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Scalable Key Management Algorithms
for Location-Based Services

Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu

Abstract—Secure media broadcast over the Internet poses
unique security challenges. One important problem for public
broadcast location-based services (LBS) is to enforce access con-
trol on a large number of subscribers. In such a system, a user
typically subscribes to an LBS for a time interval � � and a
spatial region � �� ��� according to a 3-dimensional
spatial-temporal authorization model. In this paper, we argue
that current approaches to access control using key management
protocols are not scalable. Our proposal, STauth, minimizes the
number of keys that needs to be distributed and is thus scalable
to a large number of subscribers and the dimensionality of the
authorization model. We also demonstrate applications of our
algorithm to quantified-temporal access control (using and

quantifications) and partial-order tree-based authorization
models. We describe two implementations of our key management
protocols on two diverse platforms: a broadcast service operating
on top of a publish/subscribe infrastructure and an extension to
the Google Maps API to support quality (resolution)-based access
control. We analytically and experimentally show the perfor-
mance and scalability benefits of our approach over traditional
key management approaches.

Index Terms—Access control, key management, location-based
services (LBS), scalability and performance.

I. INTRODUCTION

T HE UBIQUITOUS nature of the Internet has resulted
in widespread growth and deployment of location-based

services (LBS) [2], [4], [5]. LBS (as the name indicates) pro-
vide information with spatial-temporal validity to potentially
resource-constrained wireless and mobile subscribers. Example
services include: 1) list all Italian restaurants in midtown
Atlanta, 2) current traffic conditions at the junction of peach
tree parkway and peach tree circle, 3) cheapest
gas station in downtown Atlanta today. Secure LBS over an
open channel such as the Internet or a wireless broadcast
medium poses unique security challenges. LBS typically use
a payment-based subscription model using 3-dimensional
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spatial-temporal authorization as follows: A paying user
subscribes for a spatial bounding box and a
time interval ; the subscription fee may be an arbitrary
function, say . A
user is allowed to read a broadcast from the LBS about a
spatial coordinate at time if and only if ,

, and .
A common solution for enforcing fine-grained access in such

services is to encrypt the data and distribute the secret decryp-
tion key (group key) only to the legitimate receivers. The general
approach is to use a key distribution center (KDC) for group key
management. A group is defined as a set of users that hold equiv-
alent authorizations. A user may be a part of zero (unauthorized
user) or more groups. Group key management is complicated
due to two reasons. 1) Group dynamics (a well-studied problem
in literature) because of users joining and leaving a group at any
time. Scalable algorithm to manage one group is well studied
in literature: GKMP [21], LKH [31], [20], ELK [26]. These al-
gorithms provide optimized solutions for a KDC to update the
group key on member join and leave (subscription termination)
events to ensure that a user is able to decrypt the data only when
it is a member of the group of authorized users. 2) Large number
of groups (new problem specific to LBS-like services). Using a
spatial-temporal authorization model, each unit of data broad-
cast by an LBS may be destined to a potentially different set
of subscribers. Hence, the number of such sets of subscribers
(groups) may, in the worst case, be exponential (power set) in
the number of subscribers. This largely limits the scalability of
traditional group key management protocols in the context of
LBS.

In this paper, we propose STauth, a secure, scalable, and
efficient key management protocol for LBS-like services.
STauth minimizes the number of keys that needs to be
distributed and is thus scalable to a much higher number of sub-
scribers and the dimensionality of the authorization model. We
use to denote the number of active users in the system and

to denote the dimensionality of an authorization model (for
instance, the spatial-temporal authorization model discussed
above is 3-dimensional ).

In a group key management-based approach, one would de-
fine the set of users within a -dimensional bounding box as a
group. Suppose a user subscribes for a spatial range
(20, 30); then, we have one group . Let us suppose that
a new user subscribes for a range (25, 40); then, we have three
groups: [for the range (20, 25)], [for
the range (25, 30)], and [for the range (30, 40)].
Observe that the group key management server has to not only
maintain more keys (computing and storage cost) as the number
of subscribers increases, but also update keys at one or more
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existing subscribers as new users join/leave the network. Below,
we briefly summarize the drawbacks of using existing key man-
agement protocols for location based services.

1) In the worst case, KDC manages groups.
2) User join and leave requires the KDC to broadcast

key update message.
3) The ELK protocol tolerates a certain level of packet losses

during key updates; however, none of the protocols can
tolerate arbitrary large packet losses.

4) Updates to the state maintained by the KDC (key hierarchy
in LKH and ELK) have to be serialized, thereby making it
hard to replicate the KDC on multiple servers. This makes
it difficult to handle bursty loads on the KDC.

5) These protocols are vulnerable to purported future group-
keys-based denial-of-service (DoS) attacks from unautho-
rized users (details follow in Section VI).

6) As described above, an authorized user buffers packets
until it receives future group keys. This may cause large
delays and jitters in actually decrypting and delivering the
plain-text broadcast data to the client, thereby making this
approach unsuitable for low-latency real-time broadcast
services (like live audio/video teleconference). Packet
losses during key updates and the DoS attack described
above further complicate this problem.

Under the multidimensional authorization model, we use a
simple yet powerful key management protocol using hierar-
chical key graphs [7], [12] with several features:

1) Number of groups managed by KDC is .
2) User join and leave cost is independent of .
3) Requires no key update messages and is thus trivially re-

silient to arbitrary packet losses in key updates.
4) Allows the KDC to have a small, constant and stateless

storage that is independent of and .
5) Allows dynamic and on-demand replication of KDC

servers without requiring any interaction between the
replicas (no concurrency control for serializing updates on
KDC state).

6) Resilient to purported future group-key-based DoS attacks
from unauthorized users.

7) Incurs only a small and constant (no jitter) computational
overhead and is thus suitable even for low-latency real-time
broadcast services.

In the rest of this paper, we first describe a scalable key man-
agement algorithm for temporal access control (Section II). We
compare our algorithm analytically against other key manage-
ment algorithms and show that our approach offers significant
performance and scalability benefits. We demonstrate four ap-
plications of our algorithm. First, in Section III, we extend our
algorithm to operate on quantification operators like and and
demonstrate its usefulness to quantified-temporal access con-
trol. Second, in Section IV, we describe extensions to handle
multidimensional authorization models (e.g.: spatial-temporal
access control). Third, in Section V, we present constructions
to support partial-order-trees-based authorization models (e.g.:
spatial-quality access control). We sketch a prototype imple-
mentation of our proposal on a publish/subscribe broadcast ser-
vice and evaluate its performance and scalability against tradi-
tional group key management approaches and more recent pro-
posals in key management algorithms for geospatial access con-

trol ([7]–[9]). We also describe a prototype implementation of
spatial-quality access control using the Google Maps API that
demonstrates ease of use and deployability of our approach.

II. TEMPORAL AUTHORIZATION

A. Overview

In this section, we present techniques for handling temporal
authorizations (one-dimensional) in broadcast services. In this
scenario, we assume that a user needs to subscribe (by paying
a fee) to access the broadcast service. Each subscription has a
lifetime indicated by a time interval ; note that could
be different and highly fine-grained for different user subscrip-
tions. When a user subscribes for a broadcast service from
time , the service provider issues an authorization key
to the user . This ensures that:

• Given , a user can efficiently derive if
.

• Given , it is computationally infeasible for a user to
guess if or .

The primitive described above helps us to construct a very
simple and efficient protocol for temporal access control on
broadcast services. At any given time instant , the service
provider broadcasts a packet (of, say, audio/video data) as
follows:

• Get current time instant and compute .
• Broadcast .

and denote an encryption and a message au-
thentication code of a string , respectively. Note that all users
can potentially receive the broadcast message. An authorized
subscriber decrypts the payload as follows:

• Receive the broadcast message
. Note that the time

instant is in plain-text.
• A subscriber is authorized if it has a temporal authorization

for some time period such that . An
authorized subscriber can compute the decryption key
from , decrypts the broadcast message to obtain the
payload , and checks its integrity.

The property of the authorization key ensures that one can
efficiently compute from if and only if .
In the following section, we present an algorithm to efficiently
and securely construct such keys using hierarchical key graphs.

B. Key Management Algorithm

In this section, we describe techniques to construct keys using
hierarchical key graphs [7], [12], [31] that satisfy the primitive
described in Section II-A. We first introduce some notation and
parameters used in our algorithm (see Table I). Let
denote the time horizon of interest. Let s denote the smallest
time granularity of interest. Let time equal to denote the th
time unit, where one unit s. Our algorithms effi-
ciently support temporal authorization at very low granularities
( or ). We associate a key as the autho-
rization key that permits a user to access a broadcast service

in the time interval .
We now construct a key tree that satisfies the property that

a user can efficiently guess from if and only if
. Each element in the key tree is labeled with a time

interval starting with the root . Each element in
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TABLE I
NOTATION

the key tree has two children labeled with time intervals
and . We associate a key with every element

in the key tree. The keys associated with the elements of
the key tree are derived recursively as follows:

(1)

where denotes output of a pseudo-random function
(PRF) keyed by for which the range is sufficiently large that
the probability of collision is negligible. The root of the key
tree has a key computed using the KDC’s secret master key
MK, and is the name of the broadcast service

. Observe that given , one can derive all keys
. Also, deriving the key for

any from requires no more than
applications of . Algorithm 1 shows an algorithm for deriving

from .

Algorithm 1: Key Derivation

Input:
Output:
DERIVE

1) if or
2) return
3)
4) if
5) return
6) if
7)
8) return DERIVE

9) else
10)
11) return DERIVE

Fig. 1 illustrates the construction of our key tree assuming
time units. We derive .

Then, we compute and
. One can recursively ex-

tend this definition to any arbitrarily small time granularity at
the expense of additional key derivation cost.

Having described the construction of our key tree, we pick
an authorization key for any arbitrary time interval as fol-
lows. One can show that any time interval can be parti-
tioned into no more than elements in the key tree.
For example, given a time interval (8, 19), we partition the time
interval into two subintervals (8, 15) and (16, 19) (see Fig. 1).

Fig. 1. Authorization key tree.

We provide temporal authorization for a time interval (8, 19) by
issuing two authorization keys and .

Security Analysis. We present a security analysis of our pro-
tocol using the following cryptographic game STauth:
Setup: The KDC generates a random -bit private master key
MK and outputs a public security parameter and a PRF

.
Query: Subscriber adaptively issues queries to
the KDC for time intervals [ and

]. The KDC returns for the th query.
Challenge: Subscriber picks (for any 0 ).
The KDC returns a random permutation of the set ,
where is a random bit string of length . The KDC challenges
the subscriber to distinguish between and in the output.

Let denote the probability with which a proba-
bilistic poly time (PPT) subscriber can distinguish key from
a random bit string (of equal lengths). We note that for any

, where anc denotes an ancestor of the
node in the authorization key tree, the subscriber can
easily distinguish from (by deriving from );
hence, . Trivially, given for any range

. We hypothesize that any
(where is an ancestor of ) is secure against key
recovery, while it fails to satisfy key indistinguishability [18].
However, we note that only the leaf nodes in the authorization
key tree (namely, ) are used for encrypting broadcast
messages. Hence, the challenge phase attempts to establish
key indistinguishability only for those encryption keys (note
that composability with secure encryption algorithm requires
that the encryption keys satisfy key indistinguishability). Fig. 2
shows keys that are resistant to key recovery (KR) and key in-
distinguishability (KI) when is revealed to the subscriber.

The advantage for a subscriber is defined as
. Let denote the advantage for an sub-

scriber against a pseudo-random function defined using the
following cryptographic game PRF.
Setup: The KDC generates a private -bit key and outputs a
public security parameter and a PRF

.
Query: Subscriber adaptively issues queries
to the KDC for inputs . The KDC returns

for the th query.
Challenge: The subscriber picks , and the KDC
returns a random permutation of the set such that

, where is a random bit string. The KDC
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Fig. 2. Key recovery and key indistinguishability—Set of revealed keys:
�� �, keys resistant to recovery �� � �� �� � and keys that are
indistinguishable from random �� � �� �� � � � ��.

challenges the subscriber to distinguish between and in the
output.

Theorem 1: For any PPT adversary,
, where is the size of the temporal dimension.

Proof: Let denote a PPT algorithm that distin-
guishes and with probability . Let us
consider a simple case with . We have three keys

, and . Let us
suppose in the query phase of STauth game, the subscriber
queries for . In the challenge phase, the subscriber picks

and is presented with a random permutation of the
set . It is easy to see that if the subscriber can use
algorithm to distinguish from with probability

, then it can defeat PRF game with at least the same
probability, namely . One can use proof
techniques similar to [18] to show that is no more
than amplified by the maximum number of keys
queried in the STauth game . The proof details are
outside the scope of this paper.

Cost Analysis. In general, if one uses a -ary key tree
, any range can always be subdivided into no more than

subintervals. One can show that this is a
monotonically increasing function in (for ) and thus
has a minimum value when . One can also show that if
the time interval were chosen uniformly and randomly
from , then on average can be subdivided into

subintervals. This is also a monotonically
increasing function in (for ) and thus has a minimum
value at . However, as increases, the height of the key
tree decreases;, that is, the cost of key derivation
decreases monotonically with . However, since the PRF
is computationally inexpensive ( s on a typical 900 MHz
Pentium III processor), we focus our efforts on minimizing the
size of the authorization key rather than the key derivation cost.
Tables II and III show the maximum and the average number
of keys and computation time required for different values of

for a time interval of one year using a binary authorization
key tree , respectively.

C. Comparison With Other Approaches

In this section, we present an analytical comparison of
our approach against other group key management protocols.
Simple uses a key for a user . When the group key
needs to be updated (because of some user joining or leaving
the system), the KDC chooses a new random group key. The
KDC sends one message per group member that includes
the new group key encrypted with . LKH [31] builds a

TABLE II
MAXIMUM NUMBER OF KEYS AND COMPUTATION TIME

TABLE III
AVERAGE NUMBER OF KEYS AND COMPUTATION TIME WITH �� � � s

logical key hierarchy on the set of authorized users to enhance
the efficiency of the key update protocol. ELK [26] introduces
the concepts of hints to enhance the efficiency of LKH protocol
and improve its resilience to arbitrary packet loss of key update
messages.

Atallah et al. [7]–[9], (henceforth referred to as TAC in
this paper) have proposed key management algorithms for
handling temporal capabilities. Their approach presents an
alternate implementation of our high-level protocol described
in Section II-A. Similar to our approach, they use a directed
acyclic graph (DAG) over the 1-dimensional space (e.g.: time).
The atomic primitive supported by their approach is to derive a
key along a directed edge from a node with label to a node
with label . Each node in the graph is associated with a
key ; the keys are generated randomly for every node

. Given a directed edge, is labeled with a public
information , where denotes a
family of pseudo-random functions on an input key and
string . Given and the public label is derived
as . The authors propose using short
cut edges to trade off the size of public storage and the key
derivation cost.

On the positive side, TAC requires only keys to be dis-
tributed when a new user joins the network, while our approach
requires keys. We note that this is a one-time commu-
nication cost incurred when a user subscribes to the system.TAC
incurs key derivation cost, in comparison to key
derivation cost incurred by our approach. We show below that
one can reduce the amortized key derivation cost to in our
approach using a key-caching-based approach.

On the flip side, TAC incurs communication cost for
key derivation. While TAC does not have to communicate with
the KDC to derive a key, it does require access to authenticated
‘public information’ (namely, labels on directed edges in TAC)
in order to derive keys. This public information could be re-
trieved by a subscriber once-for-all when he or she joins the
network or on an on-demand basis. In either approach, the amor-
tized communication cost to pull out public information per de-
rived key is O(1). In contrast, STauth requires no public infor-
mation and, thus, no communication cost for key derivation.
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TABLE IV
STORAGE COST

TAC requires at least public storage. Using a
fine-grained access control (say, s), for one year is
about . Hence, the cost of public storage may become
prohibitively high; on the other hand, our approach can support
very fine granularity (say, s). While public storage may
be made available to all users (authorized or not) without com-
promising access control, the integrity and availability of public
storage must be guaranteed. For instance, the public storage may
become a target for DoS attacks; also, a compromised public
storage system may serve corrupted data, making it impossible
for legitimate users to derive the decryption keys.

Security Properties. Table V compares the properties of
different group key management approaches. The LKH and
ELK approach have a centralized key graph data structure that
is nontrivial to be distributed amongst multiple KDCs. On the
other hand, our approach can use multiple KDC servers by just
sharing the read-only master key MK amongst them. Note that
since all temporal authorization keys are derivable from the
master key MK we do not require the KDC servers to share
and update a common data structure. This allows on-demand
creation of KDC server replicas to handle bursty KDC traffic.
Our approach does not require a key update protocol, thereby
making it trivially tolerant to arbitrary packet losses in key
update messages. Finally, our approach does not require a
multicast channel between the KDC and the user, since the
KDC does not have to broadcast any key update messages to
the users.

Storage Cost. Table IV compares the storage cost at the KDC
and the users for different approaches. Our approach requires
the KDC to only store the master key MK (rest of the keys can be
computed on the fly). On the other hand, in the LKH and the ELK
approach, the storage cost at the KDC grows linearly with the
number of users . In our approach, the storage cost at a user is
on an average logarithmic in the length of the subscription time
interval.

Communication Cost. Table VI compares the communica-
tion cost at the KDC and the users for different key management
protocols. The key advantage of our approach is that a key does
not need to be updated once it is given to the user. A join op-
eration requires only an interaction between the KDC and the
new user; a subscription terminate operation is cost-free. One
should note that the temporal authorization model simplifies the
user leave operation by a priori determining the time interval

. On the other hand, LKH join, LKH leave and ELK
leave send -size messages to all the users ;
ELK join sends an -size message only to the new
user while compromising backward secrecy for at most one time
interval. Furthermore, the KDC has to maintain the set of active
users in order to update the logical key hierarchy data structure.

Computation Cost. Table VII compares the computation
cost at the KDC and the users for different approaches. Our

approach requires only simple PRF computations at the KDC
to handle a new user join. The LKH join, LKH leave and
ELK leave need to encrypt and update at least
keys in the key graph and broadcast a key update message to
all the users. As described earlier, our approach has zero cost
for key update and user leaves. However, our approach incurs a
small computation cost for processing broadcast packets. Given
the time instant in the packet header, the user has to compute
the key from an authorization key .
This may require applications of . Using standard
cryptographic algorithms (say, HMAC-SHA [17], [23] for
and AES-CBC-128 [25] for ), the cost of key derivation
will be about two orders of magnitude smaller than that of
encryption/decryption, thereby making this approach suitable
for low-latency real-time applications (like audio and video
broadcast for a teleconference). On the other hand, low-latency
real-time applications that use LKH and ELK may experience
large delays and unexpected jitters due to key updates and
packet losses during key updates (application packets need
to be buffered until the user receives an updated key). In-
deed, an unauthorized subscriber (adversary) may exploit this
vulnerability to launch a DoS attack by flooding subscribers
with applications packets that are purportedly encrypted with
future group keys. We can easily mitigate such an attack in our
approach by appending a message authentication code (MAC)

to the broadcast message.
Key Caching. One can additionally use a caching mecha-

nism described below to decrease the key derivation cost. Let
us suppose that a user received a broadcast packet at time .
In the process of computing from its authorization key

, the user computes several intermediate
keys . The user can cache
these intermediate keys for future use. Say the user were to
receive its next broadcast packet at time ; then, the user
could potentially compute from some such that

. Indeed, this would require only
applications of . One can show

that if the mean interpacket arrival time is , then the mean
per-packet key derivation cost drops to (as-
suming, ).

III. QUANTIFICATIONS

A. Overview

In this section, we present an application of our key man-
agement algorithm to handle universal and existential quantifi-
cations over the temporal domain. We motivate our algorithm
using quantified-temporal access control on broadcast data.
Informally, a -temporal access control constraint is specified
using a three tuple: . A user satisfies this con-
straint if its temporal authorization holds for all time instants

. Similarly, a user satisfies a -temporal access
control rule if its temporal authorizations hold
for some time instant .

In the context of broadcast services, we assume that every unit
of broadcast data (say, an object or a file ) is tagged with a
quantified-temporal access control rule. We also assume that the
broadcast data is encrypted with a randomly chosen secret key

. Now, we require the encrypted broadcast data be made
publicly available to all subscribers. However, the data should
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TABLE V
SECURITY PROPERTIES

TABLE VI
COMMUNICATION COST

TABLE VII
COMPUTATION COST

be intelligible to a user only if its temporal authorization
satisfies the quantified-temporal constraint associated with the
data. Observe that a user with a temporal authorization
can satisfy a constraint if and only if

and satisfy a constraint if and only if
.

In our key management algorithm, we associate an authoriza-
tion key with a time interval . We associate an en-
cryption key with a -temporal constraint
and with a -temporal constraint . Our en-
forcement protocol is similar to Section II. A broadcast data
with a quantified-access control constraint

is encrypted with an encryption key . Only
an authorized user can derive the encryption key
from its authorization key and thus decrypt the broadcast
data. We construct the authorization key and the encryp-
tion keys and such that:

• Given an authorization key , a user can efficiently
derive any encryption key if

.
• Given an authorization key , it should be com-

putationally infeasible to derive any encryption key
if .

• Given an authorization key , a user can efficiently
derive any encryption key if

.
• Given an authorization key , it should be com-

putationally infeasible to derive any encryption key
if .

B. Key Management Algorithm

1) -Temporal Authorization: We observe that a -tem-
poral constraint reduces to that of a simple temporal access
control constraint when (see Section II). We

leverage the same key management algorithm described in
Section II as follows. Given a time interval , the autho-
rization key is constructed using the same key
management algorithm as that described in Section II. Now,
we generate the encryption key as follows. Let

minimally partition the range
(beg, end), such that (for all ) are
elements on the key tree. Now, we construct the encryption key
as

(2)

For example, . Observe that given
an authorization key such that ,
an authorized user can efficiently derive (for all

) since . For
example, an authorized user with authorization key can
derive and
encryption key .

Let us consider an unauthorized user . A user is unau-
thorized if the temporal authorization for user fails for some
time instant . From the temporal authorization
model (Section II) it is evident that it should be computation-
ally infeasible for the user to guess . Hence, it should be
computationally infeasible for the user to guess
such that and . Note that such a

exists since and partitions the
range (beg, end). Hence, without knowing , it is in-
feasible for the unauthorized user to guess the encryption key

.
2) -Temporal Authorization: We now focus on the

access control constraints. We leverage the same
key management algorithm described in Section II to handle
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-temporal constraints as follows. Let us suppose that a user
is authorized for some time interval . For the sake of
simplicity, let us suppose that exactly matches an element
in the authorization key tree in Section II. If not, the algorithm
described below should be duplicated for every partition of

in the authorization key tree. Let
denote the ancestors of element on the authorization key
tree with . Now, the authorization key for
time interval is constructed as

(3)

For example, the authorization key for time interval (0, 15) is
. where is a one-way colli-

sion-free hash function. The encryption key for a broadcast data
with access control constraint is constructed as

(4)

Let minimally partition the
range (beg, end) such that (for all )
are elements on the key tree. For example, the encryp-
tion keys for an access control constraint is

. The encryption key
for the broadcast data is randomly chosen, and

is encrypted using key encryption keys from
and broadcast along with the data. An authorized user with

can compute from the
authorization key . It can then use to decrypt
the file ’s metadata and obtain the file encryption key .

One can easily observe that the authorization key
satisfies the following property: Given any element in the
authorization tree such that , a user can
compute for all ancestors of the
element on the authorization key tree. Recall that a user

satisfies the constraint if and only if there exists
a time instant . Since, , the
user can compute for all ancestors (anct1,
anct2) of the element . Since , there exists a
partition of (beg, end) such that

; that is, is an ancestor of the element in the
authorization tree. Hence, the user can compute the encryption
key .

Let us consider an unauthorized user . A user is unau-
thorized if . Let us consider the first case

. Hence, for all partitions of
of the range . Therefore, for no

; that is, it is infeasible to guess
[and thus guess the encryption key ]

from (and thus from the authorization key ). Also,
for no ; that is, the element
is not an ancestor of the element on the authorization key
tree, and thus the authorization key does not include
the encryption key . A similar argument holds
for the second case .

C. Comparison With Group Key Management Approaches

We compare the cost of our key management algorithm with
the group key management approaches. Tables VIII–X show the
costs for our key management algorithm. The security proper-
ties of our approach are identical to that of Table V. Observe that

TABLE VIII
QUANTIFICATIONS: STORAGE COST

the storage, communication, and computation costs are small
and independent of the number of users in the system. Also, the
key derivation cost is very small when compared to the decryp-
tion cost, thereby ensuring that our approach adds only a small

% overhead.

IV. MULTIDIMENSIONAL AUTHORIZATION

A. Overview

In this section, we extend our key management algorithms to
operate on multidimensional authorization models. In this sec-
tion, we use LBS as a motivating example. LBS provide infor-
mation with spatial-temporal validity—say, traffic information
at the junction at time . LBS use a spatial-temporal au-
thorization model as follows: A user subscribes for a spa-
tial bounding box and a time interval .
A user is allowed to read a broadcast from the LBS about a
spatial coordinate at time if and only if ,

, and .
Similar to the temporal authorization model, we associate

a key with a spatial-temporal bounding box
. We use a broadcast protocol that is

very similar to that used in the temporal authorization model
in Section II. A broadcast includes .
Only an authorized subscriber can compute the encryption
key and thus decrypt the broadcast packet . We
construct the keys such that:

• Given , a user can efficiently derive
for all and

and .
• Given , it is computationally infeasible

for a user to guess if , ,
, , , or .

B. Key Management Algorithm

Let us suppose that denote the orthog-
onal domains. Without loss of generality, we assume that
the minimum and maximum values from a domain are
0 and , respectively. We construct a key tree starting
from the root element .
We divide each element
into elements as follows. The bottom left corner of
these bounding boxes can be compactly represented as
a Cartesian product as:

. Each bounding box is for size

. Given the lower left corner
and the size of each bounding box, one can easily determine
the top right corner. For each of these bounding boxes,
we derive keys as follows:
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TABLE IX
QUANTIFICATIONS: COMMUNICATION COST

TABLE X
QUANTIFICATIONS: COMPUTATION COST

TABLE XI
STORAGE COST

TABLE XII
COMMUNICATION COST

TABLE XIII
COMPUTATION COST

, where if
and , otherwise.

Tables XI–XIII respectively show the storage, commu-
nication, and computation cost incurred by our approach.
Note that the costs tend to grow exponentially in the number
of dimensions . For typical spatial-temporal-based LBS
applications, , and thus the cost of our key manage-
ment algorithms would be acceptably small. Note that
denotes the extent of an authorization on the th domain, and

denotes the size of the smallest
cached bounding box that includes the -dimensional coordi-
nate in the broadcast message.

C. Comparison With Group Key Management Approaches

In this section, we analytically compare the communication
cost incurred by the key management server using our approach
and the group key management approach. Let us suppose that
there are active subscribers in the system. When a new user

joins the system, the key management server needs to update
the group keys of all those users whose bounding box overlaps

with that of user . Let us suppose that denote
the average size of a subscription range along the -dimensions.
The subscription range along the th dimension is assumed to
be chosen uniformly and randomly from . Hence, the
probability that a subscription range of the new user overlaps
with an active user in the th dimension is (if,

). Note that if , then the probability of overlap
is one. The bounding boxes for a user and a user overlap if
their subscriptions overlap on all the -dimensions. Hence, the
probability that the bounding box of a new user overlaps with
some active user is given by

(5)

Therefore, the key update cost is . For every user
whose subscription range overlaps with user , the key server

has to break up the bounding box into an average of subboxes.
Fig. 3 illustrates the creation of new subboxes as new users join
the system for a ( )-dimensional domain. The size of the
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Fig. 3. User join: Group key management.

TABLE XIV
� � �� � ���

TABLE XV
� � �� � � ��

average key update message for every overlapping user is
keys. Therefore, the total cost of a new user join using the group
key management is

(6)

The cost of a new user join in our key management protocol is

. The ratio of the costs is

(7)

Let us suppose that the subscription range along each dimension
, and the maximum subscription range along each dimen-

sion . Then, the ratio becomes .
Now, setting , and , we observe that

is smaller than 1 only if . Tables XIV
and XV show the maximum value of for ( )-dimensional
domain such that for different values of
and .

V. PARTIAL-ORDER TREES

A. Overview

So far, we have studied applications of our key management
to multidimensional domains wherein each domain has a
well-defined total order. One can easily extend our algorithm
to operate on domains that only have a partial order defined
on them. We motivate an application of our algorithm using
spatio-quality access control on services like Google Earth.

Informally, a spatio-quality authorization is specified by a five
tuple: , where denotes the
spatial bounding box, and denotes a quality of the image.
Typically, one can build a partial-order tree on the quality by
moderating the resolution, smoothness of the image. A satellite
image of the Earth broadcast by a public service should be
intelligible to a user only if the coordinates of the broadcast
image is within and the image quality ,
where is overloaded to operate on the partial order defined
on the quality domain.

Similar to the multidimensional authorization model,
we associate a key with a spatial-quality
bounding box . We use a broadcast pro-
tocol similar to Section II. A broadcast packet includes

. Only an authorized subscriber can
compute the decryption key and thus decrypt the
broadcast packet . We construct the keys such that:

• Given , a user can efficiently derive
for all , , and

.
• Given , it should be computationally infea-

sible for a user to guess if , ,
, , or .

B. Key Management Algorithm

The key idea of our approach is to map the partial-order tree
into a totally ordered numeric range , where is a
sufficiently large integer. Let denote the root element in the
partial order. If the partial order has more than one root ele-
ment, we follow the same procedure for every such maximal
root element. We associate a totally ordered numeric range with
every element in the partial order. First, we associate the range

with the root element . We define a minimal sub-
missive set for every element in the partial-order domain PO
as

We partition the range associated with for each element
. Let denote the range associated with

the element . We partition this range into
equally sized subranges and associate a distinct subrange
with every element . We repeat this process
recursively starting from the root element and its associated
range . The range assignment maintains the prop-
erty that if and only if . Fig. 4
illustrates range assignment for a small partial-order domain

such that
and .

We associate a key with the element . We derive
this key from the root key, namely , using the same re-
cursive formulas shown in (1). This key derivation ensures that

can be efficiently derived from if and only if
. Combining this with our assignment of

ranges to each element in the partial-order tree, one can show
that can be efficiently derived from if and only
if in the partial-order domain. Fig. 4 shows the assign-
ment of authorization keys in a partial-order domain. Table XVI
shows the computation cost of our approach, where de-
notes the depth of on the partial-order tree; note that
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TABLE XVI
COMPUTATION COST

TABLE XVII
� � �� � ���� � ���

Fig. 4. Partial-order trees.

the computation and storage cost at both the KDC and user is
.

C. Comparison With Group Key Management Approaches

A cost analysis for our key management algorithm on par-
tial domains is similar to that for a totally ordered domain. We
compute the probability that the subscription of a new user
overlaps with some active user as in

(8)

We use as the probability distribution of user
subscriptions over the partially ordered domain PO. Then, fol-
lowing the same lines of argument as in Section IV (using

), one can show that cost ratio of our approach to the
group key management approach is

(9)

where is the average height of the partial-order tree. The cost
ratio as shown in (9) attains a minimum value when
is minimum. Evidently, this is achieved when, for any

such that , neither nor . Hence,
is given by . Given that

, one can show that achieves an
absolute minima when is uniformly and randomly dis-
tributed; that is, for all , where
denotes the size of the partial-order domain PO. The absolute
minima is given by .

However, assuming that no two are related
by the operator , using a uniform and random distribution
of may not be realistic. We relax the first constraint
and assume that is uniform and random and that the
partial-order tree is a -ary tree of height . One can show
that and

, where denotes the depth of in the
partial order . Hence, the probability of overlap
in a -ary tree is

(10)

Observe that this probability is times larger than
the absolute minima. Note that as increases, the probability
of overlap decreases. However, the height of an -ary tree is

. Plugging this into (9), the cost ratio between the
group key management protocols and our approach is:

. Observe that the cost ratio is independent of the
parameter .

Now, we relax the second constraint and assume that
no are related by the operator while using
nonuniform distributions (like truncated Geometric, discrete
approximation to Gaussian and Zipf) for the function .
Table XVII summarizes our results for different parameters of
these distributions for and . Observe that
as the standard deviation increases, the probability of overlap
between two subscriptions decreases, thereby reducing the cost
of the group key management algorithms. One the other hand,
our approach incurs a small and a constant (nearly) cost that is
completely agnostic to the distribution of user subscriptions.

VI. EXPERIMENTAL EVALUATION

We have implemented our key management algorithms on
the Siena publish-subscribe network [15]. Siena is a wide-area
publish-subscribe network that allows events to be disseminated
from an LBS server (publisher) to a geographically scattered
group of subscribers. We used GT-ITM [34] topology gener-
ator to generate an Internet topology consisting of 63 nodes.
The round-rip times on these links varied from 24–184 ms with
mean 74 ms and standard deviation 50 ms. We constructed a
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Fig. 5. Scalability issue with group key management protocols.

complete binary tree topology using 63 nodes. The tree’s root
node acts as the LBS server, 32 leaf nodes act as subscribers, and
30 nodes operate as routing nodes. We ran our implementation
of STauth on eight 8-processor servers (64 CPUs) (550-MHz
Intel Pentium III Xeon processors running RedHat Linux 9.0)
connected via a high-speed LAN. We simulated the wide-area
network delays obtained from the GT-ITM topology generator.

All experimental results presented in this section were
averaged over five independent runs; each run represents an
hour-ong experiment on our publish-subscribe network that
measures various performance metrics such as throughput and
response time. We simulated a spatial-temporal space of volume
1024 1024 1024. The size of a subscription range (along
each dimension) was chosen using a Gaussian distribution
with mean 256 and a standard deviation 64. The subscription
boxes (left bottom corner) for the spatial coordinates were
chosen using a 2-dimensional Gaussian distribution centered at
coordinate (512, 512), while that for the temporal coordinate
was chosen uniformly and randomly over (0, 1024). Each LBS
broadcast message was assumed to be of size 1 kB.

In this section, we show two experimental results. First, we
compare our proposals with traditional group key management
approaches. We demonstrate the scalability problems in group
key management protocols by measuring the number of groups
that need to be managed by the KDC; we measure the over-
head of our algorithms over the insecure LBS system in terms
of its throughput and latency; and we demonstrate the low jitter
and purported future keys based DoS attack resilience proper-
ties of our protocols in comparison with the group key manage-
ment protocols. Second, we compare our approach with recently
proposed key management algorithms [7]–[9] for temporal and
geospatial access control. Third, we describe an implementa-
tion of our spatial-quality key management algorithms using the
Google Maps API. We show that our approach incurs minimally
on page load time while enforcing spatial-quality access control
on maps.

A. Group Key Management Protocols

Scalability. Fig. 5 demonstrates the lack of scalability in tra-
ditional group key management protocols. The figure shows the
number of groups that need to be managed by the KDC versus
the number of subscribers for different values of dimension-
ality . Even for 32 subscribers, the number of managed groups
may be of the order of with . Our analysis indicates
that even for a modest set of 1000 subscribers, the number of
managed groups could be about .

Throughput and Latency. Figs. 6 and 7 show the throughput
and latency of LBS broadcasts, respectively. We observe that

Fig. 6. Throughput versus number of subscribers.

Fig. 7. Latency versus number of subscribers.

Fig. 8. Resilience to DoS attacks.

the throughput loss due to our key management algorithm is
very small when compared to the insecure Siena network. The
increase in latency due to our key management algorithm can
be attributed almost entirely to the encryption and decryption
costs; the key management costs account for less than 12% of
the overhead. Traditional group key management protocols on
the other hand incur a significant drop in throughput (62.5% for

) and increase in latency as the number of subscribers
increases (52% for ). Our simulation results indicate
that for subscribers, the throughput drop is about
99.96% and the increase in latency is about 140 times.

DoS Attack. Fig. 8 shows the jitter (standard deviation in
interpacket arrival times) in LBS broadcasts. The jitter added
by our key management protocol, even when under a DoS at-
tack (purported future-key-based DoS attack), is only a few tens
of milliseconds, which is less than 3% of the mean latency.
On the other hand, the jitter incurred by traditional group key
management protocols, even in the absence of DoS attacks, is
about 22%, and under a DoS attack is about 200%. This clearly
demonstrates the vulnerability of traditional group key manage-
ment protocols to the purported future-key-based DoS attack.
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Fig. 9. Number of subscriber keys.

B. Temporal and Geospatial Access Control

In this section, we compare our key management algorithms
with other hierarchical key derivation algorithms (TAC [7]–[9]).

Number of Keys. Fig. 9 shows the number of keys main-
tained by a subscriber (incurred by both STauth and TAC). We
observe that the number of subscriber keys incurred by the TAC
is a constant, while that in the STauth approach grows loga-
rithmically with the size of the dimension . Hence, TAC
requires a subscriber to maintain fewer keys. Fig. 13 shows the
size of public storage incurred by TAC; note that STauth re-
quires no public storage.TAC requires public storage whose size
is at least proportional (where is the number of dimen-
sions). Fig. 13 shows that the size of public storage can grow
prohibitively large for large dimensions and the number
of dimensions .

Key Derivation Cost. Figs. 14 and 15 show the computation
and communication cost incurred during key derivation. Recall
that the key derivation cost is incurred on the receipt of each
broadcast packet. We observe that the STauth approach incurs
marginally higher computation cost (in microseconds). Further-
more, one can use the key-caching-based approach described
in Section II to reduce the key derivation computation cost to
a small constant in the STauth approach. On the other hand,
TAC incurs communication cost during key derivation; though
the per-subscriber communication is small (few 100 bytes), the
aggregate load on the public storage grows linearly with the
number of subscriber in the network. This can additionally in-
crease application-level latency and jitter and may render the
network vulnerable to DoS attacks on public storage.

C. Spatial-Quality Access Control

In this section, we describe an implementation of our al-
gorithms for spatial-quality key management (see Section V)
on Google Maps [3]. Recall that a spatial-quality authoriza-
tion is specified by a five tuple: , where

denotes the spatial bounding box, and
denotes quality (of the map in this scenario). We implemented
STauth using JavaScripts (AJAX model) that export three in-
terfaces: boolean boundingBox (coordinates,
quality, authBox) checks if (coordinates,
quality) of a tile file belongs to the client’s spatial-quality
authorization box authBox; key deriveKey (coordi-
nates, quality) derives the decryption key for a given
coordinate and quality tuple; and boolean decryptImage
(map, key) decrypts the map image using key.

Before we describe our implementation, we provide a brief
overview of Google Maps. There are three coordinates in
Google Maps: tile, pixel, and zoom level. Google Maps divides

Fig. 10. Zoom level 2: 16 tiles.

Fig. 11. Zoom level 12: Access permitted.

the entire Earth into multiple square tiles. Each tile consists
of 256 256 pixels irrespective of the zoom level. At zoom
level , the Earth is divided into tiles .
When transitioning from zoom level to , each tile is
divided into four quadrants, thereby, doubling the pixel space
in both the - and -axis. Fig. 10 shows that at zoom level 2,
the Earth is divided into tiles. We note that the way
Google Maps divides Earth into tiles is exactly identical to
our approach of defining and partitioning a 2-dimensional
bounding box . We treat the zoom level as a
totally ordered quality dimension; the higher the zoom level,
the better the quality.

Fig. 16 shows a code snippet of a JavaScript-based implemen-
tation of our access control algorithm using the Google Maps
API. The Web server (Apache HTTPD [1]) serves tiles as image
files; tiles are indexed by their center (latitude, longitude) and
the zoom level. The server applies our key management algo-
rithms to derive the encryption key for each tile and encrypts
the tile (image file) with the corresponding key. In response to
a client’s (Web browser: FireFox or Microsoft IE) request, the
server returns an encrypted tile file. The client checks if the tile
belongs to its authorized bounding box (authBox). If so, the
client derives the decryption key, decrypts the tile file, and ren-
ders the image (see Fig. 11); otherwise, the client throws an alert
(see Fig. 12) indicating that the user is not authorized to view
the tile (at the requested zoom level).

Our initial experiments indicate the percentile overhead
added by our key management algorithms to the page load time
is about 0.72% (indicating that our key derivation cost is very
small). We also used a client side JavaScript to draw random
tiles and measured the throughput [number of Web pages per
second (WPP)]. We measured the drop in throughput at the
client as 0.4% and 0.44% using Mozilla FireFox and Microsoft
IE, respectively.
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Fig. 12. Zoom level 13: Not authorized.

Fig. 13. TAC: Size of public storage.

Fig. 14. Key derivation computation cost.

Fig. 15. Key derivation communication cost.

We note that the size of the spatial-quality dimension in
Google Maps is . While the total number keys
managed by the system is , STauth
incurs low overhead primarily because of its efficient key
derivation algorithm. The TAC approach incurs slightly lower
key derivation computation cost than the STauth approach;
however, the size of public storage using the TAC approach is

bytes TB. Hence, maintaining integrity of
public storage data and serving the data in real-time pose severe
challenges for the TAC approach.

Fig. 16. Spatial-quality access control using Google Maps API: JavaScript
code snippets.

VII. RELATED WORK

Broadcast encryption [22] is the problem of sending an en-
crypted message to a large user base (size ) such that the mes-
sage can only be decrypted by a dynamically changing priv-
ileged subset (size ). However, such schemes are de-
signed to operate in scenarios where ; for example, op-
timal LSD [19] broadcast encryption scheme requires message
headers of size . In the context of LBS, can be

, making it nontrivial to use traditional broadcast encryp-
tion schemes. More recently, Boneh et al. [11] have proposed
efficient schemes for subsets of arbitrary sizes. However, their
scheme still requires a message header of size and in-
curs the overhead of expensive pairing operations. In the con-
text of LBS, the broadcast messages are typically very small;
in energy-constrained wireless environments, it is important to
restrict message headers to size.

Group key management addresses the problem of sending an
encrypted message to a large and dynamic user base such that
the message can only be decrypted by the members of the user
base. In contrast to broadcast encryption, the parameter dy-
namically changes in a group key management system; how-
ever, there is no concept of a privileged subset of users in the
group. Significant amount of work has been done in the field of
group key management using the concept of a logical key hier-
archy [20]. Several papers [6], [13], [14], [24], [26], [29], [30],
[32] have developed interesting optimization techniques to en-
hance the performance and scalability of group key management
protocols on multicast networks. Some extensions to operate on
unreliable multicast channels are proposed in [26] and [33]. A
detailed survey along with comparisons among various group
key management protocols is described in [27]. Group key man-
agement protocols use message headers of constant size (unlike

in broadcast encryption), making them more suitable
for our target application. However, the cost of key management
(as demonstrated in Section VI) in the context of LBS is unac-
ceptably high.

Recently, several papers [7], [10], [16], [28] have proposed
to exploit the hierarchical structure of an authorization model to
develop more efficient key management schemes. Similar to [7]
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(which we compare to in this paper), the other schemes require
public storage that is at least linear in the size of the authoriza-
tion space. STauth also exploits the hierarchical structure of
the authorization model; it builds on the MARKS protocol [12]
and requires no public storage.

VIII. CONCLUSION

In this paper, we have presented STauth, a scalable key
management algorithm for enforcing spatial-temporal access
control on public broadcast services. Unlike traditional group
key management approaches, we exploit the spatial-temporal
authorization model to construct authorization keys using effi-
cient and secure hierarchical key graphs. We have shown that
our approach solves several drawbacks in traditional group key
management approaches, including poor scalability, vulnera-
bility to packet losses, failures in the presence of packet losses,
vulnerability to certain DoS attacks, and susceptibility to jitters
and delays. We have described a prototype implementation and
experimental evaluation that demonstrate our performance and
scalability benefits while preserving the security guarantees.
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