
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Minimizing Delay and Maximizing Lifetime for
Wireless Sensor Networks With Anycast

Joohwan Kim, Student Member, IEEE, Xiaojun Lin, Member, IEEE, Ness B. Shroff, Fellow, IEEE, and Prasun Sinha

Abstract—In this paper, we are interested in minimizing the
delay and maximizing the lifetime of event-driven wireless sensor
networks for which events occur infrequently. In such systems,
most of the energy is consumed when the radios are on, waiting
for a packet to arrive. Sleep–wake scheduling is an effective mech-
anism to prolong the lifetime of these energy-constrained wireless
sensor networks. However, sleep–wake scheduling could result in
substantial delays because a transmitting node needs to wait for
its next-hop relay node to wake up. An interesting line of work
attempts to reduce these delays by developing “anycast”-based
packet forwarding schemes, where each node opportunistically
forwards a packet to the first neighboring node that wakes up
among multiple candidate nodes. In this paper, we first study how
to optimize the anycast forwarding schemes for minimizing the
expected packet-delivery delays from the sensor nodes to the sink.
Based on this result, we then provide a solution to the joint control
problem of how to optimally control the system parameters of
the sleep–wake scheduling protocol and the anycast packet-for-
warding protocol to maximize the network lifetime, subject to
a constraint on the expected end-to-end packet-delivery delay.
Our numerical results indicate that the proposed solution can
outperform prior heuristic solutions in the literature, especially
under practical scenarios where there are obstructions, e.g., a lake
or a mountain, in the coverage area of the wireless sensor network.

Index Terms—Anycast, delay, energy-efficiency, sensor network,
sleep–wake scheduling.

I. INTRODUCTION

R ECENT advances in wireless sensor networks have re-
sulted in a unique capability to remotely sense the envi-

ronment. These systems are often deployed in remote or hard-to-
reach areas. Hence, it is critical that such networks operate unat-
tended for long durations. Therefore, extending network life-
time through the efficient use of energy has been a key issue in
the development of wireless sensor networks. In this paper, we

Manuscript received August 16, 2008; revised April 02, 2009; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Das. This work
supported in part by the National Science Foundation through awards
CNS-0626703, CNS-0721477, CNS-0721434, and CCF-0635202 and by
ARO MURI awards W911NF-07-10376 (SA08-03) and W911NF-08-1-0238.
An earlier version of this paper has appeared in the Proceedings of IEEE
INFOCOM 2008 [1].

J. Kim and X. Lin are with School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: jhkim@purdue.edu;
linx@purdue.edu).

N. B. Shroff is with Department of Electrical and Computer Engineering and
Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210 USA (e-mail: shroff@ece.osu.edu).

P. Sinha is with Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH 43210 USA (e-mail: prasun@cse.ohio-state.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2009.2032294

focus on event-driven asynchronous sensor networks with low
data rates, where events occur rarely. This is an important class
of sensor networks that has many applications such as envi-
ronmental monitoring, intrusion detection, etc. In such systems,
there are four main sources of energy consumption: energy re-
quired to keep the communication radios on; energy required
for the transmission and reception of control packets; energy
required to keep sensors on; and energy required for data trans-
mission and reception. The fraction of total energy consumption
for data transmission and reception is relatively small in these
systems because events occur so rarely. The energy required
to sense events is usually a constant and cannot be controlled.
Hence, the energy expended to keep the communication system
on (for listening to the medium and for control packets) is the
dominant component of energy consumption, which can be con-
trolled to extend the network lifetime. Thus, sleep–wake sched-
uling becomes an effective mechanism to prolong the lifetime
of energy-constrained event-driven sensor networks. By putting
nodes to sleep when there are no events, the energy consump-
tion of the sensor nodes can be significantly reduced.

Various kinds of sleep–wake scheduling protocols have been
proposed in the literature. Synchronized sleep–wake scheduling
protocols have been proposed in [2]–[6]. In these protocols,
sensor nodes periodically or aperiodically exchange synchro-
nization information with neighboring nodes. However, such
synchronization procedures could incur additional communica-
tion overhead and consume a considerable amount of energy.
On-demand sleep–wake scheduling protocols have been pro-
posed in [7] and [8], where nodes turn off most of their cir-
cuitry and always turn on a secondary low-powered receiver to
listen to “wake-up” calls from neighboring nodes when there is a
need for relaying packets. However, this on-demand sleep–wake
scheduling can significantly increase the cost of sensor motes
due to the additional receiver. In this paper, we are interested
in asynchronous sleep–wake scheduling protocols such as those
proposed in [9]–[11]. In these protocols, each node wakes up in-
dependently of neighboring nodes in order to save energy. How-
ever, due to the independence of the wake-up processes, addi-
tional delays are incurred at each node along the path to the sink
because each node needs to wait for its next-hop node to wake
up before it can transmit the packet. This delay could be unac-
ceptable for delay-sensitive applications, such as fire detection
or a tsunami alarm, which require the event reporting delay to
be small.

Prior work in the literature has proposed the use of any-
cast packet-forwarding schemes (also called opportunistic
forwarding schemes) to reduce this event reporting delay
[12]–[20]. Under traditional packet-forwarding schemes, every
node has one designated next-hop relaying node in the neigh-
borhood, and it has to wait for the next-hop node to wake up

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

when it needs to forward a packet. In contrast, under anycast
packet-forwarding schemes, each node has multiple next-hop
relaying nodes in a candidate set (we call this set the forwarding
set) and forwards the packet to the first node that wakes up
in the forwarding set. It is easy to see that, compared to the
basic scheme in [9]–[11], anycast clearly reduces the expected
one-hop delay. For example, assuming that there are nodes in
the forwarding set, and that each node wakes up independently
according to the Poisson process with the same rate, then
anycast can result in a -fold reduction in the expected one-hop
delay.

However, anycast does not necessarily lead to the minimum
expected end-to-end delay because a packet can still be relayed
through a time-consuming routing path. Therefore, the first
challenge for minimizing the expected end-to-end delay is
to determine how each node should choose its anycast for-
warding policy (e.g., the forwarding set) carefully. The work in
[12]–[14] proposes heuristic anycast protocols that exploit the
geographical distance to the sink node. The work in [15] and
[16] considers MAC-layer anycast protocols that work with the
separate routing protocols in the network layer. However, these
solutions are heuristic in nature and do not directly minimize
the expected end-to-end delay. The algorithms in [17]–[20] use
the hop-count information (i.e., the number of hops for each
node to reach the sink) to minimize some state-dependent cost
(delay) metric along the possible routing paths. However, these
algorithms do not directly apply to asynchronous sleep–wake
scheduling, where each node does not know the wake-up
schedule of neighboring nodes when it has a packet to forward.
(In Section V, we will introduce another hop-count-based
algorithm inspired by the idea in [19] and [20].)

The second challenge stems from the fact that good perfor-
mance cannot be obtained by studying the anycast forwarding
policy in isolation. Rather, it should be jointly controlled with
the parameters of sleep–wake scheduling (e.g., the wake-up rate
of each node). Note that the latter will directly impact both
network lifetime and the packet-delivery delay. Hence, to op-
timally tradeoff network lifetime and delay, both the wake-up
rates and the anycast packet-forwarding policy should be jointly
controlled. However, such interactions have not been systemat-
ically studied in the literature [12]–[20].

In this paper, we address these challenges. We first inves-
tigate the delay-minimization problem: given the wake-up
rates of the sensor nodes, how to optimally choose the anycast
forwarding policy to minimize the expected end-to-end delay
from all sensor nodes to the sink. We develop a low-complexity
and distributed solution to this problem. We then formulate
the lifetime maximization problem: given a constraint on the
expected end-to-end delay, how to maximize the network life-
time by jointly controlling the wake-up rates and the anycast
packet-forwarding policy. We show how to use the solution
to the delay-minimization problem to construct an optimal
solution to the lifetime-maximization problem for a specific
definition of network lifetime.

Before we present the details of our problem formulation
and the solution, we make a note regarding when the anycast
protocols and the above optimization algorithms are applied.
We can view the lifetime of an event-driven sensor network as
consisting of two phases: the configuration phase and the oper-
ation phase. When nodes are deployed, the configuration phase

begins, during which nodes optimize the control parameters
of the anycast forwarding policy and their wake-up rates. It is
during this phase that the optimization algorithms discussed
in the last paragraph will be executed. In this phase, sensor
nodes do not even need to follow asynchronous sleep–wake
patterns. After the configuration phase, the operation phase
follows. In the operation phase, each node alternates between
two subphases, i.e., the sleeping subphase and the event-re-
porting subphase. In the sleeping subphase, each node simply
follows the sleep–wake pattern determined in the configuration
phase, waiting for events to occur. Note that since we are
interested in asynchronous sleep–wake scheduling protocols,
the sensor nodes do not exchange synchronization messages
in this sleeping subphase. Finally, when an event occurs, the
information needs to be passed on to the sink as soon as pos-
sible, which becomes the event-reporting subphase. It is in this
event reporting subphase when the anycast forwarding protocol
is actually applied, using the control parameters chosen during
the configuration phase. Note that the configuration phase
only needs to be executed once because we assume that the
fraction of energy consumed due to the transmission of data
is negligible. However, if this is not the case, the transmission
energy will play a bigger role in reducing the residual energy
at each node in the network. In this case, as long as the fraction
of energy consumed due to data transmission is still small (but
not negligible), the practical approach would be for the sink to
initiate a new configuration phase after a long time has passed.

The rest of this paper is organized as follows. In Section II, we
describe the system model and introduce the delay-minimiza-
tion problem and the lifetime-maximization problem that we in-
tend to solve. In Section III, we develop a distributed algorithm
that solves the delay-minimization problem. In Section IV, we
solve the lifetime-maximization problem using the preceding
results. In Section V, we provide simulation results that illus-
trate the performance of our proposed algorithm compared to
other heuristic algorithms in the literature.

II. SYSTEM MODEL

We consider a wireless sensor network with nodes. Let
denote the set of all nodes in the network. Each sensor node is in
charge of both detecting events and relaying packets. If a node
detects an event, the node packs the event information into a
packet and delivers the packet to a sink via multihop relaying.
We assume that every node has at least one such multihop path
to the sink. We also assume that there is a single sink. However,
the analysis can be generalized to the case with multiple sinks
(see [21, Subsection III-D]).

We assume that the sensor network employs asynchronous
sleep–wake scheduling to improve energy efficiency, and
nodes choose the next-hop node and forward the packet to the
chosen node using the following basic sleep–wake scheduling
protocol. This basic protocol generalizes typical asynchronous
sleep–wake scheduling protocols in [9]–[11] to account for
anycast. For ease of exposition, in this basic protocol, we
assume that there is a single source that sends out event-re-
porting packets to the sink. This is the most likely operating
mode because when nodes wake up asynchronously and with
low duty-cycles, the chance of multiple sources generating
event-reporting packets simultaneously is small. Furthermore,
this basic protocol ignores the detailed effects of collision.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 3

(We can extend this basic protocol to account for the case of
collisions by multiple senders (including hidden terminals)
or by multiple receivers. The detailed protocol is provided
in Section V of our online technical report [21].) The sensor
nodes sleep for most of the time and occasionally wake up for
a short period of time . When a node has a packet for
node to relay, it will send a beacon signal and an ID signal
(carrying the sender information) for time periods and ,
respectively, and then hear the medium for time period .
If the node does not hear any acknowledgment signal from
neighboring nodes, it repeats this signaling procedure. When a
neighboring node wakes up and senses the beacon signal, it
keeps awake, waiting for the following ID signal to recognize
the sender. When node wakes up in the middle of an ID
signal, it keeps awake, waiting for the next ID signal. If node
successfully recognizes the sender, and it is a next-hop node
of node , it then communicates with node to receive the
packet. Node can then use a similar procedure to wake up its
own next-hop node. If a node wakes up and does not sense a
beacon signal or ID signal, it will then go back to sleep. In this
paper, we assume that the time instants that a node wakes up
follow a Poisson random process with rate . We also assume
that the wake-up processes of different nodes are independent.
The independence assumption is suitable for the scenario in
which the nodes do not synchronize their wake-up times, which
is easier to implement than the schemes that require global
synchronization [3]–[5]. The advantage of Poisson sleep–wake
scheduling is that, due to its memoryless property, sensor nodes
are able to use a time-invariant optimal policy to maximize the
network lifetime (see the discussion at the end of Section III-B).
While the analysis in this paper focuses on the case when the
wake-up times follow a Poisson process, we expect that the
methodology in the paper can also be extended to the case
with non-Poisson wake-up processes, with more technically
involved analysis.

A well-known problem of using sleep–wake scheduling in
sensor networks is the additional delay incurred in transmitting
a packet from source to sink because each node along the trans-
mission path has to wait for its next-hop node to wake up. To
reduce this delay, we use an anycast forwarding scheme as de-
scribed in Fig. 1. Let denote the set of nodes in the trans-
mission range of node . Suppose that node has a packet, and
it needs to pick up a node in its transmission range to relay
the packet. Each node maintains a list of nodes that node in-
tends to use as a forwarder. We call the set of such nodes the
forwarding set, which is denoted by for node . In addition,
each node is also assumed to maintain a list of nodes that use
node as a forwarder (i.e.,). As shown in Fig. 1, node
starts sending a beacon signal and an ID signal successively. All
nodes in can hear these signals, regardless of whom these sig-
nals are intended for. A node that wakes up during the beacon
signal or the ID signal will check if it is in the forwarding set
of node . If it is, node sends one acknowledgment after the
ID signal ends. After each ID signal, node checks whether
there is any acknowledgment from the nodes in . If no ac-
knowledgment is detected, node repeats the beacon-ID-sig-
naling and acknowledgment-detection processes until it hears
one. On the other hand, if there is an acknowledgment, it may
take additional time for node to identify which node acknowl-
edges the beacon-ID signals, especially when there are multiple

Fig. 1. System model.

nodes that wake up at the same time. Let denote the resolution
period, during which time node identifies which nodes have
sent acknowledgments. If there are multiple awake nodes, node
chooses one node among them that will forward the packet.
After the resolution period, the chosen node receives the packet
from node during the packet transmission period , and then
starts the beacon-ID-signaling and acknowledgment-detection
processes to find the next forwarder. Since nodes consume en-
ergy when awake, should be as small as possible. How-
ever, if is too small, a node that wakes up right after an ID
signal could return to sleep before the following beacon signal.
In order to avoid this case, we set , where

is a small amount of time required for a node to detect
signal in the wireless medium. In the rest of the paper, we as-
sume that is negligible compared to .

A. Anycast Forwarding and Sleep–Wake Scheduling Policies

In this model, there are three control variables that affect
the network lifetime and the end-to-end delay experienced by
a packet: wake-up rates, forwarding sets, and priority.

1) Wake-Up Rates: The sleep–wake schedule is determined
by the wake-up rate of the Poisson process with which each
node wakes up. If increases, the expected one-hop delay
will decrease, and so will the end-to-end delay of any routing
paths that pass through node . However, a larger wake-up rate
leads to higher energy consumption and reduced network life-
time.

In the rest of the paper, it is more convenient to work with the
notion of awake probability, which is a function of . Suppose
that node sends the first beacon signal at time 0, as in Fig. 1.
If no nodes in have heard the first beacon and ID
signals, then node transmits the th beacon and ID signal in
the time-interval

. For a neighboring node to hear the th signals
and to recognize the sender, it should wake up during

.
Therefore, provided that node is sending the th signal, the
probability that node wakes up and hears this signal is

(1)

We call the awake probability of node .
Remarks: Due to the memoryless property of a Poisson

process, is the same for each beacon-ID signaling iteration,
.1
Note that there is a one-to-one mapping between the awake

probability and the wake-up frequency . Hence, the awake

1To hear the first ID signal, the neighboring node � should wake-up during
��� � � �, which results in a smaller awake probability � � ���

than (1). For simplicity of analysis, we can set the duration of the first beacon
signal to � � � so that the awake probability is consistent at all beacon-ID
signals.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

probability is also closely related to both delay and energy con-
sumption. Let represent the global awake prob-
ability vector.

2) Forwarding Sets: The forwarding set is the set of can-
didate nodes chosen to forward a packet at node . In principle,
the forwarding set should contain nodes that can quickly de-
liver the packet to the sink. However, since the end-to-end delay
depends on the forwarding set of all nodes along the possible
routing paths, the optimal choices of forwarding sets of these
nodes are correlated. We use a matrix to represent the for-
warding set of all nodes collectively, as follows:

where if is in node ’s forwarding set, and
otherwise. We call this matrix the forwarding matrix. Recip-
rocally, we define as the forwarding set of node under
forwarding matrix , i.e., . We let

denote the set of all possible forwarding matrices.
With anycast, a forwarding matrix determines the paths that

packets can potentially traverse. Let be the directed graph
with the set of vertices and the set of edges

. If there is a path in that
leads from node to node , we say that node is connected
to node under the forwarding matrix . Otherwise, we call it
disconnected from node . An acyclic path is the path that does
not traverse any node more than once. If has any cyclic
path, we call it a cyclic graph; otherwise, we call it an acyclic
graph.

3) Priority: Let denote the priority of node from the
viewpoint of node . Then, we define the priority assignment
of node as , where each node
is assigned a unique number from , and
for nodes . When multiple nodes send an acknowledg-
ment after the same ID signal, the source node will pick the
highest-priority node among them as a next-hop node. Although
only the nodes in a forwarding set need priorities, we assign
priorities to all nodes to make the priority assignment an inde-
pendent control variable from forwarding matrix . Clearly, the
priority assignments of nodes will also affect the expected delay.
In order to represent the global priority decision, we next define
a priority matrix as follows:

We let denote the set of all possible priority matrices.
Among the three control variables, we call the combination of

the forwarding and priority matrices the anycast packet-
forwarding policy (or simply an anycast policy) because these
variables determine how each node chooses its next-hop node.
We also call the awake probability vector the sleep–wake sched-
uling policy because this variable affects when each node wakes
up.

Remarks: Throughout this paper, we assume that the values
of , , and in Fig. 1 are given. In practice, these values
should be chosen as small as possible (subject to practical con-
straints) in order for the sending node to have more frequent
decision-making opportunities.

B. Anycast Objectives and Performance Metrics

In this subsection, we define the performance objectives of
the anycast policy and the sleep–wake scheduling policy that
we intend to optimize. We remind the readers that, although the
sleep–wake patterns and the anycast forwarding policy are ap-
plied in the operation phase of the network, their control param-
eters are optimized in the configuration phase.

1) End-to-End Delay: We define the end-to-end delay as the
delay from the time when an event occurs to the time when the
first packet due to this event is received at the sink. We mo-
tivate this performance objective as follows: For applications
where each event only generates one packet, the above defi-
nition clearly captures the delay of reporting the event infor-
mation. For those applications where each event may generate
multiple packets, we argue that the event reporting delay is still
dominated by the delay of the first packet. This is the case be-
cause once the first packet goes through, the sensor nodes along
the path can stay awake for a while. Hence, subsequent packets
do not need to incur the wake-up delay at each hop, and thus
the end-to-end delay for the subsequent packets is much smaller
than that of the first packet.

When there is only one source generating event-reporting
packets, the end-to-end delay of the first packet can be de-
termined as a function of the anycast policy and the
sleep–wake scheduling policy . One may argue that it may
be desirable to design protocols that can potentially reduce the
end-to-end delay by adjusting the anycast policy dynamically
after the event occurs, e.g., according to traffic density. How-
ever, this dynamic adjustment is not possible for the first packet
because when the first packet is being forwarded, the sensor
nodes have not woken up yet. Hence, to forward the first packet
to the sink, the sensor nodes must use some preconfigured
policies determined in the configuration phase (we remind the
readers about the discussion of different phases at the end of
the introductory section). After the first packet is delivered to
the sink, the sensor nodes along the path to the sink have woken
up. Thereafter, they are able to adapt their control policies
dynamically, e.g., according to the traffic density. In this paper,
since we are mostly interested in reducing the delay of the first
packet, these dynamic adaptive policies are outside the scope of
our paper. In other words, we mainly focus on the optimization
of the anycast policy and the sleep–wake scheduling policy at
the initial configuration phase.

Based on the preceding discussion, we define the end-to-end
delay as the delay incurred by the first packet. Given , , and

, the stochastic process with which the first packet traverses the
network from the source node to the sink is completely specified
and can be described by a Markov process with an absorbing
state that corresponds to the state that a packet reaches the sink.
We define as the expected end-to-end delay for a
packet from node to reach sink when the awake probability
vector and anycast policy are given. Since sink is
the destination of all packets, the delay of packets from sink is
regarded as zero, i.e., , regardless of , , and

. If node is disconnected from sink under the forwarding
matrix , packets from the node cannot reach sink . In this
case, the end-to-end delay from such a node is regarded as
infinite, i.e., . From now on, we call “the
expected end-to-end delay from node to sink ” simply “the
delay from node .”

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 5

Our first objective is to solve the following delay-minimiza-
tion problem:

(2)

This problem is to find the optimal anycast forwarding policy
) that can minimize the delay from node for given asyn-

chronous sleep–wake scheduling policy (i.e., given wake-up
rates). In Section III, we develop an algorithm that completely
solves this problem for all nodes , i.e., our solution minimizes
the delays from all nodes simultaneously.

2) Network Lifetime: We now introduce the second perfor-
mance metric, the network lifetime, and the corresponding life-
time-maximization problem (subject to delay constraints). Let

denote the energy available to node . We assume that node
consumes units of energy each time it wakes up. We de-
fine the expected lifetime of node as . Note that im-
plicitly in this definition of lifetime we have chosen not to ac-
count for the energy consumption by data transmission. As men-
tioned in the introductory section, this is a reasonable approxi-
mation for event-driven sensor networks in which events occur
very rarely because the energy consumption of the sensor nodes
is dominated by the energy consumed during the sleep–wake
scheduling. For example, the IEEE 802.15.4-based low-pow-
ered sensor modules on IRIS sensor nodes consume 19.2 mW of
power while awake (i.e., in an active mode) and 40.8 mW when
transmitting at 250 kbps [22]. Assume that nodes stay awake
only 1% of the time, and each node has to deliver 50 MB of in-
formation per year on average. Then, in a year, the total amount
of energy consumed by a sensor node to just wake up is about
6054.9 s days/year h/day min/h s/min

mW .2 In contrast, the energy consumption due to
packet transmission for a year is about 66.8 W s MB

kB/MB bits/byte kbps mW , which is only
1% of the energy consumption due to waking up.

By introducing the power consumption ratio , we
can express the lifetime of node as

(3)

Here, we have used the definition of the awake probability
from (1).

We define network lifetime as the shortest lifetime of all
nodes. In other words, the network lifetime for a given awake
probability vector is given by

(4)

Based on the above performance metrics, we present the life-
time-maximization problem (which is the second problem we
intend to solve in this paper) as follows:

2Note that this amount of energy is within the range of capacity of two typical
1500 mAh AA batteries �����mA �h������V � ���W �h � �����W �s	.

where is the maximum allowable delay. The objective of the
above problem is to choose the anycast and sleep–wake sched-
uling policies that maximize the network lifetime and
also guarantee that the expected delay from each node to sink
is no larger than the maximum allowable delay .

Remarks: The lifetime definition in (4) is especially useful in
dealing with the most stringent requirement for network lifetime
such that all nodes must be alive to carry out the functionality of
the sensor network [23]–[25]. In Section IV, we solve the life-
time-maximization problem with the lifetime definition in
(4), using the solution of the delay-minimization problem as a
component. Specifically, for any given , it would be desirable to
use an anycast policy that minimizes the delay. Hence,
the solution to the delay-minimization problem will likely be
an important component for solving the lifetime-maximization
problem, which is indeed the case in the solution that we pro-
vide in Section IV. There are application scenarios where alter-
nate definitions of network lifetime could be more suitable, e.g.,
when the sensor network can be viewed as operational even if
a certain percentage of nodes are dead. We believe that a sim-
ilar methodology can also be used for other lifetime definitions,
which we leave for future work.

III. MINIMIZATION OF END-TO-END DELAYS

In this section, we consider how each node should choose its
anycast policy to minimize the delay , when
the awake probabilities are given. Then, in Section IV, we
relax the fixed awake-probability assumption to solve Problem

.
The delay-minimization problem is an instance of the sto-

chastic shortest path (SSP) problem [26, ch. 2], where the sensor
node that holds the packet corresponds to the “state,” and the
delay corresponds to the “cost” to be minimized. The sink then
corresponds to the terminal state, where the cost (delay) is not
incurred anymore. Let be the sequence of nodes
that successively relay the packet from the source node to
sink node . Note that the sequence is random because at each
hop, the first node in the forwarding set that wakes up will be
chosen as a next-hop node. If the packet reaches sink after
hops, we have for . Let be the ex-
pected one-hop delay at node under the anycast policy ,
that is, the expected delay from the time the packet reaches
node to the time it is forwarded to the next-hop node. Then,
the end-to-end delay from node can be expressed
as .

In this section, we solve the delay minimization problem
using a Dynamic Programming approach. Our key contribution
is to exploit the inherent structure of the problem to greatly
reduce the complexity of the solution. We start with the rela-
tionship between the delays of neighboring nodes.

A. Local Delay Relationship

We first derive a recursive relationship for the delay,
. When node has a packet, the probability

that the neighboring node becomes a forwarder right after the
th beacon-ID signals is equal to the probability that no nodes

in have woken up for the past beacon-ID-signaling

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

iterations, and that node wakes up at the th beacon-ID sig-
nals while all nodes with a higher priority than node remain
sleeping at the th iteration, i.e.,

Conditioned on this event, the expected delay from node to
sink is given by ,
where the sum of the first three terms is the one-hop delay, and
the last term is the expected delay from the next-hop node to
the sink (see Fig. 1). For ease of notation, we define the iteration
period and the data transmission period

. We can then calculate the probability that
the packet at node will be forwarded to node as follows:

(5)
Similarly, we can also calculate the expected one-hop delay

at node as follows:

(6)

Using the above notations, we can express the expected delay
of node for given awake probability vector , for-

warding matrix , and priority matrix as follows:3

(7)

(8)

We call (8) the local delay relationship, which must hold for
all nodes except the sink . Recall that re-
gardless of the delay of the neighboring nodes. Note that from
(5) and (6), the anycast policies of other nodes do not affect the
one-hop delay and the probability of
node . Hence, we can rewrite the local delay relationship using
the following delay function that is only affected by the any-
cast policy of node : For given delay values ,
forwarding set , and priority assignment , let

(9)

3This equation and the analysis that follows ignore the delay for resolving
the collision when multiple nodes send an acknowledgment after the same
beacon-ID signal. Such an assumption leads to tractable analysis and is
reasonable when the beacon-ID interval � is short and hence the chances that
multiple nodes wake up at the same beacon-ID signal are low. Readers can
refer to [21, Sec. V] for how to deal with collisions.

We call the function the local delay function. With
the local delay function, we can express the local delay re-
lationship (8) as , where

.
Let be the minimal expected delay from node

to the sink for given awake probabilities , i.e.,
. Then, we can find the optimal anycast

policy that achieves for all nodes using the value-itera-
tion algorithm [26, Section 1.3] as follows:4

Value-Iteration Algorithm

Initially, every node sets its delay value , and the
sink sets . At each iteration , each node
updates its delay value by solving

(10)

where . Let be the
corresponding solution of (10).

As we will show later, the value-iteration algorithm will con-
verge to the minimum delay values , and we can obtain
the stationary optimal anycast policy. For this value iteration
method to work, we will need an efficient methodology to solve
(10). Note that since there are possible choices of , where

is the number of neighboring nodes of node , an exhaus-
tive search to solve (10) will have an exponential computational
complexity. In the next subsection, we will develop a procedure
with only linear complexity.

B. The Optimal Forwarding Set and Priority Assignment

In this subsection, we provide an efficient algorithm for the
value iteration. For ease of exposition, let denote the delay
value of node at the -th iteration, and let

. Our goal is to find the anycast policy of node that
minimizes .

We first show that in order to minimize , the optimal
priority assignment can be completely determined by the
neighboring delay vector .

Proposition 1: Let be the priority assignment that gives
higher priorities to neighboring nodes with smaller delays, i.e.,
for each pair of nodes and that satisfy , the in-
equality holds. Then, for any given , we have

for all possible .
The detailed proof is provided in Appendix A. The intuition

behind Proposition 1 is that when multiple nodes send acknowl-
edgments, selecting the node with the smallest delay should
minimize the expected delay. Therefore, priorities must be
assigned to neighboring nodes according to their (given) delays

, independent of the awake probabilities and forwarding
sets. In the sequel, we use to denote the optimal priority
assignment for given neighboring delay vector , i.e., for all
nodes and in , if , then . For

4The value-iteration algorithm has some similarity to the Bellman–Ford
shortest-path routing algorithm. In fact, we can regard the Bellman–Ford
algorithm as a special case of the value-iteration algorithm in which each node
has only one next-hop node.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 7

ease of notation, we define the value of the local delay function
with this optimal priority assignment as

(11)

The following properties characterize the structure of the op-
timal forwarding set.

Proposition 2: For a given , let , , and be mutually
disjoint subsets of satisfying for all nodes

and (, 2). Let

denote the weighted average delay for the nodes in for ,
2, 3. Then, the following properties related to hold:

(a)
.

(b)
.

(c) If , then
.

(d) If , then
, and the equality holds only when

for all and .
The proof is provided in Appendix B. While Proposition 2 looks
complex, it can be interpreted in a straightforward manner as
follows. Note that nodes in (or , correspondingly) have
lower delay (and higher priority) than nodes in (or , cor-
respondingly). Properties (a) and (b) provide a test to decide
whether to include the higher-delay nodes of into the for-
warding set. Specifically, Property (a) implies that adding the
lower priority nodes of into the current forwarding set

decreases the delay if and only if the weighted average delay
of the neighboring nodes in plus is smaller than the cur-
rent delay. Similarly, Property (b) implies that adding the lower-
priority node of does not change the current delay if and only
if the weighted average delay for the nodes in plus is equal
to the current delay.

On the other hand, Properties (c) and (d) state that if the for-
warding set already includes the higher-delay nodes in , then
it should also include the lower-delay nodes in . Specifically,
Property (c) implies that, if adding the lower-priority nodes of

decreases the current delay, then adding the nodes of (that
have higher priorities than the nodes of) together with the
nodes of will further reduce the current delay. Finally, Prop-
erty (d) implies that if adding the lower-priority nodes of
do not change the delay, and the weighted average delay of the
nodes in is smaller than that of the nodes in , then adding
the nodes of together with the nodes of will decrease the
current delay. Otherwise, if adding the lower-priority nodes of

do not change the delay, and the weighted average delay of
the nodes in is equal to that of the nodes in , adding the
nodes of together with the nodes of will not change the
current delay.

Using Proposition 2, we can obtain the following main result.
Proposition 3: Let . Then,

has the following structural properties:
(a) must contain all nodes in that satisfy

.

(b) cannot contain any nodes in that satisfy
.

(c) If there is a node in that satisfies
, then we have .

The proof is provided in Appendix C. Proportion 3 implies
that there must be a threshold value such that the nodes
whose delay is smaller than the value should belong to the
optimal forwarding set , and the other nodes should not.
Hence, we can characterize the optimal forwarding set as

, where is a subset
of . Note that if there exists a
node such that , then is not unique.
Intuitively, this means that, if such a node wakes up first, there
is no difference in the overall delay whether node transmits a
packet to this node or waits for the other nodes in to wake
up. On the other hand, it would be desirable to use the smallest
optimal forwarding set, i.e., ,
in order to reduce the possibility that multiple nodes send
duplicated acknowledgments. Hence, in this paper, we restrict
our definition of the optimal forwarding set to the following

(Recall that .) Under this defi-
nition, the optimal forwarding set is unique and nonempty.

Since the optimal forwarding set consists of nodes whose
delay is smaller than some threshold value, the simplest solu-
tion to find the optimal forwarding set is to run a linear search
from the highest priority (i.e.,) to the lowest priority
(i.e.,) to find the that minimizes , where

. The following lemma provides a
stopping condition, which means that we do not need to search
over all .

Lemma 1: For all that satisfies
, the optimal forwarding set must be con-

tained in , i.e., .
Proof: From Proposition 3(a), all nodes sat-

isfy . By the definition of ,
we have , for any subset of
neighboring nodes, i.e., . Since (that satis-
fies) is also a
subset of , the threshold values of and satisfy

. Hence, .
Lemma 1 implies that when we linearly search for the op-

timal forwarding set from to , we can stop
searching if we find the first (largest) such that for all nodes

, , and for all nodes ,
. Since all neighboring nodes are prior-

itized by their delays, we do not need to compare the delays
of all neighboring node with the threshold value. Hence, the
stopping condition can be further simplified as follows: node
searches for the largest such that for node with ,

, and for node with ,
. We refer to this line search algorithm

as the LOCAL-OPT algorithm and illustrate the mechanism in
Fig. 2. The complexity for finding the optimal forwarding set is

, where the complexities
for sorting the delays of neighboring nodes and for running
the linearly search are and , respectively.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. The LOCAL-OPT algorithm moves the threshold from the highest-pri-
ority node � to the smallest-priority node � until the stopping condition is
satisfied.

LOCAL-OPT Algorithm

1: Node receives the delay values of neighboring nodes

2: Assigns the optimal priorities according to Proposition 1,
and let be the index of the neighboring node with priority .

3: Initial Setup: and

4: for to 1 do

5:

6:

7: Compute (9):

8: if and then

9: break

10: end if

11: end for

12:

13: return and

It should be noted that the optimal forwarding set is time-
invariant due to the memoryless property of the Poisson random
wake-up process. Specifically, the expected time for each node
in to wake up is always regardless of how long the
sending node has waited. Therefore, the strategy to minimize
the expected delay is also time-invariant, i.e., the forwarding set
is not affected by the sequence number of the current beacon
signal.

C. Globally Optimal Forwarding and Priority Matrices

Using the LOCAL-OPT algorithm, each node can solve (10)
and find and at each iteration . We now show that
the value-iteration algorithm converges to the optimal solution
within iterations.

Let be the forwarding matrix that corresponds to
for all nodes , i.e., if , or ,
otherwise. Similarly, let be the priority matrix in which the
transpose of the th row is . Then, the following proposition
shows the convergence of the value-iteration algorithm.

Proposition 4: For given , the delay value of each
node and the global anycast policy converge to
the minimum value of the delay-minimization problem

in (2) and the corresponding optimal solution ,
respectively, as .

The proof is provided in Appendix D.
Proposition 4 shows that the converged anycast policy can

minimize the delays from all nodes simultaneously. Further-
more, since the set of admissible policies is a
finite set, Proposition 4 also implies that after some iteration ,
the policy and such an optimal policy will agree
for .

We next show the convergence of the value-iteration
algorithm within iterations, i.e.,

. To show this, we need the following re-
sult.

Proposition 5: For any awake probability vector , the any-
cast policy at each iteration does not incur any
cycle in the routing paths, i.e., is acyclic.

The detailed proof is provided in Appendix E. From Proposi-
tions 4 and 5, the converged policy is delay-op-
timal and cycle-free. The existence of this optimal cycle-free
policy leads to the following proposition.

Proposition 6: For given , the value-iteration algo-
rithm converges within iterations, i.e.,

.
Proof: Since there exists at least one optimal cycle-free

policy, based on the proof in [26, p. 107], for all nodes , the
delay value converges to within
iterations. Then, according to [26, p. 99, Property 2.2.2(c)], the
policy also converges to the optimal anycast policy

within iterations.
Proposition 6 shows that the anycast policy

that the value-iteration algorithm returns corresponds to the op-
timal policy . Furthermore, the graph
is acyclic. The complexity of this algorithm at each node is
given by .

The value-iteration algorithm is a synchronous algorithm that
requires all nodes to execute the value-iteration in locked steps.
In fact, an asynchronous version of value-iteration algorithm can
also be shown to converge, although the convergence will typi-
cally require more than iterations. Furthermore, the value-it-
eration algorithm can be applicable to the case where there are
multiple sink nodes. The details are in our technical report [21].

IV. MAXIMIZATION OF NETWORK LIFETIME

In the previous section, we solved the delay-minimization
problem. In this section, we use the result to develop a solu-
tion to the lifetime-maximization problem . From (3), the
lifetime and the awake probability have a one-to-one map-
ping. Hence, we convert Problem to the following equiva-

lent problem that controls , , and
:

(12)

(13)

(14)

where . For any given , is the
optimal anycast policy that minimizes the delay from all nodes,

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 9

i.e., for all .
Hence, we can rewrite Problem as follows:

(15)

Problem can be further simplified by the following
proposition.

Proposition 7: If is an optimal so-

lution to Problem , then so is such that
. In other words, according to the lifetime def-

inition (4), it is no worse in terms of both the network lifetime
and the delay to let all nodes set their lifetime to the shortest
lifetime.

Proof: Since both solutions have the same objective value
under our network lifetime definition in (4), it is sufficient to

show that if is in the feasible set, so is . Let and

be the awake probability vectors that correspond to and ,
respectively, by (14). Since monotonically decreases as

increases, and , we have . (The symbol “ ”

denotes component-wise inequality, i.e., if , then
for all .)

We next show that the delay from each
node is a nonincreasing function with respect to each com-
ponent of . For given , assume that node
increases its awake probability to . Let be the corre-
sponding global awake probability vector. Since the increased
awake probability does not increase the one-hop delay of
nodes for the fixed anycast policy , we have

(16)

The last inequality in (16) is due to the delay-opti-
mality of for . Hence, the delay

is nonincreasing with respect to each
component of . Since , for all nodes , we have

. Hence, if

satisfies (15), so does .
Using the above proposition, we can rewrite problem

into the following problem with one-dimensional variable that
corresponds to the network lifetime:

If is the solution to Problem , then ,
where corresponds to the solution to the
original problem .

Note that is nonincreasing
with respect to each component of . (See the proof of
Proposition 7.) Since each component of is a decreasing
function of , is increasing
as increases. Hence, we can develop an efficient binary

search algorithm (see the Binary Search Algorithm that
follows) for computing the optimal value of such that

.

Binary Search Algorithm

1: Initial Setup: The sink sets to a half of the maximum
possible lifetime and sets

2: for to do

3: Every node computes , and

4: runs the value-iteration algorithm for .

5: Nodes that satisfy for all neighboring nodes
send feedback of their delay values to the sink.

6: The sink sets , and

7: if then

8: .

9: else

10: and .

11: end if

12: end for

13: return

After iterations of the Binary Search Algorithm, the
difference between the optimal lifetime and the algorithm
output is smaller than . If we want to make
this difference less than , the complexity of the Binary Search
Algorithm is . Note
that, in Line 5, only those nodes that do not belong to the
forwarding sets of any other nodes need to send the feedback
delay to the sink . (There must exist at least one such node
because of the acyclic property of the value-iteration algorithm
in Proposition 6.) According to Property (a) in Proposition 3,
if node belongs to the forwarding set of node under the
value-iteration algorithm, the delay of node plus is smaller
than that of node . Since sink only needs to know the max-
imum delay, there is no need for such nodes to feedback their
delays, which reduces the communication overhead.

V. SIMULATION RESULTS

In this section, we provide simulation results to compare the
performance of the optimal anycast algorithm and the following
algorithms.

C-MAC: The C-MAC algorithm proposed in [14] is an any-
cast-based heuristic that exploits geographic information to re-
duce the delay from each node. Let be the Euclidean dis-
tance from node to sink . Furthermore, let be the geo-
graphical progress toward the sink, i.e., if node forwards the
packet to node , the progress is defined as . If a
node has a packet, let be the one-hop delay from node to
a next-hop node, and let be the progress between two nodes.
Since node selects the next-hop node probabilistically, both
and are random variables. The objective of the C-MAC algo-
rithm is to find the forwarding set that minimizes the expectation
of normalized one-hop delay, i.e., . The idea behind this

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. The maximum end-to-end delay under each algorithm normalized by that under “Optimal anycast” when (a) 400 nodes with the same wake-up rate � are
uniformly deployed, (b) 391 nodes with the same wake-up rate � are deployed forming a connectivity hole, and (c) 391 nodes with different wake-up rates are
deployed forming a connectivity hole. The numbers beneath the line of “Optimal Anycast” are the delay values (in seconds) under the optimal anycast algorithm.

algorithm is to minimize the expected delay per unit distance
of progress, which might help to reduce the actual end-to-end
delay.5

Hop-counting Algorithm: For comparison, we have devel-
oped a heuristic hop-counting algorithm that exploits the hop
count (the minimum number of hops to reach the sink) of neigh-
boring nodes to reduce the end-to-end delay. The objective of
this algorithm is to minimize the time for a packet to advance
one hop closer to the sink. This algorithm is inspired by the orig-
inal hop-counting algorithms in [19].6 If an -hop node has a
packet to transmit, it waits until any - or -hop neigh-
boring node wakes up. If an -hop node wakes up first,
then the packet is transmitted to the -hop node. If an

-hop node wakes up first, node has to decide whether it
transmits the packet to node or it waits for an -hop
node to wake up. Such a decision is made by comparing the
corresponding expected delays. If node is chosen, the expected
delay is given by . (The

three terms in the summation correspond to the time to transmit
the packet to node , the expected time for node to wait for an-
other -hop neighboring node to wake up, and the time to
transmit the packet to the -hop node, respectively, where

is the set of -hop neighboring nodes of node .)
If node waits for an -hop node, the expected delay is

. Hence, node chooses the
decision with the smaller expected delay.

Deterministic Routing (D-Routing): By deterministic
routing, we mean that each node has only one designated
next-hop forwarding node. To find the delay-optimal routing
path, we use the well-known Bellman–Form algorithm, in
which the length of each link is given by the expected

5The progress-based C-MAC algorithm may fail when a packet reaches a
node that does not have any neighboring nodes with positive progress. To avoid
this deadlock problem, we modified the original C-MAC algorithm slightly such
that the packet is then forwarded using the hop-counting algorithm for a small
number of hops in order to escape the region.

6Note that the algorithms in [19] and [20] do not directly apply to anycast
in asynchronous sleep–wake scheduling. The model in [19] and [20] requires
the assignment of a state-dependent cost metric to each link, and the algorithms
there choose a next-hop node that incurs the minimum cost metric for the cur-
rent state. If we interpret the current state as the set of nodes that are awake, the
optimal anycast decision may still be to wait for other nodes that are not awake.
However, for these nodes, their cost cannot be defined for the current state be-
cause their exact wake-up time (in the future) is unknown.

one-hop delay . Comparing this algorithm with the
others, we will study how exploiting path diversity can help to
reduce the end-to-end delay.

A. Case 1: Uniformly Deployed Homogeneous Nodes

We first simulate a wireless sensor network with 400 uni-
formly deployed nodes over a 1 1 km area with the sink

located at the lower left corner. We assume that the trans-
mission range from each node is a disc with radius 100 m.
The parameters and are set to 6 and 30 ms, respectively.
We also assume that all nodes are homogeneous, i.e., all nodes
have the same wake-up rate . For each value of the wake-up
interval , we measure the expected end-to-end delay from
all nodes under each algorithm. Among the expected delays of
all nodes, we pick the maximum expected delay under each al-
gorithm and report it in Fig. 3(a), where the -axis represents
different average wake-up intervals , and the -axis repre-
sents the maximum expected end-to-end delay. For ease of com-
parison, we normalized the maximum end-to-end delay under
each algorithm by that under our “Optimal anycast” algorithm,
i.e., the value-iteration algorithm and the LOCAL-OPT algo-
rithm. The numbers beneath the line of “Optimal anycast” are
the average end-to-end delay value (in seconds) under the op-
timal anycast algorithm. From Fig. 3(a), we observe that all
algorithms that exploit path diversity significantly reduce the
delay compared with the deterministic routing algorithm. We
also observe that the performance of the optimal anycast, the
hop-counting, and the C-MAC algorithms are very close. This
result implies that the hop count and progress are strongly cor-
related with the end-to-end delay when nodes are deployed uni-
formly.

B. Case 2: Homogeneous Nodes With a Connectivity Hole

We next simulate a topology where there is a connectivity
hole in the sensor field as shown in Fig. 4(a). This is motivated
by practical scenarios, where there are obstructions in the sensor
field, e.g., a lake or a mountain where sensor nodes cannot be
deployed. The simulation result based on this topology is pro-
vided in Fig. 3(b). From this figure, we observe that the op-
timal anycast algorithm substantially outperforms the C-MAC.
Fig. 4(a) provides us with the intuition for this performance
gap. We plot the routing paths from the nodes with the largest

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 11

Fig. 4. (color online) Node deployment and routing paths when (a) all nodes
have the same wake-up rate � (homogeneous), and (b) the nodes in the shaded
area have the wake-up rate ��, while the other nodes have the wake-up rates
of � (heterogeneous). The dotted lines illustrate frequently used routing paths
under the optimal anycast algorithm, the thick solid lines in red illustrate the
frequently used routing paths under the deterministic routing algorithm, and
thin solid lines in blue illustrate the frequently used routing paths under (a) the
C-MAC algorithm and (b) the hop-counting algorithm.

delay. The dotted lines (above the hole) illustrate the frequently
used routing paths under the optimal anycast algorithm. The
thick solid lines (in red, above the hole) illustrate the unique
routing path under the deterministic routing algorithm. The thin
solid lines (in blue, below the hole) illustrate the frequently used
routing paths under the C-MAC algorithm. In our optimal algo-
rithm, in order to reduce the delay, a packet is first forwarded to
neighbors with negative progress but smaller end-to-end delay.
However, under the C-MAC, all packet are forwarded only to
nodes with positive progress, and hence they take longer de-
tours. Therefore, the result of Fig. 4(a) shows that when the node
distribution is not uniform, the correlation between progress and
delay becomes much weaker. Thus, the anycast-based heuristic

algorithms depending only on geographical information could
perform poorly. Unlike the C-MAC algorithm, we observe that
the connectivity hole does not significantly affect the perfor-
mance of the hop-counting algorithm, as the hop-count is a
global metric that depends on connectivity of nodes, rather than
their geographical locations.

C. Case 3: Heterogeneous Nodes With a Connectivity Hole

So far, we have assumed that all nodes have the same wake-up
rate . We now simulate the case of heterogeneous wake-up
rates: We set the nodes in the shaded area in Fig. 4(b) to have
the wake-up rate while the other nodes still have the wake-up
rate . This kind of diversity can occur when nodes are deployed
with different amount of initial energy or are deployed at dif-
ferent times. In this case, the nodes in the unshaded area have to
reduce their wake-up rates to save energy. The simulation result
based on this setting is provided in Fig. 3(c). From this figure,
we observe that the optimal anycast algorithm can significantly
reduce the delay compared with the hop-counting algorithm.
We find the reason from Fig. 4(b), in which the thin solid lines
(in blue) now illustrate the frequently used routing paths under
the hop-counting algorithm. Compared to the routing paths in
Fig. 4(a), our optimal algorithm now sends packets through the
nodes near the border to take advantage of the high wake-up
rates for delay reduction. However, the hop-counting algorithm
still uses similar routing paths as those of the optimal algorithm
in Fig. 4(a), where the wake-up rates are homogeneous. This re-
sult shows that when the wake-up rates are heterogeneous, the
correlation between the hop count and delay becomes weak, and
forwarding packets to a larger hop count node [e.g., the routing
paths that circumvent the unshaded area in Fig. 4(b)] may help
to reduce the end-to-end delay. We next plot the network life-
time in Fig. 5(a) by solving the lifetime-maximization problem.
(We assume that the initial amount of energy in the shaded area
is given by one-third of that in the unshaded area, and nodes con-
sume the same amount of energy each time they wake up.) From
the result, we observe that our algorithm can extend the network
lifetime over the other algorithms. Finally, to observe the impact
of node density to delay-performance, we simulate Case 3 again
by changing the number of deployed nodes. Fig. 5(b) shows that
our algorithm outperforms the other algorithms regardless of
node density.

VI. CONCLUSION

In this paper, we develop an anycast packet-forwarding
scheme to reduce the event-reporting delay and to prolong the
lifetime of wireless sensor networks employing asynchronous
sleep–wake scheduling. Specifically, we study two optimization
problems. First, when the wake-up rates of the sensor nodes
are given, we develop an efficient and distributed algorithm to
minimize the expected event-reporting delay from all sensor
nodes to the sink. Second, using a specific definition of the
network lifetime, we study the lifetime-maximization problem
to optimally control the sleep–wake scheduling policy and
the anycast policy in order to maximize the network lifetime
subject to an upper limit on the expected end-to-end delay.
Our numerical results suggest that the proposed solution can
substantially outperform prior heuristic solutions in the litera-
ture under practical scenarios where there are obstructions in
the coverage area of the wireless sensor network. For future

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. (a) The network lifetime subject to different allowable delay � , and
(b) the normalized end-to-end delay under different node density for the case of
Fig. 3(c). In (a), the network lifetime under “D-routing” almost overlaps with
that under “C-MAC.”

work, we plan to generalize our solution to take into account
non-Poisson wake-up processes and other lifetime definitions.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We consider any with which there exists a pair of
nodes and such that and . Without
loss of generality, we assume that , and we
sort the nodes such that for .
Then, there must exist a pair of nodes and such that

and . Let be the priority assignment when
we interchange the priorities of nodes and , i.e., ,

, and if . For any forwarding set
, let , where if and

, otherwise. Then, we can rewrite (9) as follows:

.

Using the above,

(17)

In other words, the local delay function does not increase after
we switch the priorities. If we repeatedly apply the above pri-
ority-switching procedure on the node with the smallest delay,
the node will eventually be assigned the highest priority. In
the meantime, the local delay function will not increase. Sim-
ilarly, we can apply the iterative switching procedures on the
node with the second smallest delay, the node with the third
smallest delay, and so forth. In the end, the priority assignment
will be equal to , and the local delay function value will not
increase, i.e., . Therefore, for all ,

holds.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: This proposition can be shown by noting that each
node set (, 2, 3) can be regarded as a node with delay

and awake probability . The
probability is the probability that any node in wakes up.
Then, from (9), we have

(18)

(19)

(20)

This proves Property (a). The proof of Property (b) is similar
(by replacing all “ ” by “ ”). Using the similar methods, we
can also prove Properties (c) and (d). (See the detailed proof in
[21, Appendix B].)

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: MINIMIZING DELAY AND MAXIMIZING LIFETIME FOR WIRELESS SENSOR NETWORKS WITH ANYCAST 13

APPENDIX C
PROOF OF PROPOSITION 3

Proof: We prove this proposition by contradiction. In order
to prove Property (a), assume that there exists a node such
that and . There are two cases.
Case 1: If for all nodes in , let

and . Then, since , we
have by Property (a) in Proposi-
tion 2. This contradicts to the fact that is the optimal for-
warding set. Case 2: If there exists node in such that

, let ,
, and . Note that

. If is an empty set, we assume a virtual node
0 such that , , and , and let

. The idea behind this assumption is that introducing
a hypothetical node that wakes up with infinitesimal probability
does not change the delay analysis. Since is op-
timal, we must have . Case 2-1: If

, then by Property (c) in Proposi-
tion 2, . This is a con-
tradiction because is by assumption the optimal
forwarding set. Case 2-2: If , then
by Property (b) in Proposition 2,

. By Property (d) in Propo-
sition 2, . This is also a
contradiction. Therefore, such node must be in .

In order to prove Property (b), suppose in contrary that there
exists a node in such that . Let

and
. Then, the weighted average delay in is

larger than , i.e., .
By Properties (a) and (b) in Proposition 2, we have

. Since , this leads to a contradic-
tion. Therefore, such a node must not be in .

To prove Property (c), let node in have the highest pri-
ority among nodes that satisfy . We then
need to show that . We let

and . From Property (b), does not con-
tain any nodes with a higher delay than , which
implies node is the highest-priority node in . Then, by Prop-
erty (b) in Proposition 2, we have ,
where and . Therefore, the result
of Property (c) follows.

APPENDIX D
PROOF OF PROPOSITION 4

Proof: The value-iteration algorithm is a classic value-iter-
ation for solving Shortest Stochastic Problem (SSP) problems.
Specifically, we map the delay-minimization problem to the SSP
problem as follows. Consider the following Markov chain that
corresponds to the process with which a packet is forwarded
under a given anycast policy. There are states , and
, where state represents that a packet is in node . A state tran-

sition occurs from state to state when node forwards the
packet to node . (We do not consider self-transitions.) State
is the absorbing state (it is also called the termination state
in [26]), where state transition ends. Under the anycast for-
warding policy , a packet at node will be forwarded

to neighboring node with probability given by
(5). The cost associated with the transition from node to any
neighboring node corresponds to the expected one-hop delay

given by (6). The total cost, which is the expec-
tation of the accumulated costs from initial state to sink ,
corresponds to the expected end-to-end delay from
node to the sink . Then, the evolution of corresponds to
the value iteration in [26, p. 95]. Hence, according to [26, Propo-
sition 2.2.2], we have and

such that for all nodes ,
as .

APPENDIX E
PROOF OF PROPOSITION 5

Proof: To prove this proposition, we first show by contra-
diction that does not increase with . Assume that there is a
node whose delay value increases at some iteration

, i.e., . Then, there must exist a neighboring
node in whose delay value has increased at

iteration . (Otherwise, i.e., if for all

nodes , taking at iteration leads
to at least the same delay value of node , i.e., .)
Applying the same method iteratively, we can find a sequence
of nodes such that and

for . If node is the sink, then

this is a contradiction because for all . If node is
not the sink, then we have . Then, node cannot be
selected as an eligible forwarder of node at iteration 1, i.e.,

, which is also a contradiction. Hence, for all nodes ,

does not increase with .
Using this result, we show that is acyclic. According

to Proposition 3, a neighboring node in must satisfy
. From the preceding proof, we also have

. This implies that under anycast policy

, the delay value decreases by at least
along each possible routing path. Hence, the result follows.

REFERENCES

[1] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “On maximizing the life-
time of delay-sensitive wireless sensor networks with anycast,” in Proc.
IEEE INFOCOM, Pheonix, AZ, Apr. 2008, pp. 807–815.

[2] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols for
IEEE 802.11-based multi-hop ad hoc networks,” Comput. Netw., vol.
43, pp. 317–337, Oct. 2003.

[3] W. Ye, H. Heidemann, and D. Estrin, “Medium access control with co-
ordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM
Trans. Netw., vol. 12, no. 3, pp. 493–506, Jun. 2004.

[4] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in Proc. SenSys, Nov. 2003, pp.
171–180.

[5] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive
energy-efficient and low-latency MAC for data gathering in wireless
sensor networks,” in Proc. IPDPS, Apr. 2004, pp. 224–231.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, 2002.

[7] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chan-
drakasan, “Physical layer driven protocol and algorithm design for en-
ergy-efficient wireless sensor networks,” in Proc. MobiCom, 2001, pp.
272–287.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[8] M. Nosovic and T. Todd, “Low power rendezvous and RFID wakeup
for embedded wireless networks,” presented at the IEEE Comput.
Commun. Workshop, 2000.

[9] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Opti-
mizing sensor networks in the energy-latency-density design space,”
IEEE Trans. Mobile Comput., vol. 1, no. 1, pp. 70–80, Jan.–Mar. 2002.

[10] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proc. SenSys, Nov. 2004, pp. 95–107.

[11] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica,
“A unifying link abstraction for wireless sensor networks,” in Proc.
SenSys, Nov. 2005, pp. 76–89.

[12] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for
ad hoc and sensor networks: Energy and latency performance,” IEEE
Trans. Mobile Comput., vol. 2, no. 4, pp. 349–365, Oct.–Dec. 2003.

[13] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF)
for ad hoc and sensor networks: Multihop performance,” IEEE Trans.
Mobile Comput., vol. 2, no. 4, pp. 337–348, Oct.–Dec. 2003.

[14] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An energy efficient MAC
layer protocol using convergent packet forwarding for wireless sensor
networks,” in Proc. SECON, San Diego, CA, Jun. 2007, pp. 11–20.

[15] R. R. Choudhury and N. H. Vaidya, “MAC-layer anycasting in ad hoc
networks,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 75–80, Jan.
2004.

[16] S. Jain and S. R. Das, “Exploiting path diversity in the link layer in
wireless ad hoc networks,” in Proc. WoWMoM, Jun. 2005, pp. 22–30.

[17] P. Larsson and N. Johansson, “Multiuser diversity forwarding in mul-
tihop packet radio networks,” in Proc. IEEE WCNC, 2005, vol. 4, pp.
2188–2194.

[18] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hop routing for
wireless networks,” in Proc. ACM SIGCOMM, Oct. 2005, vol. 35, pp.
133–144.

[19] M. Rossi and M. Zorzi, “Integrated cost-based MAC and routing tech-
niques for hop count forwarding in wireless sensor networks,” IEEE
Trans. Mobile Comput., vol. 6, no. 4, pp. 434–448, Apr. 2007.

[20] M. Rossi, M. Zorzi, and R. R. Rao, “Statistically Assisted Routing Al-
gorithm (SARA) for hop count based forwarding in wireless sensor
networks,” Wireless Netw., vol. 14, pp. 55–70, Feb. 2008.

[21] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “Minimizing delay
and maximizing lifetime for wireless sensor networks with any-
cast,” Purdue University, Tech. Rep., 2008 [Online]. Available:
http://web.ics.purdue.edu/~kim309/Kim08tech2.pdf

[22] “IRIS OEM module datasheet,” Crossbow Technology, Tech. Rep.
[Online]. Available: http://www.xbow.com

[23] J.-H. Chang and L. Tassiulas, “Routing for maximum system life-
time in wireless ad-hoc networks,” in Proc. 37th Annu. Allerton
Conf. Commun., Control, Comput., Monticello, IL, Oct. 1999, pp.
1191–1200.

[24] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless
ad-hoc networks,” in Proc. IEEE INFOCOM, Mar. 2000, vol. 1, pp.
22–31.

[25] Y. T. Hou, Y. Shi, and H. D. Sherali, “Rate allocation in wireless sensor
networks with network lifetime requirement,” in Proc. IEEE/ACM Mo-
biHoc, 2004, pp. 67–77.

[26] D. P. Bertsekas, Dynamic Programming and Optimal Control Vol. 2,
3rd ed. Belmont, MA: Athena Scientific, 2007.

Joohwan Kim (S’07) received the B.S. degree from
Yonsei University, Seoul, Korea, in 2004, and the
M.S. degree from Purdue University, West Lafayette,
IN, in 2006.

He is currently a Ph.D. candidate of Electrical
and Computer Engineering at Purdue University.
His research interests range over the various areas
of wireless communication networks: scheduling,
routing, power control, network pricing, and wireless
resource optimization in sensor and mobile ad hoc
networks.

Xiaojun Lin (S’02–M’05) received the B.S. degree
from Zhongshan University, Guangzhou, China, in
1994, and the M.S. and Ph.D. degrees from Purdue
University, West Lafayette, IN, in 2000 and 2005, re-
spectively.

He is currently an Assistant Professor of electrical
and computer engineering at Purdue University. His
research interests are resource allocation, optimiza-
tion, network pricing, routing, congestion control,
network as a large system, cross-layer design in
wireless networks, and mobile ad hoc and sensor

networks.

Ness B. Shroff (S’91–M’93–SM’01–F’07) received
the Ph.D. degree from Columbia University, New
York, NY, in 1994.

He joined Purdue University, West Lafayette,
IN, as an Assistant Professor after receiving the
Ph.D. degree. At Purdue, he became Professor of
the School of Electrical and Computer Engineering
in 2003, and Director of the Center for Wireless
Systems and Applications (CWSA) in 2004. In 2007,
he joined The Ohio State University, Columbus,
as the Ohio Eminent Scholar of Networking and

Communications and Professor of electrical and computer engineering and
computer science and engineering. His research interests span the areas of
wireless and wireline communication networks. He is especially interested
in fundamental problems in the design, performance, control, and security of
these networks.

Dr. Shroff received the IEEE INFOCOM 2008 Best Paper Award, the IEEE
INFOCOM 2006 Best Paper Award, the IEEE IWQoS 2006 Best Student Paper
Award, the 2005 Best Paper of the Year Award for the Journal of Communi-
cations and Networking, the 2003 Best Paper of the Year Award for Computer
Networks, and the NSF CAREER Award in 1996 (his INFOCOM 2005 paper
was also selected as one of two runner-up papers for the Best Paper Award).
He has served on the editorial boards of the IEEE/ACM TRANSACTIONS ON

NETWORKING, Computer Networks, and IEEE COMMUNICATIONS LETTERS. He
was the Technical Program Co-Chair of IEEE INFOCOM ’03, IEEE CCW ’99,
the Program Co-Chair for the symposium on high-speed networks, Globecom
2001, and the panel co-chair for ACM MobiCom ’02. He was also a Co-Orga-
nizer of the NSF workshop on Fundamental Research in Networking, held in
Airlie House, Warrenton, VA, in 2003. In 2008, he served as the Technical Pro-
gram Co-Chair of ACM MobiHoc and as General Co-Chair of WICON.

Prasun Sinha received the B.Tech. degree from the
Indian Institute of Technology—Delhi, New Delhi,
India, in 1995, the M.S. degree from Michigan State
University in 1997, and the Ph.D. degree from the
University of Illinois, Urbana-Champaign, in 2001.

He worked at Bell Labs, Lucent Technologies,
Holmdel, NJ, as a Member of Technical Staff from
2001 to 2003. Since 2003, he has been an Assis-
tant Professor with the Department of Computer
Science and Engineering, The Ohio State Univer-
sity, Columbus. His research focuses on design of

network protocols for sensor networks and mesh networks.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:55:08 EDT from IEEE Xplore. Restrictions apply.

