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Abstract—In this work, we study the problem of minimizing the
total power consumption in a multihop wireless network subject
to a given offered load. It is well-known that the total power con-
sumption of multihop wireless networks can be substantially re-
duced by jointly optimizing power control, link scheduling, and
routing. However, the known optimal cross-layer solution to this
problem is centralized and with high computational complexity. In
this paper, we develop a low-complexity and distributed algorithm
that is provably power-efficient. In particular, under the node-ex-
clusive interference model and with suitable assumptions on the
power-rate function, we can show that the total power consumption
of our algorithm is at most ��� � times as large as the power con-
sumption of the optimal (but centralized and complex) algorithm,
where is an arbitrarily small positive constant. Our algorithm
is not only the first such distributed solution with provable perfor-
mance bound, but its power-efficiency ratio is also tighter than that
of another suboptimal centralized algorithm in the literature.

Index Terms—Cross-layer optimization, duality, energy-aware
routing, mathematical programming/optimization.

I. INTRODUCTION

T HERE has been significant recent interest in developing
control protocols for multihop wireless networks. Many

applications can benefit from the deployment of these networks.
For instance, sensors can form multihop wireless sensor net-
works [2] for a variety of applications, such as habitat moni-
toring and the management of sewer overflow events [3]. Ve-
hicles can form multihop wireless networks to exchange safety
messages and traffic information [4]. Wireless LAN devices can
form multihop mesh networks to provide wireless broadband ac-
cess [5].

A key issue in developing control protocols for multihop
wireless networks is to reduce the energy or power consump-
tion. This is obviously an important issue for battery-powered
networks since the power consumption often limits the lifetime
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of the network. Even for networks with access to power sources,
the transmission power of the communication links may still
need to be properly controlled, e.g., due to health or regulatory
concerns.

In this work, we are interested in the problem of minimizing
the total power consumption of a multihop wireless network,
subject to a given offered load. The authors of [6] and [7]
develop general solutions to minimize the total power con-
sumption of the network by jointly optimizing power control,
link scheduling, and routing. Although the algorithms in [6] and
[7] could be implemented in a distributed fashion when each
link has an orthogonal channel, in general the algorithms there
require centralized computation and high complexity when
links interfere with each other. In this paper, we propose a new
low-complexity and distributed solution to this problem under
a widely used interference model called the node-exclusive
interference model. Using this model, the work in [8] developed
a centralized solution that yielded a 3-approximation ratio (i.e.,
the resultant power consumption is within a factor of 3 from
the optimal power consumption). In contrast, in this paper,
we will obtain a -approximation algorithm that is fully
distributed, where is an arbitrarily small constant. In a
more recent work [9], the authors also develop low-complexity
suboptimal energy minimization algorithms with provable effi-
ciency ratios under a more general model with multi-receiver
diversity. However, the solution in [9] appears to achieve worse
power-efficiency ratios than the solution in this paper. (For
example, its approximation ratio increases as the node degree
increases even under the node-exclusive interference model.)

Our solution approach is inspired by the recent progress in
using imperfect scheduling algorithms to develop distributed
cross-layer congestion control and scheduling algorithms in
multihop wireless networks [10]–[12]. We first formulate the
energy minimization problem into a special form that naturally
leads to a distributed solution. We then map the solution to
corresponding components of the cross-layer control protocol
and rigorously establish the stability and power efficiency of
the protocol.

Our work is also related to the study of energy-aware routing
protocols for minimizing energy consumption and extending
network lifetime [13]–[17]. These works assume that the system
capacity is battery-limited instead of interference-limited and,
therefore, do not consider scheduling constraints. In contrast,
our work explicitly considers scheduling, jointly with power
control and routing.

The intellectual contribution of this work is summarized as
follows:

• We develop a low-complexity and distributed joint
routing, power control, and scheduling algorithm for mul-
tihop wireless networks with provable power-efficiency
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ratio. Furthermore, our algorithm can guarantee a better
power-efficiency level than some existing centralized
algorithms.

• To the best of our knowledge, our solution cannot be ob-
tained by extending the known optimal solution in the lit-
erature [6], [7]. Instead, we develop an optimization ap-
proach to the energy minimization problem that naturally
leads to distributed solutions.1 We also develop rigorous
techniques for proving the stability and power-efficiency
of the resulted control protocol.

The rest of this paper is organized as follows. In Section II, we
present the system model and formulate the energy minimiza-
tion problem. We present the solution in Section III and discuss
how to map the algorithm to different network protocol compo-
nents in Section IV. In Section V, we present our main analytical
results on the stability and power-efficiency of the proposed pro-
tocol. Numerical results are provided in Section VI. Then, we
conclude in Section VII.

II. PROBLEM FORMULATION

We model a wireless multihop network by a directed graph
, where is the set of vertices representing the nodes,

and is the set of edges representing the communication links.
We use and to denote the sets of outgoing and
incoming links of node , respectively. Their union forms
the set of all links incident on node .

The system is time-slotted. We adopt the following
node-exclusive interference model that is used to characterize
FH-CDMA and UWB system with perfect orthogonal spreading
codes and low power-spectrum density [11], [18]–[20]. Under
this model, a node can only receive from or transmit to at
most one node at any time-slot . Furthermore, each link is
power-controlled. That is, if the node-exclusive interference
constraint is satisfied, we assume that the possible data rate
of link is a function of its own power assignment . We use

to denote the power consumption for supporting
data rate of on link . For every link , it is assumed that

is a nondecreasing and convex function on satis-
fying , where is the maximum rate supported on
link . An example of is the power-rate relationship in an
additive white Gaussian noise (AWGN) channel.

Each packet may take multiple hops to be delivered from
source to destination. Let denote the long-term average data
rate of the flow that needs to be supported from source node to
destination node . We use to denote the set of destinations.

The joint energy minimization problem is now formulated as
follows:

(1)

for all and

satisfies the node-exclusive

constraint for all time-slots (2)

for all links (3)

1We note, however, that the solutions in [6], [7] are for more general system
models than the node-exclusive interference model studied in this paper.

for all and nodes (4)

where , is the rate assigned to link at time
slot , , , and the quantity can
be interpreted as the average data rate on link allocated for
destination . The objective function in (1) corresponds to the
long-term average energy consumed by all links. The constraints
in (3) require that the long-term average data rate, determined by
the power allocation, should be able to support the total average
data rate on each link. The constraints in (4) require
that the total outgoing flow of a node should be able to support
the total incoming flow plus the locally generated flow, for all
destinations. In the rest of the paper, we will refer to the above
problem as Problem .

III. SOLUTION METHODOLOGY

A. Approximating the Energy Minimization Problem

The optimal solutions developed in [6] and [7] could be used
to solve Problem . However, their solutions contain a sched-
uling component with high computational complexity. In order
to compute at which power and at what time each link should
be activated, these solutions need to solve a complex global op-
timization problem in each time-slot.

In this paper, in order to obtain a low-complexity and dis-
tributed solution, we take a different approach. We first approx-
imate by another optimization problem that is easier to solve.
The following Lemma [8] provides the first step in this direction.

Lemma 1: There exists a power-optimal solution that solves
Problem such that for all time-slots when link is acti-
vated, the instantaneous data rate is independent of .

Lemma 1 follows from the convexity of the function
[8]. According to this lemma, we only need to consider those
solutions for which there exists a single value , such that

holds for all time-slots when link is acti-
vated. As a result, is equal to
the product of and the fraction of time that link is acti-
vated. Therefore, by (3), the objective function of Problem
can now be written as

where is the fraction of time-slots that link is
activated.

Furthermore, using the results from low-complexity sched-
uling [10]–[12], we have:

• Fact 1: In the optimal solution to , we must have

for all nodes

• Fact 2: Under the node-exclusive interference model, if

for all nodes

where is an arbitrarily small positive constant,
then a maximal schedule [10]–[12] can be computed such
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that each link is activated for fraction of
time-slots. We will discuss more about the role of maximal
scheduling in our solution in Section IV-B.

Based on these two facts, in the rest of the paper, we will
replace the scheduling constraints (2) by

for all (5)

Problem can then be approximated by the following
problem:

and

(6)

where
for all links and destinations .
Not only is formulation (A) easier to solve, it also produces

natural bounds for proving the power efficiency ratio of our solu-
tion. Indeed, solving (A) with provides a lower bound on
the minimum power of Problem , while
provides an upper bound. Hence, if we can solve Problem (A)
with , we can then obtain a solution with a prov-
able power-efficiency ratio. This efficiency ratio can be derived
by assuming a second-order approximation of the power-rate
function as in [8]. Specifically, assume that the data rate

in an AWGN channel is given by

where is the available bandwidth, is the channel gain of
link , is the noise spectral density, and is the transmission
power. The power-rate function is then given by

(7)

Using a second-order approximation

the objective function in (6) can be approximated by

(8)

Let be the optimal solution to Problem (A) with .
It is evident that , where , is a
feasible solution to Problem (A) with . According
to (8), this feasible solution results in power consumption that
is (approximately) at most times the optimal value of
Problem (A) with . Since the optimal value of Problem (A)
with is a lower bound on the minimum power from
Problem , we conclude that if we can solve Problem (A) with

, the power-efficiency ratio of the resulting solution
is upper-bounded by .

Remark: Problem formulation (A) also appears in [8]. How-
ever, our solution is different from this point on. As mentioned
earlier, their solution is a centralized one. Furthermore, because
of some additional approximation steps, the power efficiency
ratio of the solution in [8] is 3 [(assuming the same second-order
approximation of the power-rate function as in (8)]. In contrast,
in this paper we will convert Problem (A) to a convex form,
which allows us to develop a distributed solution with a better
power-efficiency ratio of .

In the rest of the paper, we assume that Problem (A) is strictly
feasible for some , i.e., there exists such
that the constraints (4) and (5) are satisfied with strict inequality.
Note that in practice this assumption can easily be satisfied by
picking the maximum data rate to be sufficiently large.

B. Handling the Nonconvexity

In Problem (A), the objective function and the constraint (5)
are nonconvex. Problems of this type are considered to be diffi-
cult in general. To overcome this difficulty, the following change
of variable is performed:

for all links

The parameter can be interpreted as the fraction of time-slots
for which link is activated. Due to the constraint (5), there is no
loss of optimality by assuming that for each link . Later
in Section IV-A, we will interpret also as the offered load on
link . The latter interpretation will become more appropriate in
Section IV-A when we deal with for each time-slot in the
dual solution. With this change of variable, we can denote the
long-term average power consumption of link as a function of

and , i.e., ,
for . To define the value of the function for ,
note that . Hence, the only feasible
point when is when is also equal to 0. Let

for all

(9)

We can then define the function on the domain as

. (10)

Note that this definition ensures that the function is contin-
uous on its domain.

Let , and let denote the Cartesian product
of for all , i.e.,

for all edges and destinations

for all edges

Using the above notation, Problem (A) can be transformed into

(11)
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for all nodes (12)

for all and nodes

(13)

We emphasize that Problems (A) and (B) are equivalent. We
now show that Problem (B) is a convex program. We need the
following lemma.

Lemma 2: Assume that is a convex function on .
Let

. (14)

Then, is also convex on the domain
.

The proof is available in our online technical report [21] and
is related to the perspective of the function [22, Ch. 3.2.6,
p. 89]. From Lemma 2, each term in the objective
function of Problem (B) is convex, and hence the entire problem
is a convex program. We can then use the following duality ap-
proach to solve the problem.

C. Distributed Algorithm Based on Lagrange Duality

To use the duality approach to solve Problem (B), we first
form the Lagrangian

where and
are the Lagrange multipliers for the constraints (12) and (13),
respectively. For ease of notation, we define , for all .
By rearranging the order of the summations, the above equation
can be transformed into the following:

where

(15)

and and are the transmitting node and receiving node,
respectively, of link .

The dual objective function is then

(16)

where is given by (9). In other words, the minimization of
the Lagrangian can now be decomposed into minimization sub-
problems for each link. Note that all the information needed in
minimizing is local to link .

The dual optimization problem is

(17)

Let denote the optimal solution to Problem (B). Assuming
that the primal problem (B) is strictly feasible, the Slater con-
dition can be verified. We can then conclude that there is no
duality gap as in standard results [22, Ch. 5.2.3, p. 226].

Theorem 3: (Strong Duality): Assume that Problem (B) is
strictly feasible (and hence its optimal value is finite.) Then,
there is no duality gap, i.e., .

The next step is to solve the dual problem in a distributed
fashion. We can show that is concave and a subgradient
of at is given by the following vector such that
the components of are given by

where and solve (16). We can then use the following subgra-
dient-ascent method to solve the dual problem.

Distributed Energy Minimization Algorithm

At each iteration :
1) At link , the data rate and the link assignment are

determined by

(18)

2) At node , the dual variables are updated by

(19)
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(20)

where is a sequence of positive step sizes.

Remark: In the above algorithm, we use the same step size
for updating and at each iteration. This is simply for ease of
notation: The step sizes can be different for each dual variable.

The above exercise of using Lagrange duality is standard.
However, there are a number of questions that are not answered
by the above algorithm alone. First, how does the algorithm
translate to practical network protocol components? Second,
note that the primal problem is not strictly convex. Specifically,
the objective function of Problem (B) contains a linear term [see
(10)]. Hence, the dual objective function is not always differen-
tiable. In practice, in order to dynamically track the changes of
the network condition (e.g., as the offered load changes), it is
typical that a constant step size is used. As a consequence of the
lack of differentiability of the dual objective function, the algo-
rithm will not always be able to converge to a single operating
point. Rather, the dual variables and could os-
cillate around their corresponding optimal values. Furthermore,
even if the dual variables are close to the optimal values, the
primal variables and may not. Hence, it is not im-
mediately clear what level of performance this algorithm will
be able to achieve. In the next two sections, we will carefully
address these questions and quantify the performance levels of
the resulting protocol.

IV. MAPPING TO NETWORK PROTOCOL COMPONENTS

In this section, we will map the Distributed Energy Minimiza-
tion Algorithm to various protocol components. Recall that in
each iteration , the Distributed Energy Minimization Algo-
rithm updates the variables , , , and ac-
cording to (18)–(20). We will basically identify iteration with
time-slot and use the values of these variables as the control
decision at time-slot .

A. Routing, Power Control, and Link Assignment

In Step 1 of the Distributed Energy Minimization Algorithm,
each link solves (18) by minimizing . We now in-
vestigate the structure of this minimization problem, and we will
show that this step corresponds to the routing, power control,
and link-assignment protocol components. We first introduce
the following transformation:

(21)

Recall that is an estimate (at iteration ) of the average
data rate on link allocated for destination , and is an
estimate (at iteration ) of the fraction of time-slots that link

is activated. Thus, can be viewed as an estimate of
the instantaneous data rate allocated on link for destination

. Substituting the above equation into , we have

(dropping the time index when there is no source of confu-
sion)

(22)

where , and is defined as

(23)

Since , to minimize (22), we should first minimize
as a function of over . Note that

function takes as input parameter the sum of the data rates
allocated for all the destinations on this link. In other words,
from the viewpoint of power consumption, it is indifferent
to which destination the data rate is allocated for, as long as
the total data rate is the same. Furthermore, we can interpret

in (20) as the backlog at node for destination (since
it captures the cumulative difference between the input rate and
output rate at node for destination ). Then, the minimum of

is attained when all the data rates are allocated to the
destination with the maximum positive backlog difference. In
other words, if we let

(24)

then to find the optimal value of , we should let for
all . With this observation, the minimization of
can be reduced to a minimization problem of a single-variable
function, i.e.,

(25)

Let denote the optimal solution to (25). We can then
set if , and , otherwise.
For example, if , and

, then ,

and for all other destinations .
Now that has been chosen to minimize in (23), the

next step is to determine the value of over the interval [0,1] to
minimize . Clearly, the optimal value is

if
if .

(26)

Note that among the three terms of in (25), the term
can be viewed as the power cost due to power consump-

tion; the term can be viewed as the
scheduling cost due to the constraint on the fraction of the time
that each link can be scheduled; and the term
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can be viewed as the utility of transporting data on
link . Hence, according to (26), we will assign only
when the utility of transporting data to next hop is no smaller
than the power cost plus the scheduling cost. Substituting into
(21), the values of can then be set as if

and , and , otherwise.
So far, we have derived the values of and at it-

eration according to (18). We now use the values of these
variables as the control of the various protocol components in
time-slot . The minimization of on each link then
naturally translates into the following protocol components. At
each time-slot :

1) Routing: Choose only the flow with maximum pos-
itive backlog difference [cf. (24)]. This is the flow that
should receive service.

2) Power control: Choose to minimize in
(25). Then, is the power assignment that link

should use, and is the corresponding data rate
assigned to link when it is turned on.

3) Link assignment: Choose to minimize
in such a way that takes

its maximum value 1 if the optimal is less
than or equal to 0, and 0 otherwise. This determines the
amount of time that link should be on.

Therefore, when link is turned on (by the scheduling
component to be discussed in Section IV-B), it will then use
the power level [and the corresponding data rate

] to transfer packets for destination from its
transmitting node to its receiving node in the corresponding
time-slot. (Note that each link will carry packets for at most
one destination at each time-slot .) Once the decisions of the
above protocol components are determined based on the dual
variables and , these dual variables are then up-
dated according to (19) and (20). The only remaining problem,
however, is that not all links with can be activated
immediately because they may violate the node-exclusive
interference constraints. We next address this issue.

B. The Maximal-Matching Scheduling Component

As we have seen thus far, the duality approach exploits the
problem structure and decomposes the primal problem into sub-
problems that immediately translate to protocol components.
However, in the above discussions, although we have consid-
ered the scheduling constraint in the form of (12), we have not
studied the actual schedule of activating the links. In particular,
the links that are assigned may in fact interfere with
each other and, hence, cannot all be activated immediately in
time-slot . A scheduling algorithm is then needed to schedule
(at least some of) these links for activation at a later time. In par-
ticular, for each link and each time-slot such that

, define as the time-slot when the scheduling algo-
rithm can actually activate the link for this particular link-as-
signment instance. For obvious reasons, we require a one-to-one
mapping from each time-slot with to , and a
natural ordering of such that for every

and . Hence, the inverse map-
ping of is well defined, and we denote it by . For
those time-slots when link is not activated, they do not cor-
respond to any time-slot with and .

In this case, we define . Consider the following
equation:

(27)

It is easy to see that when and ,
provides an upper bound on the real queue maintained at node
for packets destined to node . (It is an upper bound because the
actual number of incoming packets to node is less than or equal
to .) Note that here we have used the con-
vention that for all and , which is consistent with
the value of for those time-slots when . Thus,
we need to design an algorithm for determining such that:
1) the real queues are bounded; and 2) the energy consumption
is close to the minimum value of Problem (B).

We address this problem by mapping it to a scheduling
problem for stability (similar to those in [10], [11], and
[23]–[26]) as follows. Consider a virtual system with the same
topology as the original system, except that each link has
a unit capacity. Whenever , we offer a virtual
packet with unit length to link . Hence, the process ,

represents the virtual offered load to link . We let
each virtual packet remember the time-slot that it arrives. Note
that under the node-exclusive interference model, the feasible
schedule must be a matching at any time-slot. (A matching of
a graph is a subset of the links such that no two links share
a common node.) At each time-slot , once a matching in
the virtual system is chosen, each matched link will then
serve one virtual packet. In the original system, this service
corresponds to assigning , where is the arrival
time-slot of the head-of-line virtual packet just served. In other
words, in the original system link is activated at time-slot ,
and we use the value of to serve packets on link at
this time-slot .

With this construction, the amount of backlog and the delay
in the virtual system then correspond to the number of link-
assignments pending to be scheduled and the scheduling delay,
respectively, in the original system. Intuitively, if we can design
a scheduling algorithm that can keep the backlog and delay of
the virtual system to be bounded, then the real queue will
be bounded as long as the dual variables are bounded.
Furthermore, such a bounded scheduling delay will not alter the
long-term average power consumption. (This argument will be
made precise in Section V-B.)

In this paper, we are interested in a simple scheduling algo-
rithm called maximal-matching. This algorithm will schedule
a matching with backlogged links such that no more links can
be added without violating the node-exclusive interference con-
straint. More precisely, denote the virtual backlog at link as

Clearly, for all . Let . Denote
as the actual set of links that are scheduled in the vir-

tual system at time-slot . Then, for the maximal-matching
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scheduling policy, at least one of the following statements must
be true. For any link that has nonzero virtual backlog (i.e.,

):
• either ;
• or for some interfering link ;
• or for some interfering link ;

where and are the transmitting node and receiving
node, respectively, of link . (Note that links with zero virtual
backlog are not scheduled.) The evolution of the virtual backlog

is then given by

(28)

Let denote the average number of packets that arrive to link
in the virtual system. It is well-known that, under the node-

exclusive interference model, when the offered load satisfies
for all nodes , then maximal-matching is

guaranteed to produce a schedule such that the virtual backlog
at each link does not grow to infinity. In the Distributed Energy
Minimization Algorithm, if we choose for some

, then as long as the dual variable is bounded, it im-
plies that the long-term offered-load to the virtual system satis-
fies for all nodes . Hence, the virtual backlog
of each link under the maximal matching policy will be finite.
As we will show in Section V, we will then obtain a scheduling
algorithm that both keeps the real queue bounded and
achieves power-efficiency close to the solution of Problem (B).

The maximal-matching scheduling policy is easy to imple-
ment. Essentially, if link is backlogged (in the virtual system)
and its neighbors have not been scheduled, then link itself
should be scheduled. The maximal-matching scheduling policy
can be implemented in a distributed fashion using the algo-
rithm in [27]. This algorithm proceeds in rounds, where in each
round it computes a (not necessarily maximal) matching, and
then proceeds to the next round by removing those links that
either have been matched or that have a neighboring link that
is matched. The algorithm terminates when there are no links
left. Then, the union of the matchings found in all rounds form
a maximal matching. In each round, the algorithm only requires
each node to exchange a small amount of control messages with
neighboring nodes. The result of [27] shows that the average
number of rounds required to compute a maximal matching is

, where is the total number of links in the net-
work. We refer the readers to [27] and [28] for more details on
the distributed implementation of maximal schedules.

By combining the Distributed Energy Minimization Algo-
rithm and the maximal matching scheduling policy, we then ob-
tain a cross-layer protocol for energy minimization, which is
summarized as follows. In this protocol, we use the convention
that the computation at each link is carried out at the transmit-
ting node . We also implement the virtual backlog at link
as a FIFO queue.

Distributed Energy Minimization Protocol

At each time-slot :
1) Each node exchanges the value and with

its immediate neighbors (that share a common link).
2) Link finds the flow with the maximum positive

backlog difference in (24).

3) Link calculates the rate assignment that
minimizes in (25). The corresponding power
assignment is then .

4) A virtual packet with the information and is
appended to the end of the virtual queue at link .

5) The algorithm in [27] is used to compute a maximal
matching among those links with positive virtual backlogs.

6) For each link that is chosen in the maximal matching,
remove one virtual packet from the head of the virtual
queue at link . Let denote the time-slot that this
virtual packet arrived.

7) Link then uses the value and as the
routing and power control decision at time-slot .

8) Each node updates the dual variables and
according to (19) and (20).

Note that to carry out the above control protocol, each link
only needs to know the dual-variables at its endpoints. Further-
more, to update the dual variables, each node only needs to know
the control decisions at the links incident to it. Taking into ac-
count the overhead of the distributed implementation of max-
imal matching (discussed earlier), the number of messages that
each node needs to exchange with its immediate neighbors in
each iteration is of the order , where is the max-
imum node-degree. In the next section, we will carefully quan-
tify the stability and power-efficiency of the cross-layer protocol
proposed above.

V. PERFORMANCE ANALYSIS

In this section, we will answer the following two questions.
First, can the protocol developed in Section IV support the of-
fered load given by ? Second, what is the power efficiency
of the proposed cross-layer control protocol? We note that these
questions cannot be answered by standard results in convex op-
timization and duality theory alone. The reason is because the
introduction of the maximal-matching scheduling component in
Section IV-B leads to some complication in analyzing the dy-
namics of the protocol. In particular, a link with may
need to be activated at a later time . This delayed activa-
tion leads to a discrepancy between the value of and that
of the real queue. For ease of exposition, in this section we will
first ignore the maximal-matching scheduling component and
study the properties of the control variables and
computed by (18)–(20) under the assumption that all links with

can be activated immediately in time-slot . We
then remove this unrealistic assumption and relate the properties
of and to the actual performance of the protocol
when the maximal-matching scheduling component is used.

A. Properties of and With Constant Step Sizes

Since the algorithm in (18)–(20) is a standard subgradient-
ascent algorithm for the dual problem, we would expect that the
dual variables will converge to a neighborhood of some optimal
value. However, the primal variables will likely
oscillate. For example, is either 0 or 1 according to (26).
A natural question to ask then is the following: In what sense
are the primal variables and optimal?
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The following theorem answers this question. Recall that
is the minimum value of Problem (B). Let

(29)

Theorem 4: Let the step sizes in the Distributed En-
ergy Minimization Algorithm be equal to a constant, i.e.,

, for all time-slots . Let be the set of
that maximizes , and define the distance metric

. Given any
, there exists some such that, for any and

any initial implicit costs , there exists a time
such that for all

(30)

Furthermore, for any , where the
function is defined at the beginning of Appendix-A, we
have

(31)

The proof of Theorem 4 is provided in Appendix-A. It shows
that when step sizes are small, the dual variables eventually con-
verge to within a small neighborhood of the optimal dual solu-
tion. Note that under the assumption that all links with

can be activated immediately in time-slot , the boundness of
immediately implies that the offered load are sup-

ported by the protocol. In other words, according to (20)

must be bounded for all time-slots and for all .
Hence, the constraint in (4) is satisfied when we take in (4)
as the long-term average of . Furthermore, Theorem 4
shows that the power consumption determined by the primal
variables and is close to the minimal value of
Problem (B). In other words, even though the primal variables

may not converge, by using for
each time-slot , the long-term average of the resultant power
consumption is arbitrarily close to . Finally, Theorem 4 re-
veals a tradeoff between power-efficiency and the convergence
speed (depending on the step-size ). A smaller will drive
the average power-consumption closer to , although it will
take a larger number of iterations before (31) holds.

B. Stability and Power Efficiency With the Maximal-Matching
Scheduling Component

Theorem 4 establishes the stability and optimality of the
primal variables and . However, as we discussed
at the beginning of this section, due to the delayed activation
of the links, there is a discrepancy between the real queue and
the value of . Hence, in order to ensure that the offered
load is supported, we must prove that the real queue is
stable. Furthermore, we must show that the delayed activation

of the links does not change the average energy consumption
in the system. Toward this end, we first show that the delay in
activating the links is bounded.

Lemma 5: Assume that the positive step sizes are fixed,
i.e., for all time-slots , where and is
given in Theorem 4. Let be the bound on the dual variables

for all nodes and time-slots . (Note that such a bound
exists due to Theorem 4). Let

Then, for any link and any with , the delay in
activating the link is no greater than , i.e.,

The proof is provided in Appendix-B. To obtain the above
upper bound on the delay, we have assumed that, for each link
with a positive virtual backlog, either link or only one of
its neighboring links must be scheduled. As a result, the delay
bound in Lemma 5 increases to infinity as approaches 1/2.
In practice, it is possible that maximal matching can pick two
neighboring links of link at the same time. Hence, as we ob-
serve in the simulation results in Section VI, the actual delay is
often much smaller than the above bound.

We can now state the main result of this section.
Theorem 6: Assume that the positive step sizes are fixed,

i.e., for all time-slots , where and
is given in Theorem 4. Let be the bound on the dual vari-
ables for all , and . (Note that such a bound ex-
ists due to Theorem 4.) With the maximal-matching scheduling
policy stated earlier, the real queues at all nodes must be
bounded at all time-slots by

where is the maximum delay given in Lemma 5. Hence, the
offered load is supported by the cross-layer control pro-
tocol. Furthermore, the long-term average energy consumption
is no greater than , where is the minimal value of
Problem (B), and is the constant defined in Theorem 4.

The proof is in Appendix-C. According to the discussion in
Section III-A, by taking , we then obtain a dis-
tributed solution whose power-efficiency ratio is upper-bounded
by , where .

VI. NUMERICAL RESULTS

We first simulate a simple seven-node network (see top figure
in Fig. 1). The rate-power function is of the following form:

where MHz is the available bandwidth,
is the channel gain of link , mW/Hz is

the noise spectral density, is the transmission power, and
is the resultant instantaneous data rate of link . The power-rate
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Fig. 1. Network topology.

TABLE I
TWO FLOWS SUPPORTED BY THE NETWORK

function is then given by (7). This network supports two
flows, as shown in Table I.

The node-exclusive interference model is considered, and we
use in Problem (B). To show that our pro-
posed solution can adapt to variations in the input parameters,
we apply the following changes in the system setting. At itera-
tion , the channel gain of the direct link between
node 1 and node 7 is decreased from to .
At iteration , the data rate of flow 2 (from node 3 to
node 6) is reduced from 500 to 250 kbps.

For each setting, offline computation is carried out to find
the minimum value of Problem (B), which is given by
the dashed line in Fig. 2. The power consumption from the
proposed distributed algorithm is shown as the solid line in the
same figure, where we have chosen . This simulation
result shows that our proposed solution is capable of achieving
the near-optimal power consumption in a distributed manner
and automatically tracking the near-optimal operating point
once the system parameters change.

To illustrate the tradeoff between convergence speed and
power efficiency as the step size varies, we also simulate the
distributed algorithm for different values of . As we can see
from Fig. 3, when increases from 0.03 to 0.5, the algorithm
converges faster, although the power-consumption increases
slightly when is large. Nonetheless, for the range of that

Fig. 2. Power consumption from distributed algorithm and offline computation.
� � ���.

Fig. 3. Power consumption from distributed algorithm as the value of � varies
from 0.03 to 0.5.

we simulated, the power-consumption levels are all close to the
value .

We also plot the evolution of dual variables at selected links
when and (see Figs. 4 and 5, respectively).
We can observe a similar tradeoff between convergence speed
and accuracy for the dual variables.

As we discussed in Section V-A, in general, the primal vari-
ables , , and do not converge. In Figs. 6–8,
we plot their time-averaged values (over a moving window
of 200 iterations). We can infer the change in the routing and
scheduling decisions from Fig. 8:

• In the initial state, flow 1 concentrates on the minimum en-
ergy path—namely, link (1,7) (see the solid line in Fig. 8).

• At iteration , the channel gain reduces by
75%, and part of flow 1 is shifted to path 1–2–7 (the dotted
line). Since the scheduling capacity of node 2 is saturated,
a larger percentage of flow 2 is then routed through path
3–4–5–6 in the optimal solution (the dash-dotted line).

• At iteration , the traffic that the network has to
support between nodes 3 and 6 reduces (flow 2 is reduced
to 250 kbps). As a consequence, part of the scheduling
capacity of node 2 is freed, and more of flow 1 takes path
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Fig. 4. Dual variables produced by the distributed algorithm. � � ����.

Fig. 5. Dual variables produced by the distributed algorithm. � � ���.

Fig. 6. Instantaneous data rates �� � for different flows on four links.� � ���.

1–2–7 to reduce the overall power consumption (the dotted
line).

We then simulate the distributed algorithm on a bigger net-
work (see the bottom topology in Fig. 1). The channel gains and
rate-power functions are chosen as before. There are four flows
from source to destination , , 2, 3, 4, respectively.

Fig. 7. Activation time �� � for four links. � � ���.

Fig. 8. Average data rates �� � for different flows on four links, � � ���.

The data rate of each flow is 250 kbps. In the middle of the
simulation, the noise density in the shaded area is increased by
four times. In Fig. 9, we plotted the power consumption for three
values of . Again, the algorithm converges close to the optimal
operating point, and the power efficiency improves when is
smaller.

Finally, in Fig. 10 we plot the sum of the virtual queues
(for the bigger network) due to the maximal matching sched-
uling component. We can see that the virtual queues are in fact
very small (the sum is around 30) even though
is close to 1/2. The average scheduling delay (not plotted) is
less than five time-slots over all links, with the maximum sched-
uling delay less than 25 time-slots during the entire simulation.
Hence, we observe that the scheduling delay due to the maximal
matching scheduling component tends to be much smaller than
the bound given in Lemma 5.

VII. CONCLUSION

In this paper, we propose a joint power-control, link-sched-
uling, and routing algorithm to minimize the power consump-
tion in multihop wireless networks. The known cross-layer so-
lution to this problem is centralized and with high computa-
tional complexity. In contrast, our algorithm is distributed and
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Fig. 9. Power consumption from distributed algorithm for a bigger network.
The value of � varies from 0.05 to 0.3.

Fig. 10. The sum of the virtual queues over all links of the bigger network.

with low computational complexity. We establish the power-ef-
ficiency ratio of our solution and show that the performance
bound of our solution, achieved in a distributed manner, is prov-
ably tighter than a centralized solution in the literature.

As in related works on cross-layer control and optimization
of wireless networks [12], our solution borrows extensively the
techniques from convex optimization and duality theory. How-
ever, we often observe that straightforward applications of op-
timization theory may not produce a control protocol that is
directly usable in real systems. For example, for the problem
that we studied in this paper, duality theory leads to a solu-
tion in (18)–(20) where the interference constraints could in
fact be violated. Hence, additional modification of the solution
is needed. One of the main contributions of the paper is to de-
sign an easy-to-implement scheduling component that accounts
for the interference constraints and to carefully quantify the sta-
bility and power efficiency of the resulting protocol. Our sim-
ulation results verify that the proposed distributed solution can
compute and track the near-optimal operating point whenever
the system parameters change. For future work, we plan to ex-
tend the results to more general interference models, e.g., the
bidirectional equal-power model used in [23]–[26].

APPENDIX

A. Proof of Theorem 4

The proof technique here is similar to [7]. First, note that the
subgradient of the dual objective function is bounded because

and . Given any ,
define the set . Using the
results of [29, Lemma 8.2.1 and Proposition 8.2.2, pp. 471-473],
if the step size is sufficiently small, whenever the vector of
dual variables is outside the set , it will move
closer to and, hence, will eventually enter the set . Fur-
thermore, once the vector of dual variables is in the set , at
the next iteration it can move away from by at most a dis-
tance proportional to . Hence, by (possibly) further decreasing
the step size , we can ensure that the dual variables will never
leave the set . This proves the first part of the Theorem. Note
that it implies that the sequence is bounded.

To show (31), we consider the following Lyapunov function:

The subgradient of at time-slot can be written as

Using the above notation along with (19) and (20), the one-
step drift of the Lyapunov function can be calculated as follows:

(32)

where

Since is bounded by 1, and is bounded by
, we can bound by
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Adding to both sides of (32), we
have

[from (16) and (18)]

where in the last step we have used Theorem 3.
Summing the above inequality over , and

dividing both sides by , we have

(33)

Let

Then, for all , we will have

The result of Theorem 4 then follows.

B. Proof of Lemma 5

We first show that in (28) is bounded for all and
. From Theorem 4, we know that is bounded for all

nodes and all time-slots . Let this bound be . Using (19),
we then have for any

Hence

Let . Since , by choosing ,
we can have

(34)

for all time-slot .
Next, define the Lyapunov function

Note that this Lyapunov function is standard in proving the sta-
bility of maximal-matching [10]. Let

. According to (28) that governs the evolution of , we
can compute the -step drift of as

where

Note that for any link with , we must have
for . Hence, according to

the definition of maximal-matching

(35)

for . Therefore, by letting
, we have

where we have used (34) in the last step. Note that is
bounded by

In other words, whenever is greater than
, the value of must decrease in steps.

This implies that must be bounded for all , and
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hence all must also be bounded for all links and all
time-slots . Specifically, we have

for all and .
Finally, let be the smallest integer that is greater than or

equal to . Suppose for some and
. We must then have

for (36)

According to the definition of maximal-matching, it implies that
(35) holds for all . Using (34) again, we
can show that, because , in time-slots the vir-
tual queues at link and at all links next to will be empty.
This contradicts to (36). Hence, the delay must be
bounded by for all and . Letting , the result
of the lemma then follows with

C. Proof of Theorem 6

We first show that the real queues are bounded. By Lemma 5,
the delay in activating the links is bounded by a number .
Consider (27). Recall that provides an upper bound
on the real queue maintained at node for packets destined to
node . Hence, it suffices to show that is bounded for all
nodes , destinations and time-slots . For any time-slot ,
assuming for all and , we then have

(37)

Since , we have for all

where we have adopted the convention that for all
. Similarly, we have for all

where . We then have for all

From the proof of Theorem 4, we know that is bounded
for all , , and . Let this bound by . Then, using (20), we
must have for any

Substituting into (37), we must have

The first part of the theorem then follows. Furthermore, since
link activations are delayed, the true energy consumption in any
interval is bounded from above by

Hence, the second part of Theorem 6 follows from the second
part of Theorem 4.
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