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Abstract—We consider a scheduled orthogonal frequency di-
vision multiplexed (OFDM) wireless cellular network where the
channels from the base-station to the mobile users undergo flat
fading. Spectral resources are to be divided among the users in
order to maximize total user utility. We show that this problem can
be cast as a nonlinear convex optimization problem, and describe
an � � algorithm to solve it. Computational experiments show
that the algorithm typically converges in around 25 iterations,
where each iteration has a cost that is � �, with a modest
constant. When the algorithm starts from an initial resource
allocation that is close to optimal, convergence typically takes
even fewer iterations. Thus, the algorithm can efficiently track
the optimal resource allocation as the channel conditions change
due to fading. We also show how our techniques can be extended
to solve resource allocation problems that arise in wideband
networks with frequency selective fading and when the utility of a
user is also a function of the resource allocations in the past.

Index Terms—Fast computation, resource allocation, sched-
uling, wireless cellular networks.

I. INTRODUCTION

R ESOURCE allocation in wireless networks is fundamen-
tally different than that in wireline networks due to the

time-varying nature of the wireless channel [1]. There has been
much prior work on scheduling policies in wireless networks to
allocate resources among different flows based on the channels
they see and the flow state [1], [2]. The flow state can consist of
the average rate seen by the flow in the past [3], [4], the delay of
the head-of-line packet [5], or the length of the queue [6]. Much
prior work in this area can be divided into two categories:

1) Scheduling for elastic (non real-time) flows: The end-user
experience for a elastic flow is modeled by a concave
increasing utility function of the rate experienced by the
flow [7]. The proportional fair algorithm (see, for example,
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[8]) where all the resources are allocated to the flow with
the maximum ratio of instantaneous spectral efficiency
(which depends on the channel gain) to the average rate
has been analyzed in [3], [9], [10]; roughly speaking this
algorithm maximizes the sum of log utilities of average
rates over an asymptotically large time horizon. A more
general scheduling rule where potentially multiple users
can be scheduled simultaneously has been considered in
[11], [12]. Most of the above work assumes that the queues
have infinite backlogs, i.e., packets are always available in
the buffers of all the queues; extensions to finite queues are
provided in, for example, [3]. Joint design of scheduling
and congestion control with modeling of queue dynamics
has been considered in, for example, [4], [13]–[15]; in this
case, packets are always assumed to be available at the
congestion controller.

2) Scheduling for Real-Time Flows: Real-time flows are typ-
ically modeled by a predetermined but unknown arrival
process and a delay deadline for each packet. For such
flows, we can roughly define the stability region as fol-
lows: The stability region for a set of queues is defined as
the set of arrival rates at the queues for which there exists
a scheduling policy such that the length of any queue does
not grow without bound over time (see, for example, [16]).
A stabilizing policy is one which ensures that the queue
lengths do not grow without bound. Stabilizing policies
for a vector of arrival rates within the stability region for
different wireless network models have been characterized
in, for example, [5], [6], [16]–[19]. The scheduling policy
in [5] minimizes the percentage of packets lost because of
deadline expiry, while the delay performance of the expo-
nential rule (introduced in [6]) was empirically studied in
[20]. Work on providing throughput guarantees for such
flows includes [21] and [22], and references therein.

We note that policies to schedule a mixture of elastic (non real-
time) and real-time flows have been considered in [20]. Dis-
tributed algorithms for interference management to maximize
the sum utilities of user signal-to-noise ratios (SNR) in cellular
networks have been studied in [23], [24]. Also, related cross-
layer optimization problems for resource allocation in wireless
networks with different objectives have been analyzed in, for ex-
ample, [25]–[27]. Resource allocation algorithms which focus
on maximizing sum rate (without fairness or with minimum rate
guarantees) for OFDM systems include [28]–[32]. The above
summary is only a representative sample of the work in the gen-
eral area of resource allocation in wireless networks. For a more
complete description of prior work, we refer the reader to [2],
[6], and the references therein.

In this paper, we focus on elastic flows with infinite backlogs;
an extension to model constraints of finite backlogs due to con-
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gestion control (which can be modeled as an upper bound on
the bandwidth allocated to a user) is straightforward. We study
the problem of resource allocation in wideband OFDM wireless
cellular networks like Ultra Mobile Broadband (UMB) [33] and
Long Term Evolution path for 3GPP [34]. In particular, we study
the assignment of power and spectral resources to maximize the
sum-utility of the achieved data rates. The user utility can be a
function of instantaneous rate or average rate over time. For both
these cases, the solution in general can result in the distribution
of resources to multiple flows at the same time. We show that
the problem is a convex optimization problem. Hence, it can be
solved in time for users using a general-purpose bar-
rier method (see, for example, [35]). However, the time-varying
nature of wireless channels necessitates recomputation of an op-
timal resource allocation in an online manner. This requires the
design of faster computational algorithms to track the optimal
resource allocation. We exploit the underlying structure of the
problem to derive a specialized barrier method that has a com-
plexity of . We also illustrate the generality of our com-
putational techniques through extensions to frequency selective
fading, where we exploit frequency diversity.

We note that our work focusses on computational algorithms
and is complementary to that in [3], [9]–[11]. The focus of those
papers is on the asymptotic analysis when the user utility is a
function of the rate averaged over a very long time.

A. Organization

The rest of the paper is organized as follows. We first con-
sider the utility for each flow to be a function of the instanta-
neous rate. We describe the mathematical model and problem
formulation, and prove the existence of a unique positive solu-
tion in Section II. We exploit the structure of the underlying op-
timization problem to obtain an algorithm and illustrate its
typical behavior through computational results in Section III. In
Sections IV and V, we consider frequency selective fading and
the case where the utility of a user is a function of its average
rate, respectively. In Section VI, we compare our algorithm with
other standard computational approaches.

II. PROBLEM FORMULATION

A. System Model

We model an OFDM wireless cellular network where spec-
trum and power need to be divided between communication
flows (users) on links in a cell. We formulate an optimization
problem which is applicable to the downlink; as we show later,
extensions to the uplink can be similarly obtained. We assume
an M-Quadrature Amplitude Modulation (MQAM) scheme for
transmission and a total system bandwidth, . Then, the max-
imum rate (in nats/sec) at which a user, , can transmit is given
by

where is the transmit power, is the channel gain over the
link to user , is the bandwidth allocated to user , is

the noise power spectral density, and ,
where BER is the desired (constant) bit error rate [36].

We denote the effective flow rate in nats/s/Hz for user by
, and the fraction of bandwidth allocated to

it by . We denote the associated vectors of rates and
bandwidth-fractions as and , respectively. The
power consumption to support flow rate can be modeled
as

When , the power required is 0. The power consumption
of user as a function of and has the form , where
the function is defined as follows:

if ,
otherwise.

The set is given by

We assume that each cell has a (weighted) total power con-
straint of the form

where is the (weighted) total power, is the
given maximum (weighted) total power, and are the
weights. This constraint can be used to model a sum-power con-
straint, with , for the downlink in a cell. For the uplink,
it can also be used to model the requirement that the total inter-
ference at a neighboring interfering base-station should be kept
below some threshold.1 The weights then represent the power
gains to the neighboring base-station.2 We will normalize the
power constraint by defining the normalized power
by where . The
power constraint is then .

We first observe that is a convex function of and . The
function , defined for , is the perspective
of the exponential function, and so is convex in and (see, e.g.,
[35, Sec. 3.2.6]). The function is obtained from by an affine
composition, and the addition of a linear term, and so is convex.
The total power is therefore also a convex function of
and , and so, the total power constraint is a convex constraint
for .

1In the uplink, some mobiles may be power limited and so, it is necessary to
model the individual power constraint for each link. Since we mainly focus on
the downlink for the rest of the paper, we do not include this in our analysis for
notational simplicity – our techniques can be generalized in a straightforward
manner to allow for such constraints as well.

2In general we can have a total interference budget constraint at more than one
base-station – our analysis extends to this case as well. Also, a total interference
budget constraint is a reasonable way to keep interference low at neighboring
base-stations when the frequency tones in neighboring cells hop randomly and
independently of each other [8]. Setting the interference budgets is out of the
scope of our paper. For the uplink, � now represents the noise plus average
interference power spectral density.

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:10:28 EDT from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MADAN et al.: FAST ALGORITHMS FOR RESOURCE ALLOCATION INWIRELESS CELLULAR NETWORKS 3

B. User Utility Functions

The utility for user is a function of its instantaneous rate,
given by , so the total utility is

We assume that the utility functions are thrice
continuously differentiable with

for all and

Thus, (and therefore also ) is strictly increasing and strictly
concave, and the marginal utility increases without bound as the
rate converges to zero. Examples of common utility functions
satisfying these conditions include and , for .

Note that the above utility function does not take into ac-
count past allocations to users. We consider this extension in
Section V. We show that we can use our computational tech-
niques to efficiently compute a scheduling policy that is a gen-
eralization of the scheduling policy in [3].

C. Maximum Utility Resource Allocation

Our goal is to choose and to maximize the total utility,
subject to the power constraint and the bandwidth-fraction con-
straint:

maximize

subject to

(1)

where denotes the vector with all entries one. The optimiza-
tion variables are and ; the problem data are and the func-
tions . The vector inequalities are componentwise;
means , . For convenience we will define
the feasible set by

We now have the equivalent problem

maximize

subject to (2)

In the following section, we will show that there is a unique
optimal allocation which is achieved at a point with
and . Hence, relaxing these strict inequalities to nonstrict
inequalities, and appropriately interpreting and , does not
change the optimal solution.

The resource allocation problem (2) is a convex optimization
problem, with variables and constraints. Roughly
speaking, this means that its global solution can be efficiently
computed, for example by a general interior-point method.
These methods typically converge in a few tens of iterations;

each iteration in a general-purpose implementation requires
arithmetic operations (see, e.g., [35, Ch. 11] or [37]).

The algorithm we describe in the next section solves the re-
source allocation problem much faster by exploiting its special
structure. The resulting interior point method converges in
about 25 to 30 iterations, where each iteration requires
operations with a modest constant.

D. Existence and Uniqueness of a Positive Solution

In this section, we show that the resource allocation problem
(1) has a unique solution , with and .
We will do this by constructing a sequence of points converging
to the maximum, which must therefore lie in the closure of the
feasible set. We first show the following. (The proofs of the next
three lemmas have been moved to the Appendix .)

Lemma 1: The closure of satisfies .
The interpretation of this result is that allocating zero band-

width-fraction and positive rate to a user requires infinite power.
Hence for every point in the feasible set, we must have

whenever , and in fact this holds for the closure
of the feasible set also.

The next result shows that a point with
for some cannot be optimal. The idea here is that since
has infinite slope at 0, slightly increasing and will give an
increase in utility which outweighs the decrease in the other
rates necessary to maintain the power constraint.

Lemma 2: Suppose is a sequence in with limit

and , with and . Suppose also
that for all either or . If there
is some such that then there exists
such that

The final lemma needed shows that a point with
for some must also have . If this were not the case,
we could decrease to zero, spreading this bandwidth-frac-
tion among the other users, who can use the extra bandwidth-
fraction to increase their rates without increasing their powers,
thus giving a feasible point with larger total utility. Then using
Lemma 2, we can rule out the possibility that a maximizing se-
quence converges to .

Lemma 3: Suppose is a sequence in with limit

and , with and . If there is some
such that , , then there exists such that

We now have the following theorem showing the existence
and uniqueness of the solution.

Theorem 1: There exists a unique with
such that
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Proof: First notice that problem (2) is feasible. That is, the
set is nonempty, since for small enough the choice

, satisfies . Let

Then is finite, since is bounded and is concave. We
must show that this optimal value is actually achieved. Suppose

is a maximizing sequence in , so that
. By extracting a subsequence, we can assume that

converges to a point . Lemma 1 implies this point
lies in and since it is optimal on Lemma 3 implies that

and . Hence the optimal value is achieved in .
Uniqueness now follows from strict concavity of .

III. FAST ONLINE RESOURCE ALLOCATION ALGORITHM

In this section, we describe the barrier method to compute an
optimal resource allocation. Such a method, in general, has com-
plexity . However, we exploit the structure of the problem
to reduce the complexity to .

A. Barrier Method

We use the barrier method to solve the optimization problem
in (2) [35]. The central point for a given value of
the barrier parameter is given by the solution of the following
problem:

minimize

subject to (3)

As increases, becomes a more accurate approx-
imation to the solution to the problem in (2). Note that the
objective function above is convex, and the above problem is
a convex optimization problem. Moreover, the solution to the
above problem is unique. This follows, in particular, from the
positive-definiteness of the Hessian of the objective function,
as argued in Section III-C.

We collect the variables into one vector ,
. Note that we have interleaved

the rate and bandwidth-fraction variables here, so that the
variables associated with a given user are adjacent. Also, we
denote the barrier function as

and

The barrier method is then as follows.

Given strictly feasible starting point , ,
, tolerance .

Repeat
1) Centering Step. Minimize subject to

, starting at .

2) Update. .
3) Stopping Criterion. quit if .
4) Increase . .

B. Newton Method

We now describe the Newton method to compute the central
point , i.e., solve the problem in (3) for a given value of .
The Newton step at , and the associated dual variable are
given by following equations:

(4)

where . For the Newton method, we use
a backtracking line search to ensure an adequate decrease in
(see, e.g., [35, Ch.11] or [38]). The method is then as follows.

Given starting point such that , tolerance ,
, .

Repeat
1) Compute and .
2) Stopping Criterion. quit if
3) Backtracking line search on . .

while ,
.

4) Update. .

C. Fast Computation of Newton Step

We now describe how we can exploit the structure of the
problem to compute the Newton step in time rather than
using matrix inversion in (4) which has a cost of . The
gradient of the barrier function is given by

The Hessian of the barrier function is given by

. . .

Hence, it follows that

. . .
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where the blocks not shown are all zero, and

The gradient, , of is given by

Let us denote

Then we have

. . .

It is easy to show that . Since , it follows
that . Since is a nonzero vector, it follows
that the KKT matrix on the left in (4) is invertible. Also, the
KKT matrix on the left in (4) is the sum of a block-arrow
matrix and a rank-one matrix. We exploit this structure
to compute the Newton step in time. Let us denote

. In particular, we have (see, for
example, [35, Appendix C])

where

(5)

and

We now obtain analytical formulas for and , which can be
computed in time. We consider the computation of in
detail; the computation for is identical. It follows from (5) that

Substituting these back in (5), it follows that

To compute , we first obtain , and then obtain the other
’s. Both these operations cost .

D. Convergence Analysis

We now prove the convergence of the Newton method for this
problem for a given . The convergence of the barrier method
then follows. Consider the minimization of . Define the set
of iterates for the Newton method by , where the
initial point is chosen to be strictly feasible. For the initial
value of , such a point is easy to find by allocating equal band-
width fractions, and powers to users such that the total power
is less than 1, i.e., ; for other iterations of the
barrier method, the solution for the previous value of is guar-
anteed to be strictly feasible. The Newton method is a descent
method, i.e., , for any iteration .

We first consider the following two lemmas, the proofs of
which have been moved to the Appendix .

Lemma 4: For all iterations of the Newton method, is
strictly feasible.

Now, it can be shown that the iterates belong to a closed and
bounded set.

Lemma 5: The set , where for any , , s
are bounded above and bounded away from zero.

Since the KKT matrix on the left in (4) is invertible, and
is a continuous function of , it follows that its inverse is
bounded on the closed set . Also, is a continuously dif-
ferentiable function of and hence, is Lipschitz con-
tinuous on , and is bounded above on . The con-
vergence of the Newton method then follows (see, for example,
[35, Ch. 10]).

A formal complexity analysis (i.e., a bound on the number
of Newton steps required to attain an accurate solution) can be
carried out, but this seems irrelevant to us, given the extremely
fast convergence of the algorithm in practice. A typical number
of steps required is 25, and often less.

E. Warm Start

The Newton method can be initialized with ,
and , where such that is strictly feasible,
i.e., . It can also be initialized with an approximate
solution, such as the solution of a resource allocation problem
that is ’close’. Consider, for example, the situation where we
have computed the optimal resource allocation, and then the
problem changes, but not drastically; for example, the utility
functions change, or the channel parameters change, or the
maximum available power changes. Running the barrier
method starting from the previously computed optimal point and
a larger value of typically cuts the number of iterations re-
quired to 10 to 15. This can be repeated, in order to efficiently
track the optimal resource allocation as the physical parameters
or requirements change.

F. Numerical Results

In this section, we show the typical behavior of the algorithm
described in this paper. We consider a system of
users in a cell. The utility function for user is taken to be

, where are generated as independent uni-
form random variables on . We take , i.e., we
model the sum-power constraint for the downlink.

We first study the convergence of our algorithm for randomly
generated ’s. In particular, we consider each to be randomly
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Fig. 1. Typical convergence of the barrier method. Top. Norm of residual versus
iteration for two different instances. Bottom. Convergence of � � � versus
iteration.

distributed over , i.e., the received signal to noise ratio
(SNR) at the mobile can vary over the large range of to
20 dB. Fig. 1 (top) shows the convergence of the norm of the
residual, versus cumulative Newton iteration, for two different
instances of the problem. The bottom plot shows the conver-
gence of the utility to its optimal value; note that all interme-
diate iterates are feasible. This plot shows that the resource al-
location obtained is close to optimal, from a practical point of
view, within 20 or so Newton iterations. Highly accurate solu-
tions can be obtained in about 30 iterations or so. Both plots are
quite typical; similar results are obtained as and other problem
parameters are varied.

To illustrate warm-start methods, we simulated a wireless net-
work with time-varying fading channels. The resulting sched-
uling policy obtained by solving (1) has the following prop-
erties. Users with a higher average channel gain get more re-
sources on average. Users get allocated more resources when
their instantaneous channel gain is relatively high than when
their instantaneous channel gain is low. In our simulation, each
user’s channel undergoes mutually independent Rayleigh fading
with a Doppler frequency of 5 Hz and mean SNR of 0 dB. Thus,
the channel completely decorrelates after 200 time-steps or so.
We recomputed the optimal resource allocation at every time

Fig. 2. Number of Newton iterations needed for reconvergence with Rayleigh
fading channels. (Top) Number of Newton iterations for reconvergence during
the first 100 time-steps. (Bottom) CDF of number of Newton iterations for re-
convergence over 500 time-steps.

step of 1 ms. Also, the variation in channel gains over time is
very high; the channel can easily swing over a range of 30 dB.

Fig. 2 shows the number of Newton steps required to recon-
verge to a very accurate optimal resource allocation, starting
from the previously computed one. The first computation (from
a generic initial resource allocation) requires 29 cumulative
Newton steps. For the rest of the time-steps we used a larger
value of such that only two centering steps were required
for a guaranteed duality gap of less than . About 80% of
the time, the number of Newton iterations required for recon-
vergence is less than 15. A larger number of Newton iterations
is occasionally required at times when the rate of change of the
channel is high; for example during deep fades.

IV. FREQUENCY SELECTIVE FADING

In this section, we describe an extension to the case where
there are frequency bands such that over a given frequency
band, each user’s channel undergoes flat fading. For example, it
is sufficient to choose the bandwidth of each band to be less than
the minimum coherence bandwidth of the users [39]. Denote
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by , the channel gain on the th frequency band for user .
Similarly, denote the rate and bandwidth for user on the th
frequency band by and , respectively. Then the total rate
allocated to user is

Also, the total (weighted) power consumption is given by

where .
We again would like to compute a resource allocation to

maximize the total utility, i.e., solve the following optimization
problem:

maximize

subject to

(6)

where and are in and denote the vectors of the rates
and the bandwidth-fractions given to the users in frequency
band , respectively.

The analysis to show the existence of a solution and
convergence of the barrier method is similar to that be-
fore. We now illustrate an efficient method to compute
the Newton step during each Newton iteration. Again, we
interleave all the variables into one vector ,

.
The barrier function is given by

Also, denote

where now .
Then, at each iteration of the barrier method, we solve the

following problem using Newton’s method:

maximize

subject to (7)

The Newton step for this problem can be computed through the
solution of the linear equation in (4), where now, is a
matrix give by

...

where is a matrix whose entry is one for
, and all other entries are zero. Now

. . .

where the blocks not shown are all zero, and s are
matrices given by the following:

...

. . .

where

Thus, is the sum of a block diagonal matrix (where the
blocks are 2 2) and a rank one matrix. Hence, can be in-
verted in time. Now, the Hessian of is the sum
of a rank one matrix and a block diagonal matrix with blocks
given by the s, each of which can be inverted in time.
Using the elimination of variables as before, it can be shown that
each Newton iteration can be performed in time – com-
pare this with a general-purpose method which costs .
Thus, the reduction in complexity is huge, especially because in
many systems the number of users, , can be large [33], [34].

V. SCHEDULING ALGORITHMS WITH MEMORY

We now illustrate the application of our computational tech-
niques to design a scheduling heuristic which greedily maxi-
mizes the sum utility of user rates at every time-step. The av-
erage is computed in an online manner using an exponential
filter. This can be used to model the behavior that the end-user
experience is a function of the scheduled rates over multiple
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consecutive time-slots rather than a single scheduling decision.
We focus on the downlink.

A. Utility Functions

The utility for user is a function of its average rate. We con-
sider an exponential averaging filter; in particular the average
rate, , for user is computed at time as follows:

(8)

where is the rate allocated to user at time , and
. Also, we assume all users are initialized with (possibly very

small) nonzero average rates . Then the utility of user
at time is given by , so the total utility is

The assumptions on are the same as those in previous sec-
tions. However, note that now
is well defined for because (and hence,

for all finite ).

B. Resource Allocation

The total (weighted) normalized power consumption when
each user is allocated rate and bandwidth-fraction
is

where and is the
channel gain for the th user at time .

Our goal is to choose and at each time to greedily
maximize the total utility subject to the power constraint and
the total bandwidth constraint. Thus, at each time , we solve
the following resource allocation problem:

maximize

subject to

(9)

The optimization variables are and ; the problem data
are , , and the functions . We refer to the re-
sulting scheduling algorithm as a greedy utility maximization
algorithm. Even though at each time-step, the solution to the
above problem is computed with high accuracy, we study the
resulting scheduler over a longer time horizon only via a numer-
ical experiment. Hence, when viewed over multiple time-steps,
the resulting algorithm is a heuristic.

C. Relation to Asymptotically-Optimal Bandwidth Allocation

Note that when we take to be small enough and restrict
power allocation to be uniform across the entire bandwidth, the
problem in (9) can be approximated as

maximize

subject to

(10)

The above problem is thus essentially an optimization problem
in the s where the objective function is a linear combination
of the s with positive coefficients:

and the constraint is a sum constraint on the s. Hence, a
solution to the above optimization problem is one where all the
bandwidth (and power) is allocated to a user for which

(11)

This scheduling scheme has been widely studied in the litera-
ture. It has been shown that under appropriate assumptions on
the channel gain processes s and when power is uniformly
allocated across the bandwidth, the above bandwidth allocation
scheme (roughly) maximizes the total utility of rates averaged
over a very long time horizon [3]. Hence, we refer to this scheme
as an asymptotically optimal bandwidth allocation scheme.

The above scheduling scheme is a good one for narrowband
systems and when there are few users in the system—it exploits
multiuser diversity well and users get scheduled after relatively
short intervals of time. However, with the advent of fourth gen-
eration wideband systems (e.g., LTE, WiMax, and UMB) we
need to consider schemes which will distribute the resources
among multiple users simultaneously due to the following rea-
sons.

1) Wideband systems can have a total bandwidth of 20 MHz,
and if all the bandwidth is allocated to one user (cell-
phone), the user (cell-phone) may not even have enough
processing power to decode the huge burst of data. In fact,
the UMB spec specifies an upper bound on the amount of
data that can be transmitted to a user in a single time-slot
[33].

2) Fourth generation systems can have thousands of flows per
cell and hybrid ARQ mechanisms. Consider the case where
there are 5000 flows and each time-slot is 1 ms. More-
over, assume that it takes 3 hybrid ARQ transmissions to
transmit a packet. Then if all the flows experience inde-
pendent and identically distributed (i.i.d.) channels, on av-
erage each flow will get scheduled roughly every 15 s—this
is clearly not acceptable for many types of traffic even
when the individual packets do not have strict delay re-
quirements. In many applications (e.g., web browsing), a
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user’s utility, i.e., the end-user experience is a function of
the average rate it sees over a short time horizon in the past
rather than over a very long time horizon. Also, in many
practical systems, this will lead to TCP time-outs because
the long interscheduling time will be interpreted as conges-
tion, thereby deprecating performance.

We note that the problem formulation in (9) is for a general
value of and without any restriction on the power
profile across the total bandwidth.

D. Existence and Uniqueness of Solution to Problem (9)

For convenience we will redefine the feasible set by

We now have the equivalent problem

maximize

subject to (12)

Also, we simplify notation and drop the dependence of the vari-
ables on . And, we denote

(13)

We show that the resource allocation problem (12) has a unique
solution . The proof of the following lemma can be
found in the Appendix .

Lemma 6: The set is closed.
We now have the following theorem showing the existence

and uniqueness of the solution.
Theorem 2: There exists a unique such that

Proof: First notice that problem (12) is feasible. That is,
the set is nonempty, since for small enough the choice

, satisfies . The boundedness of
is easy to see. Since is closed, the supremum is achieved.

Uniqueness follows from strict concavity of .

E. Fast Barrier Method

The barrier method to solve problem (12) is identical to that
in Section III except that the utility function is now given by that
in (13). Hence, using our approach we can solve problem (12)
in time.

F. Numerical Results

We considered a time-varying channel model similar to that
in Section III-F. In particular, we consider 300 users with i.i.d.
Rayleigh fading channels with 25 Hz Doppler and mean gain
of 0 dB. A typical sample path for this channel is shown in
Fig. 3. We again set , where were
generated as independent uniform random variables on .
Also, we set . Thus, if a user, , does not get
scheduled for 100 ms, its average rate, , decays by about
33%. The problem in (9) was resolved every 1 ms.

Fig. 3. Scheduling with memory and log utilities. (Top) Typical sample path of
channel gain. (Bottom) Evolution of utility functions with time for three different
scheduling policies.

In Fig. 3, we plot the utility function as a function of time
(after initial transients) for the following three resource alloca-
tion schemes.

1) Greedy utility maximization: This scheme corresponds to
allocating resources according to the solution of (9) which
is updated every millisecond.

2) Asymptotically-Optimal Bandwidth Allocation: All the
resources are allocated to a single user according to the
scheduling policy in (11).

3) Equal Resource: In this scheme, power and spectrum are
equally distributed among all users at all times.

Since we use log utilities for our computations, the difference
in utilities is a reasonable metric for comparison (vs. ratios of
utilities which can change a lot depending on the units of s).
Also, note that the large negative values for the total utility are
because we consider normalized rates s, and so
always. We see that the net utility for the asymptotically op-
timal bandwidth allocation algorithm is lower than that for the
greedy utility maximization algorithm—this is to be expected
because the asymptotically optimal bandwidth allocation algo-
rithm is designed for (a) very large time constants, i.e., small
values of , and (b) when the power allocation is restricted to
be uniform across the entire bandwidth. In fact, the equal re-
source allocation algorithm outperforms the asymptotically-op-
timal bandwidth allocation algorithm.

We show the evolution of the average rate of a single user
in Fig. 4. At any time , the increase in average rate is due
to resources allocated to that user, while the decay is due to
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Fig. 4. Evolution of single user’s average rate for three different resource allo-
cation schemes.

the exponential averaging when no resources are allocated. We
can see that the greedy utility maximization scheme dominates
the equal resource scheme—this is because the equal resource
scheme does not take advantage of (a) multiuser diversity by al-
locating more resources to users which have strong channels at
any given time, and (b) the knowledge of difference in the co-
efficients ’s in the sum utility function. Also, for most of the
time, the greedy utility maximization scheme has a higher av-
erage rate than that for the asymptotically optimal bandwidth
allocation scheme. This is because the asymptotically-optimal
bandwidth allocation scheme allocates resources to only a single
user at a time and the resource allocations for a given user are
separated by larger times.

VI. DISCUSSION: COMPARISON WITH OTHER COMPUTATIONAL

METHODS

Many resource allocation problems in wireless networks are
either convex or can be approximated by convex problems (e.g.,
[25], [26], and [40]). While a general interior point method can
be used to solve these problems, in many cases it is possible to
exploit the structure of the optimization problem to obtain fast
and/or distributed algorithms. Next, we compare our approach
with two other such approaches.

A. Dual Subgradient Method

The subgradient method (applied to the dual) can also be
used to solve the optimization problem (1) (see [23] for such
a method for CDMA systems). Such a method has an economic
interpretation where the dual variables act as prices for vio-
lating constraints [7]. However, the rate of convergence of this
method is highly dependent on the various condition numbers
in the problem, and it will typically converge much more slowly
than the algorithm presented here. Moreover, each iteration of
the subgradient method also has complexity, which is the
same as that for our method. Unlike the subgradient approach,
the fast convergence of our method enables it to be used for
fading channels, as the number of iterations required for recon-
vergence after a warm start is small. However, we note that the

subgradient method can be used to derive (typically slow) dis-
tributed algorithms for resource allocation problems in an adhoc
wireless network (e.g., [27]), or the Internet [7]; for such prob-
lems exploiting the structure in the computation of the Newton
step is typically not possible. Dual decomposition, primal de-
composition, or joint primal-dual decomposition can be used
(e.g., [14]).

B. Waterfilling

For the special case of log-utility functions, a waterfilling al-
gorithm can be obtained to solve the problem (1), where during
each iteration, we adjust a dual variable and recompute and

. This is similar to the waterfilling algorithm to compute the
capacity of a wireless channel—see, for example, [39, Ch. 4].
While this might appear to be a better algorithm, the complexity
of this method is quite similar to the complexity of the barrier
method described in this paper. In both algorithms: 1) each iter-
ation has a cost that is ; 2) around 10–25 or so steps are
needed to solve the problem; and 3) a good initial condition
gives convergence within fewer steps. We also note that the wa-
terfilling approach can be used to solve the problem in [23].

VII. CONCLUSION

In this paper, we derived an efficient optimization algorithm
to compute the optimal resource allocation in the downlink of
an OFDM wireless cellular network. We showed that our algo-
rithm converges to the optimal solution and has a complexity
of for users. Numerical results show that our algorithm
converges very fast in practice. Thus, our algorithm can be
implemented in an online manner even for OFDM networks
with high-resource granularity. Extension to frequency selec-
tive fading and an application to scheduling algorithms with
memory are also discussed.

APPENDIX

Proof [Lemma 1]: Suppose is a sequence of points
in converging to . Now suppose is such that

, and . Then we have
and hence also tends to infinity, contradicting the as-
sumption that .

Proof [Lemma 2]: If then we are
done. Suppose not, and let . For define

by

if
otherwise.

Then for all . Also define by

if
otherwise

where and . For sufficiently large we have
for all
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Pick such a . Hence

and therefore for sufficiently small

and hence for sufficiently small we have
and hence . Now we have

Now if , as we have

and if then as

Hence for sufficiently small

as desired.
Proof [Lemma 3]: If then we are

done. Suppose not, and let . Define
by

if

otherwise.

Then and . For any we have

if

If then for some we have and hence
. Also clearly if then .

Now for define by

if and
otherwise.

Since is continuous, there exists sufficiently small so
that . Pick such an . Then since is increasing
we have

Now either and , in which case the proof is com-
plete, or there is some such that . In this
case the conditions of Lemma 2 hold, and this then gives the
desired result.

Proof [Lemma 4]: is strictly feasible by assumption.
Now we use induction to prove the lemma.

Consider iteration , and assume that
is strictly feasible. Denote the Newton step by .

Now, let be the minimum value of such that for some , we
have or , or

. Thus, is the minimum value of
for which is not strictly feasible.
We claim that as , ,
i.e., the step length returned by the line search algorithm is less
than , which implies that the th iterate is strictly feasible.

Note that and are finite for all
. Now assume that . Then is upper

bounded. Similarly and
are upper bounded for all . Also,

is upper bounded by 1. Hence, it follows from the def-
inition of that that as ,

, as claimed above.
Proof [Lemma 5]: For all , . By the

above lemma, all iterates are strictly feasible. Since for
all , the s are bounded above by 1, which implies
that is bounded above. Also, for
all , i.e., is bounded above by zero.
Since is an increasing function of the s and decreasing
function of the s, and for all , it follows that

s are bounded above by a constant for all . This also
implies that is bounded above by some for .

Now, we show that s and s are bounded away from zero
for all . To see this, first note that , ,

, and are all bounded above for all
. Thus, it follows that as or

for any . Then, the claim follows since the Newton
method is a descent method, i.e.,
for any iteration .

Proof [Lemma 6]: We show that the complement of , i.e.,
is open. Note that is the union of the following sets:

It is easy to see that and are open. Since, the union of
open sets is open, it is sufficient to show that
is open. To do this, consider a point .
Hence, either or or – in
each of these cases there exists an –ball around which is
contained in .
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