemes in which the weights w; satisfy V i,
w; (pg* = X;) = 1 achieve the optimal delay bound and will

be referred to as GMWMC°P® for the rest of the paper. We now
show that the delay performance of GMWMP°P" is no worse than

any other stationary randomized policy.

B. Comparison With a Stationary Randomized Policy

We analyze the delay of the wireless network when operated
with a stationary randomized scheduler, IIz. As noted before,
in Lemma 3.1, for each link / in the system a service rate of
wr > Ay is guaranteed. The service process can be analyzed
as follows. The scheduler 11 is unaware of the backlog and
chooses to schedule link [ independent of whether the queue is
empty or not. In every slot, if the link is scheduled, exactly one
packet is served, otherwise the packets in the queue wait for the
next available slot.

We define the following for the system.

* q(t): Length of the queue [ at the beginning of time slot ¢.

» A;(t): Number of arrivals at link ! during the time slot ¢.

* R;(t): Random variable that is 1 if link [ is scheduled and

is 0 otherwise.

s d: Average delay in the system.

The system evolves as follows:

q(t+1) = q(t)+ A(t) - (33)

Ri(t) 1, (1)>03-

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:08:54 EDT from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

The following is a standard result for GI/D/1 system with
Bernoulli service process [8], i.e.,

A+ Var[A] - X2
Ela] = 2(p — A1)

Under the stationary randomized policy the behavior of each
queue in the system is independent of other queues. Using the
fact that the expectation of the sum of independent random vari-
ables equals the sum of their expectation, the following lemma
follows.

Lemma 5.2: The sum of expected queue lengths of the queues
in a discrete-time system constrained queueing system with ar-
rival process A; (rate A;) and service rate i, at link [, operating
under a stationary randomized scheduling policy is given by

A + Var[4;] — \?
ZEQ!]—Zl (l—)l\z) L,

Proof: The proof follows by using (34) and using the fact
that the service process is Bernoulli with probability p,; at the
queue ¢ independent of other queues in the system. [ |

Theorem 5.4: Given any admissible arrival process
{Ai(t)},2, (with mean );), the sum of expected queue lengths
Q; under the GMWM®P* policy is no worse than the sum of
expected queue lengths ¢; of any other stabilizing stationary
randomized policy. In other words

Z E[Qi] < Z Elq].

It follows then, that the average delay D under GMWM°®P* is
no worse than the average delay d under any other stabilizing
stationary randomized policy.

(34)

D <d.

Proof: Among the class GMWM policies, the upper bound
is minimum for the GMWMC°P*. The result follows by com-
paring the bound established in Theorem 5.3 for the GMWM
policy with weights w; = (1/p; — A;) and expected value re-
sult for the stationary randomized policy in Lemma 5.2. [ |

It is known that in the heavy traffic limit, the scheme GMWM
is asymptotically optimal [14]. However, the result obtained
here is true for all load vectors A € C.

VI. ESTIMATING THE DELAY

We noted toward the end of Section IV that the lower bound
may not be achieved by any policy because it may not be pos-
sible to schedule a link in every exclusive set due to the interfer-
ence constraints. Therefore, we attempt to develop an accurate
estimate for the delay performance in this section.

The lower bound analysis suggests that those exclusive sets
that have a large A,,, must have longer queues lengths because
the sum of the expected queue lengths in the exclusive set is
proportional to 3 A . However, since a scheduling policy like
MWM also balances 'the queue lengths in the system, the effect
of congestion in a particular exclusive set is distributed over the
whole system. Hence, instead of estimating the queue length at
each link, we estimate the contribution of each link toward the
aggregate expected queue length.

IEEE/ACM TRANSACTIONS ON NETWORKING

The upper bound analysis indicates that the expected aggre-
gate queue length in the system can be expressed a sum of the
individual contributions of each link. It also suggests that the
contribution of each link is inversely proportional to the con-
gestion (y; — A;) at the link [. A similar feature is also noted
in the lower bound where the congestion is equal to (1 — )\)Z ),
where x; are the sets computed by Algorithm 1 in Section IV.
However, since the sets x; used to compute the lower bound are
not maximal, they do not accurately represent the effect of con-
gestion and multiplexing in the system. Hence, we consider the
sets x; (defined later).

We define x; as the exclusive set that has the largest sum of ar-
rival rates, Ay, = > .o . Ai among all exclusive sets containing
[. In the case where all the arrival streams are mutually inde-
pendent, we propose to estimate the total expected delay in the
network by the following equation:

>_ElQ]

N
. Al — \2
~ Z )\, + Var[ z] )\1 . (35)

2(1—%)

The total expected delay in the network, D can be estimated as
follows:

i=1

N

D=2

\i + Var[4;] — A2

2(£) (-x0)

We call the RHS of (35) as the Estimate(G, A). Similarly, we
call the RHS of (22) as the LowerBound(G, A) and the RHS of
(28) as the UpperBound(G, A), respectively.

Theorem 6.1: Given a wireless network with mutually in-
dependent arrival streams, the estimate lies between the upper
and lower bound UpperBound(G,A) > Estimate(G,A)>
LowerBound(G, A).

Proof: The bounds and the estimates have been expressed
as a sum of NV terms. We first show that each term in the upper
bound is no smaller than the corresponding term in the estimate.

Part 1: Consider link 7 in the system. As explained in

Section I, for any exclusive set x; andany u > A : p € C

(36)

/LXi:Z/ngl
JEX:
=1-A - Z Aj > — A+ Z

JEX:,TFAL JEX:,JF#T

=1-A, 2 — N
since, each p1; > A;. In particular, we have

1-— )\; Z i — )\L (37)

Since both sides in (37) are positive, we have the following
result:
i + Var[4;] — \?
2(1 =A%)
Xi

i + Var[A;] — A2
2(pi — i)

Now, we show that each term in the Estimate is no smaller
than the corresponding term in the lower bound.

Part 2: Consider link 7 in the system. By definition of x;,
)\;(\i is no smaller than )‘55- for the sets x;, computed by

(38)
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Fig. 6. Expected queue lengths from simulation experiments. (a) Grid (independent traffic). (b) Grid (correlated traffic). (c) Quasi-unit disk.

the Algorithm 1 in Section IV of the paper. Also, )\; is no
smaller than );, i.e.,

A~ > A= > A\ (39)
Xi Xi
It follows that (1 — )\X~_) >(1- /\;) and
(Ai + Var[A4;] = MiA~) < (i + Var[4,] - A7), (40)

Using these two inequalities, we get the desired result
A\i + Var[4;] — \? S Ai + Var[4;] — )\7:)\;1,
2(1—)\;) - 2(1—)\;).

(41)

VII. SIMULATION RESULTS

We present the simulation results for two types of network
topologies, grid and random quasi unit disk graphs [25]. In each
case, the lower bound is computed using Algorithm 1. The upper
bound on the performance of GMWM policy is computed using
Algorithm 2 and the corresponding weights are used by the
GMWMP®P* policy. We also simulate MWM policy to provide
comparison with the GMWMC°P* policy. We study the accuracy
of the estimate for this class of throughput optimal policies when
the arrival streams are mutually independent. We use CPLEX
[26] to solve the combinatorial problems of computing the max-
imum weight scheduling problems at every iteration. The sim-
ulations are run until the half-width of the 95% confidence in-
terval is within 2.5% of the mean. All simulation experiments
have been conducted under the 2-hop interference model ex-
plained in Section III.

A. Grid Topology

We simulate two cases, one with with mutually independent
arrival streams and another with correlated arrival streams.

1) Independent Arrival Streams: For this simulation, the net-
work is a 7 x 9 grid with 63 nodes and 110 links as shown in
Fig. 8. The direction of data transfer among a pair of neigh-
boring nodes is chosen randomly. The arrival process at each
link is Poisson with rate parameter A chosen independently, ran-
domly between O and 1 packets per slot. This arrival vector
may even be outside the capacity region of the network. Once
a random base-line load is chosen, we use a scaling factor to

study the delay performance for different values of the (normal-
ized) load in the network. The maximum value of the load that
is supported by the system is determined from the simulations.
Since MWM is throughput optimal, the point where the system
becomes unstable must be outside the capacity region. The input
load is then normalized with value 1 corresponding to the point
on the boundary of the capacity region. It appears from our sim-
ulations that a randomly selected load, when scaled appropri-
ately, usually hits the boundary generated by the exclusive set
constraints.

Fig. 6(a) shows the increase in the sum of expected queue
lengths in the system as the load is scaled. The queue length in-
creases almost like a quadratic function at low to medium loads.
At high loads however, the denominator term (1 — )\;’ ), grows
very fast. We observe that both the GMWM®P* and MWM poli-
cies perform close to the lower bound. The estimate closely
matches the queue lengths of both MWM and GMWM°®P* poli-
cies, however it is more accurate for the GMWM°®P* policy. The
upper bound, although tight in an order sense, is almost always
a constant multiple of the average queue length in the system.
It seems that for each link /, the term (1 — )‘55) in the estimate

is a constant multiple of (1 — A;), selected by the GMWM®P*
policy. This suggests that under the MWM type scheduling poli-
cies, the system behaves as if all the queues in the exclusive set
x1 have been multiplexed into a single queue.

The delay in the system increases rather slowly when the
system load is in the low to medium range. However, as ex-
pected, the increase is sharp as the load approaches the capacity
region boundary. It seems that the lower bound analysis was
rather optimistic for heavy loads because it assumed that all the
exclusive sets generated by the Algorithm 1 can be scheduled
at the same time if they have non zero queue lengths. At low
and medium loads, since many of the exclusive sets are likely to
have small queue lengths, the lower bound appears to be tight.
The fact that even for an optimistic lower bound, the MWM and
GMWM perform so close to the lower bound indicates that they
are nearly optimal.

2) Correlated Arrival Streams: We simulated a 4 x 4 grid
with 29 links with link directions as shown in Fig. 9. The ar-
rival process at each link is Poisson with the same rate param-
eter A. All the flows originating from the same node have exactly
the same arrivals, i.e., they are perfectly correlated. The upper
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Fig. 7. Expected delay from simulation experiments. (a) Grid (independent traffic). (b) Grid (correlated traffic). (c) Quasi-unit disk.
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Fig. 9. Grid topology (correlated traffic).

bound and the lower bound analysis is general enough to corre-
lations in the arrival process and the results are shown below.

Fig. 6(b) shows the increase in the sum of expected queue
lengths in the system as the value of X is increased. We observe
that the delay performance of the GMWMPCP* policy is better
than that of the MWM on account of a better choice of weights
which increase the chances of scheduling the more congested
links in the network. Fig. 7(b) shows that the lower bound is
quite close to the performance of the GMWMPC°P* even when
there are correlations among the arrival streams.

B. Random Quasi Unit Disk Topology

We generate a random quasi unit disk graph shown in Fig. 10
with 40 nodes and 92 links. We allow a neighboring pair of
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Fig. 10. Quasi-unit disk topology.

nodes to transfer data in both directions (for the sake of sim-
plicity, the links in the figure are shown as undirected links).
The arrival rate \; at each link [ is chosen randomly between
0.1 and 1 packet per slot. Let Geometric(p) denote a sample
from the geometric distribution with parameter p. The arrival
process at each link [, is chosen as follows:

" Geometric (2_1?—%) ,  with probability 161_&[
A(t) =
Geometric (ngl—)\l) ,  with probability 16’¥ e

The first two moments of A; are \; and 9\; + 2)\?, respec-
tively. This load is scaled in a manner similar to the previous
case, to study the performance of the system at different loads.
The results are practically similar to the previous case. We note
that the estimate and lower bound developed here accurately
capture the impact of the variance in the arrival process on the
delay performance.

Thus, even though the lower bound in not guaranteed to be
tight in every case, it nonetheless provides a useful estimate of
the delay. Notice that the upper bound is finite for any A € C.
Also note that the delay of any scheduling policy must be infi-
nite if the load is outside the capacity region. Therefore, we can
conclude that as the upper bound goes to infinity, the delay of
any throughput optimal policy must also become infinite. Fur-
ther, from our simulations, it appears that the upper bound is a
constant multiple of the delay of the MWM/GMWM policy.
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VIII. CONCLUSION

We have established a fundamental lower bound on the per-
formance of a wireless system with single-hop traffic and gen-
eral interference constraints. This result can be used to study
the relative performance of any scheduling policy. We observed
through simulations that the performance of the throughput op-
timal policies such as the MWM policy is very close to the lower
bound. It is interesting to note that the MWM type of poli-
cies, which were designed primarily for achieving maximum
throughput, indeed also have good delay performance. This can
be attributed to two reasons. First, MWM schedules a maximal
set of links in the system. Second, it performs load balancing
in the system. We have analyzed the impact of GMWM type
of scheduling policies on the expected queue lengths and ex-
pected delay in the system. The GMWM®P" policy analyzed
in the paper, uses the information of the arrival rates to the
links to achieve load balancing by assigning higher weights w;
to more congested links. Thus, it improves the delay perfor-
mance. We have shown that for any given A € C, the perfor-
mance of GMWM°P" is no worse than any stationary random-
ized scheduling policy. It is interesting to note that the MWM
policy achieves load balancing without explicit knowledge of
the arrival statistics, simply by using the information of the
backlogs and thus achieves a delay performance comparable to
that of the GMWM®P" policy.

Note that our approach is orthogonal to that taken by [27]
where functions of the type @5, « > 0 were used to compute
the weight of the matching. This was explored further in [28]
where it was suggested that a smaller value of v may decrease
the idling in the system, leading to smaller delays. In our ap-
proach, the knowledge of the arrival rates at different links in
the system is used to compute the weight, w; corresponding to
each link 7. In the GMWM policy w; is a fixed constant that
serves to increase the chances of scheduling a more congested
link as compared to a less congested one, even when its instan-
taneous queue length is small.

Finally, for a network with mutually independent arrival
streams, we have developed an accurate estimate of the per-
formance of MWM type scheduling schemes. This result can
be used to study the relative performance of other scheduling
policies for wireless networks. The proposed delay estimate
can also be used as a more accurate metric for the development
of the scheme studied in [17]. We have developed bounds and
estimates for the expected value of the sum of all queue lengths
in the system. Since the policies like MWM, balance queue
lengths in the system, this analysis can be used to estimate
the individual queue lengths in the system. Thus, if the total
expected queue length in the network is small, we can expect
the average queue length at an individual link to be also small.

Since the complexity of implementing MWM/GMWM is
high, the design of distributed algorithms based on these prop-
erties is an important avenue for future investigation. The study
of throughput and stability of MWM has resulted in numerous
interesting works on the development of far simpler practically
implementable throughput-efficient schedulers. Similarly, we
expect that this study of the delay characteristics of MWM will
also result in simpler and more delay efficient schedulers.

As future work, we would like to analyze the delay of a wire-
less network with multihop traffic.
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APPENDIX A
PROOF OF THEOREM 5.2

We begin with the calculation of the drift for any state Q(¢).

Q)
N
5 S wEI(Qu(+ 1) - Qi)
=1
X (@ilt+1) + Qu(1) Q)
%;wE Ai(t) = Li(#)
X (2Qi(1) + Ai(t) - L))

N
= wiB[(Ai(t) — Li()(Qi(1))IQ(1)]
=1

1

We now invoke the assumption that the arrivals are i.i.d. over the
time slots and hence have expected values that are independent
of the current queue states. Also, since A € C

— Ii(t))*|Q(t)]- (42)

S| |S|
Ai = Zajlf such that Zozj <1

i=1 i=1

Therefore, we have

> B[40 ~ L)@ ()IQ()
= 2N Qult) = 3 wiBIL(1Q:(1)1Q()

N

=2 w

i=1

|S] N
Z Qi) = > wili(t)Qi(t).  (43)
=1 =1

Since I(t) is the optimal activation vector chosen according to
the GMWM rule

N N .
> wili(Qi(t) > Y will Qi(t)
=1 i=1
Hence
]\T
Z w;E Li())(Qi(1)|Q(1)]
- S| N
<—|1- Z a; | > wili(H)Qi(t)

e> 0. (44)

N
< =Y wili(t)Qi(t)

=1
Using (42) and (44) and Definition 5.1, we have

< —EZ’UH,LZ(t)Q (t) + E[B(®)|Q(?)]-
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Then for Q(t) € E, the drift is bounded by ¢ (defined in
Section V).

For Q(t) ¢ E,, EZ _1wil;(t)Qi(t) > c¢ and hence
A(Q(t)) < —n, n > 0. Hence by the Foster—Lyapunov criteria
in Theorem 5.1, the DTMC Q(t) is positive recurrent and
ergodic.

APPENDIX B
PROOF OF THEOREM 5.3

We use (43) from the proof of Theorem 5.2 to arrive at the
following:

=E[BOIQM)]+ Y wikiQi(t)

i=1
—ZM

Note that I(¢) is the activation vector chosen by the GMWM
scheme at time-slot ¢. For any other activation vector I* € S,
the following holds true:

zwl

Hence

A(Q(1))

i(1)]1Q(H)].

|Q ] < Zle[l

=1

Qi(1)|Q(®)]-
(45)

A(Q(1) <E[B®)|Q(1)] + Z wiAiQi(t)

—Zwl E[I}(t

Now, we use Lemma 3.1 which shows the existence of a sta-
tionary randomized policy IIp with rates greater than A. Sup-
pose the activation vector picked by I at time # is T®(¢). We
define another scheduling policy I* which schedules at time ¢,
all the queues scheduled by I®(¢) except for those whose queues
are empty. We define I* as follows:

i(D1Q(1)]-

Q““‘{& ifQi(t) = 0
It follows that
E[IF()Q:®)Q(t)] = [ FHQi1)|Q()]
Zm E (1 (1)Q:(1)Q(1) E)m Q).
(46)
Therefore
]\T
A(Q(1)) <E[B(#)|Q(H)] + Zwi)\iQi(t)
—Zw FHemIQM]. @)
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But, I® is a stationary randomized policy and we have

E[IF] =pi, pi >N
E [I[(1)Qi(1)|Q(1)] = miQi(t).
Hence
A(Q(t) < E[B®)|Q(t ]+sz i — 1) Qi(t).  (48)

Plugging the value of the weights w; = (=) 1n (48), we have

Q)] - Z Qi(t)
=1

and thus by the application of Lyapunov drift Lemma 5.1 we
have

A(Q(t) < E[B(1)

t—1
lim su E Qi(n)| < hm su E[B
(49)
Let us now compute E[B(t)].
| N
i=1

The queueing system is stable under the GMWM policy and
since I;(t) takes value either O or 1, it follows that

fl fl

lim sup — ZE 12 (7)] = limsup - ZE[I

t—o00 t—o0

)= A

A]SO, E[A,(t)] = )\, and
E[A:(t)Li(1)] = B[4 (0)]E[L (1)] = A2,

Finally, we arrive at the following:

[

=3 [Z w; (\; + E [AZ] - 2,\3)] :
i=1

We have already established the ergodicity of the queue length
process and we conclude that the steady state queue occupancies
can be upper-bounded by

ZEQ]< ﬁ:wl \i +E [42] —2/\2)]
>

(N +E [A2] — 2)2)
i=1
N

1i — ;)
Z (i 4+ Var[4;] —
o1 2(pi — i)

t—1

lim sup — Z E[B(r

t—oo

A7)

The upper bound for average network delay follows by the ap-
plication of Little’s law
N

(Ai + Var[4,] - A2)
o (2 ) (- 20,
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