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Coverage-Time Optimization for Clustered Wireless
Sensor Networks: A Power-Balancing Approach

Tao Shu and Marwan Krunz

Abstract—In this paper, we investigate the maximization of the
coverage time for a clustered wireless sensor network by optimal
balancing of power consumption among cluster heads (CHs). Clus-
tering significantly reduces the energy consumption of individual
sensors, but it also increases the communication burden on CHs.
To investigate this tradeoff, our analytical model incorporates both
intra- and intercluster traffic. Depending on whether location infor-
mation is available or not, we consider optimization formulations
under both deterministic and stochastic setups, using a Rayleigh
fading model for intercluster communications. For the determin-
istic setup, sensor nodes and CHs are arbitrarily placed, but their
locations are known. Each CH routes its traffic directly to the sink
or relays it through other CHs. We present a coverage-time-op-
timal joint clustering/routing algorithm, in which the optimal clus-
tering and routing parameters are computed using a linear pro-
gram. For the stochastic setup, we consider a cone-like sensing re-
gion with uniformly distributed sensors and provide optimal power
allocation strategies that guarantee (in a probabilistic sense) an
upper bound on the end-to-end (inter-CH) path reliability. Two
mechanisms are proposed for achieving balanced power consump-
tion in the stochastic case: a routing-aware optimal cluster plan-
ning and a clustering-aware optimal random relay. For the first
mechanism, the problem is formulated as a signomial optimiza-
tion, which is efficiently solved using generalized geometric pro-
gramming. For the second mechanism, we show that the problem
is solvable in linear time. Numerical examples and simulations are
used to validate our analysis and study the performance of the pro-
posed schemes.

Index Terms—Clustering, coverage time, generalized geometric
programming, linear programming, sensor networks, signomial
optimization, topology control.

I. INTRODUCTION

A. Motivation

T HE rapid transition to nanoscale ICs has led to the inte-
gration of high-performance processors and high-speed

digital wireless communication circuits. Coupled with advances
in microelectromechanical systems, such integration has paved
the way for the deployment of dense wireless sensor networks
(WSNs). These networks are expected to play an important role
in a wide range of civilian and military applications, including
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environment monitoring, seismic-structure analysis, marine
microorganisms research, surveillance and reconnaissance, etc.
[2]. For harsh, inaccessible deployment scenarios, sensors are
necessarily powered by energy-constrained, often nonrecharge-
able batteries [17]. This makes energy consumption a critical
factor in the design of a WSN and calls for energy-efficient
communication protocols that maximize the lifetime of the
network.

For a large WSN, sensors are often hierarchically organized
into clusters, each having its own cluster head (CH) [17]. Within
a cluster, sensors transmit data to their CH, which in turn for-
wards the data (or a fused version of it) to the sink, either di-
rectly or via a multihop path through other (intermediate) CHs.
Such an architecture is adopted by recent standard specifica-
tions for sensor networks (e.g., the 802.15.4 standard [1] and the
ZigBee Alliance specifications). It significantly reduces the bat-
tery drainage of individual sensors, which only need to commu-
nicate with their respective CHs over relatively short distances.
It also has other advantages in terms of simplifying network
management, improving security, and achieving better scala-
bility. On the other hand, the clustering paradigm increases the
burden on CHs, forcing them to deplete their batteries much
faster than non-CH nodes. The additional energy consumption
is attributed to the need to aggregate intracluster traffic into a
single stream that is transmitted by the CH and to relay inter-
cluster traffic of other CHs. Such relaying is sometimes desir-
able because of its power-consumption advantage over direct
(CH-to-sink) communication. Given the high density of sensors
in common deployment scenarios, the traffic volume coming
from a CH can be orders of magnitude greater than the traffic
volume of an individual sensor. Even though the CH may be
equipped with a more durable battery than the individual sensors
it serves, the large difference in power consumption between the
two can lead to shorter lifetime for the CH. Once the CH dies,
no communications can take place between the sensors in that
cluster until a new CH is selected.

For clusters with comparable area coverage and node den-
sity, the volume of intracluster traffic is roughly the same for
all clusters. On the other hand, the traffic relayed by different
CHs is highly skewed; the closer a CH is to the sink, the more
traffic it has to relay, and thus the faster it drains its energy reser-
voir. Such an imbalanced power consumption situation is es-
sentially caused by the many-to-one communication paradigm
in WSNs, i.e., traffic from all sensors is eventually destined to
the sink (see Fig. 1). If we do not take measures to deliberately
balance power consumption at different CHs, a “traffic implo-
sion” situation will arise. More specifically, CHs that are closest
to the sink will exhaust their batteries first. Reassigning sen-
sors to the next-closest CHs to the sink will simply increase the
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Fig. 1. Traffic implosion in WSNs.

energy consumption of these CHs. As a result, they will even-
tually be the second batch of CHs to run out of energy. This
process continues to the next level of CHs, propagating from
inside out and eventually leading to early loss of coverage and
partitioning of the topology. Our goal in this paper is to design
optimal power-allocation strategies that address this imbalance
by maximizing the coverage time, defined as the time until one
CH runs out of battery2 These strategies deliberately offset the
impact of the skewed load by appropriately adjusting the trans-
mission range (equivalently, transmission power, cluster size)
of different CHs. Because the volume of relayed traffic is also
affected by the underlying routing scheme, a joint routing/clus-
tering design methodology is needed to achieve power balance
among CHs.

B. Related Work

Extensive research has been dedicated to the study of clus-
tering algorithms for ad hoc and wireless sensor networks. Early
clustering algorithms mainly focused on the connectivity issue
(e.g., [5], [13], [14], [18], [19], [24], and [25]), aiming at gen-
erating the minimum number of clusters that ensures network
connectivity. In these algorithms, the election of the CH is done
based on node identity [5], [13], [19], connectivity degree [14],
or connected dominating set [18], [24], [25].

Recently, there has been increased interest in studying en-
ergy-efficient clustering algorithms, in the context of both ad
hoc and sensor networks [3], [4], [6], [7], [9], [15], [16], [20]. In
[16], the authors proposed the LEACH algorithm, in which the
CH role is dynamically rotated among all sensors in the cluster.
Energy is evenly drained from various sensors, leading to im-
proved network lifetime. A similar CH-scheduling scheme was
proposed in [20] for a time-slotted WSN. In this scheme, sev-
eral disjoint dominating sets are found and are activated succes-
sively. Nodes that are not in the currently active dominating set
are put to sleep. A distributed algorithm was proposed to obtain
a set-schedule sequence for which the network lifetime is within
a logarithmic factor of the maximum achievable lifetime. In gen-
eral, rotation-based schemes require excessive processing and
communication overheads for CH reelection and broadcasting
of the new CH information.

“Load-balanced” algorithms (e.g., [3], [4], and [15]) focus
mainly on balancing the intracluster traffic load and ignore
intercluster traffic. In [15], sensors are clustered according to

2Other definitions for coverage time may also be used, such as the time until
�� of coverage is lost or the time until the network is partitioned. Such defini-
tions will be considered in a future work.

“load-balancing” metrics, whereby the traffic volumes origi-
nating from various clusters are equalized. The authors in [3]
extended the work in [15] by integrating the concept of load
balancing into traditional node-id/connectivity-degree based
clustering to produce a longer CH lifespan. In [4], the max-min

-cluster algorithm was proposed to extend the traditional
one-hop cluster to a -hop cluster while generating load-bal-
anced clusters. This extension achieves better load balancing
using fewer clusters.

Distributed clustering algorithms were proposed in [6] and
[7], with the objective of minimizing the energy spent in com-
municating information to the sink. It should be noted that min-
imizing the total energy consumption is not equivalent to max-
imizing coverage time, as the former criterion does not guar-
antee balanced power consumption at various CHs. By shifting
the load from over-power-drained CHs to under-power-drained
CHs, coverage time can be maximized even though the total
power consumption is not necessarily minimal.

In [9], the authors proposed clustering algorithms that max-
imize network lifetime by determining the optimal cluster size
and optimal assignment of nodes to preselected CHs. Their ex-
haustive-search approach assumes full knowledge of the net-
work topology (i.e., the location of each sensor node and each
CH in the network). It also ignores intercluster traffic.

The scheme in [21] incorporates the impact of intercluster
traffic in determining the optimal location of the sink so as to
maximize the topological lifetime of the network. Power bal-
ance among CHs was not considered. To the best of our knowl-
edge, no previous work has adequately addressed power bal-
ancing among CHs.

C. Main Contributions and Paper Organization

The main contributions of this paper are as follows. First, as
an alternative to previous “load-balanced” algorithms, we study
a “power-balanced” approach that aims at directly optimizing
coverage time by accounting for the interaction between clus-
tering and routing, i.e., simultaneously taking into considera-
tion the impacts of both intra- and intercluster traffic. Secondly,
in contrast to previous algorithms, which are based on heuris-
tics, ours is based on an analytical approach. Depending on the
availability of location information, we consider in our analysis
both deterministic and stochastic topology models. In the deter-
ministic case, sensors and CHs are arbitrarily placed, but their
locations are known. The traffic of a CH (which includes intr-
acluster traffic plus relayed traffic from other CHs) is delivered
to the sink either directly or via other CHs. Using linear pro-
gramming, we provide an algorithm for joint optimization of
cluster sizes and the CH-to-CH routing matrix. More emphasis
is then put on the stochastic case, where sensor locations are
not available beforehand. In this case, we consider a sensing re-
gion with uniformly distributed sensor nodes. Our analysis guar-
antees an upper bound on the reliability of the multihop path
from the originating CH to the sink. Two schemes are proposed
for achieving power-balanced communications: routing-aware
optimal cluster planning and clustering-aware optimal random
relay. The first scheme is essentially a clustering approach that
is developed in the context of shortest hop inter-CH routing.
For this scheme, coverage-time maximization is formulated as a
signomial optimization problem that is efficiently solved using
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generalized geometric programming (GGP) techniques. The op-
timal cluster sizes are obtained from this analysis. The second
scheme is essentially a routing strategy for a given clustering ap-
proach, e.g., a “load-balanced” clustering, where all clusters are
of the same size. According to this approach, a CH probabilisti-
cally chooses to relay the traffic to any neighboring “uplink” CH
in the direction of the sink. The “optimal” relaying probabilities
to various neighbors are derived through linear programming.

Numerical examples and simulations are used to validate our
analysis and compare our proposed schemes with pure “load-
balancing” algorithms. Our results indicate that by accounting
for the interaction between clustering and routing, the proposed
schemes achieve a significant reduction in energy consumption
and an improved coverage time for the two considered network
models.

The rest of this paper is organized as follows. In Section II, we
consider the coverage-time maximization problem when loca-
tion information is available (deterministic case). After defining
the network and traffic models, we present a linear program
for finding the optimal clustering and routing parameters. In
Section III, we consider the stochastic case. The optimization
is carried out under two different clustering/routing scenarios.
In Section IV, we validate our analysis using numerical exam-
ples and computer simulations. Section V concludes this paper.

II. COVERAGE-TIME OPTIMIZATION FOR DETERMINISTIC

DEPLOYMENT

A. Network Model

We consider a WSN that consists of two types of nodes:
Type-I and Type-II nodes. Type-I nodes, which are called
sensing nodes (SNs), are responsible for sensing activities.
Such nodes are small, low cost, and disposable. They can be
densely deployed across the sensing area. Neighboring SNs are
organized into clusters. A Type-II node has a more powerful
energy source and a stronger computing capability and is
designated as a CH. Type-II nodes are responsible for receiving
and processing the sensing outcomes of SNs. A CH may collect
data from intracluster SNs, conduct signal processing (a.k.a.,
data fusion) on these raw data to create an application-specific
view of the cluster, and then relay the fused data to the sink
through intermediate CHs.

Let the numbers of these two types of nodes be and , re-
spectively. Suppose that the nodes are arbitrarily placed
but their locations are known. No assumptions are made on the
shape of the sensing region. The availability of location informa-
tion is an appropriate assumption in many applications of WSNs
(e.g., static WSNs in open regions). It can also apply to networks
where sensors are first randomly deployed but later their loca-
tions become known, for example, through GPS-assisted mech-
anisms. Each sensing node (for brevity, a sensor) is assigned to
one CH. The sensor generates traffic at an average rate of bits/s
and sends it to its CH, which in turn delivers it to the sink (which
we designate as the ( 1)th CH) directly or through other CHs
(see Fig. 1). We assume that each sensor has sufficient energy
to communicate directly with its CH. This could be done by ei-
ther transmitting at a high enough transmission power or using
a low enough transmission rate (and thus a longer duration for
each transmitted bit). Furthermore, we assume that the CH de-
pletes its energy at a much faster rate than the sensors it serves.

This assumption is justified by the low data rate and duty cycle
of commonly used sensors (i.e., for most of the time, the sensor
is put to sleep, in contrast to the CH, which is active most/all the
time). Accordingly, we focus our attention on energy depletion
at CHs. From a strategic point of view, a CH is more critical to
the coverage of the network than individual sensors.

B. Channel Model

We use a Rayleigh fading model to describe the channel be-
tween two CHs and also between a CH and the sink. At a trans-
mitter–receiver separation , the channel gain is given by

(1)

where is the path loss of the close-in distance
, is the antenna gain of the transmitter, is the antenna

gain of the receiver, is the wavelength of the carrier frequency,
is the path loss exponent ( ), and is a normalized

random variable that represents the fluctuations in the fading
process. Under the assumption of Rayleigh fading, is expo-
nentially distributed.

Because is random, the received signal is also random.3
Hence, correct reception of a signal can be guaranteed only on a
probabilistic basis. In our work, we require that

for reliable reception, where is the energy of the received
signal, is a predefined energy threshold, and is a desired
link reliability factor.

C. Joint Clustering/Routing Optimization

For , let be the total intracluster traffic col-
lected by the th CH (in bits/second). The clustering vector is
defined as . Note that by construction, the size
of cluster , i.e., the number of sensors associated with CH , is

. For and , with
, let be the intercluster traffic that is relayed from CH

to CH . The routing matrix is the 1 matrix
of elements , , and . We let

. Our goal is to determine the optimal clustering vector
and routing matrix that maximize the coverage time.
Let be the average power consumption of the th CH.

can be written as

(2)

where and are the per-bit energy consumed in the receive
and transmit circuits, respectively, and is the over-the-air
RF energy consumed when transmitting one bit from CH to
CH . The three terms in (2) represent, respectively, the power
consumption in the receive circuit, the transmit circuit, and the
radio interface.

3Cost and energy considerations in WSNs prohibit the use of fast (intrapacket)
power control to combat the fluctuations in channel fading, as is typically done
in cellular networks.
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Let be the distance between CHs and . Given and the
channel model in (1), the per-bit received energy is given
by

(3)

For a Rayleigh channel model, the link-reliability requirement
can be expressed as

(4)

From (4), we can express as

(5)

where is a constant. Accordingly, for
, (2) can be written as

(6)
Note that the unknowns in the above equation are the s and

s.
Let be the initial residual battery energy of the th CH,

. To maximize the expected coverage time, we
need to solve the following optimization problem:

maximize (7)

When CHs are initialized with identical batteries, i.e.,
for all , the optimization problem in (7) is equivalent to

minimize (8)

Hereafter, we focus on (8). The problem constraints are as fol-
lows. For CH , , the following intercluster flow
constraint must be satisfied:

(9)

where is the data aggregation (fusion) efficiency
factor that represents the compression effect over the collected
intracluster traffic. In addition, the traffic collected by all the
CHs over a given time duration must be equal to the traffic gen-
erated by all the sensors in the same time duration, i.e.,

(10)

Introducing an auxiliary variable , where
, the objective function (8) and the

constraints (9) and (10) can be transformed into the following

TABLE I
PSEUDOCODE FOR INITIAL NODE ASSIGNMENT (CLUSTERING) FOLLOWING

THE COMPUTATION OF �

linear programming (LP) problem in , , and :

minimize
such that

and
(11)

Using standard LP techniques, the above problem can be easily
solved for and .

We now comment on the computational complexity of the
above formulation. It is well known that, in general, the worst
case execution time of an LP problem is , where is the
number of variables in the problem. An inspection of the LP
problem in (11) reveals that for a WSN of CHs, the total
number of variables is . A closer examination of
(11) reveals that this problem exhibits a sparse structure, which
can be exploited by many LP solvers to significantly reduce
the solution time. More specifically, for a WSN of CHs, the
total number of constraints in (11) is 2 . In each constraint,
the number of variables is not more than 2 . The sparsity of
the problem is clear because the number of constraints and the
number of variables that appear in each constraint is orders of
magnitude smaller than the total number of variables. This sparse
structure implies that in practice the solution time of the problem
is much shorter than the worst case running time of .

D. Clustering Algorithm

Let be the resulting optimal clustering
vector. For , CH is assigned
sensor nodes. Node assignment is done as follows. Sensor
nodes are considered sequentially, one at a time. A given
sensor is assigned to the closest CH, say, , provided that the
number of assigned sensors to CH does not exceed . If
it does, then the next closest CH is considered, and so on. A
pseudocode of the algorithm is given in Table I. Note that
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TABLE II
POSSIBLE OUTCOMES OF NODE SWAPPING

depending on the order in which sensors are considered in the
algorithm, different assignments (clusters) may be produced.
These assignments achieve the same coverage time, i.e., each
of them minimizes the maximum power consumption among
CHs. However, they differ in the total energy consumption
of individual sensors.

The algorithm can be easily refined to reduce the total
sensor-energy consumption of the initial node assignment. This
is done as follows. First, we use the algorithm in Table I to
produce an initial assignment. Such an assignment is optimal
with respect to (11) but is not necessarily unique. Then, we
consider swapping the cluster assignment of all pairs of sensors
that belong to different clusters if this swapping results in
a reduction in the total sensor-energy consumption in the
network. Note that such swapping does not change the energy
consumption of the corresponding CHs or the values of the

s. For each sensor in the first initial cluster, the number of
pairs to be considered for swapping is , for a total
of for all the sensors in the first cluster. For
the second cluster, there are pairs to
consider. A simple combinatorial argument shows that the
total number of pairs to consider is bounded by , which
is of low complexity.

We use the following example to illustrate the above node-
swapping process. Consider a network of three CHs (CH1,
CH2, CH3) and four SNs ( ). For SN , we use
the triple to indicate the per-bit energy consumption
of node when is assigned to one of the three CHs. For
example, (2, 4, 1) means that SN requires 2, 4, and 1
J/bit to communicate with CH1, CH2, and CH3, respectively.
Suppose that the per-bit energy consumptions of various SNs
are , (2, 4, 1), (1, 3, 1), and (2, 5, 4). Suppose that
to achieve optimal clustering, CH1, CH2, and CH3 should be
assigned two, one, and one SNs, respectively. According to the
sequential node assignment procedure, the initial node-to-CH
assignment is given by CH1, CH2, and

CH3, yielding a total energy consumption of 10 J/bit.
Now, we conduct node swapping between CH1 and other CHs.
Four possible assignments can result from such swapping,
as shown in Table II.

The second assignment produces the least energy con-
sumption. Starting from this assignment, we then consider
swapping nodes between CH2 and CH3. Here, there is only
one permutation to consider: CH1, CH2,

CH3, for a total energy consumption of 12 J/bit. Be-
cause the total SN energy consumption under this assignment
goes up, we stay with the previous assignment (number 2 in
Table II). There are no more combinations to consider, so the
assignment CH1, CH2, and CH3 is
finally adopted, yielding a total energy consumption of 8 J/bit,
which amounts to 20% reduction compared with the initial
node assignment.

III. COVERAGE-TIME OPTIMIZATION FOR RANDOM

DEPLOYMENT

We now consider the case when the locations of individual
sensors are not known. The coverage time of the network is op-
timized by controlling the location and routing parameters of the
CHs. To proceed with our analysis, some simplifying assump-
tions have to be made.

A. Network Model

We consider a cone-like sensing region of radius and
angle . The sink is located at the vertex, as shown in Fig. 2.
The region may be either an isolated sensing field or a part
of a larger sensing field of a general shape (see remark later in
this section). The cone-like geometry, albeit idealistic, serves as
a basis for understanding the intrinsic tradeoffs involved in a
joint clustering/routing optimization framework. In addition, it
still captures the fundamental traffic-implosion phenomenon in
general WSNs. It has been widely used in the analysis of sensor
networks. For example, a circular region (which is a special case
of a cone) was recently used in [10] and [22].

Sensors are uniformly distributed across with density .
Due to energy considerations, only those sensors within distance

from the sink can communicate directly with the sink; all
other sensors are organized into clusters, and they communicate
their data through their respective CHs. Like many distance-
based (or, equivalently, received-signal-strength-based) cluster
formation algorithms, we assume that each CH is located at the
center of its cluster.

The procedure for cluster formation consists of two steps: the
deployment of CHs and the assignment of sensors to CHs. Be-
cause of the symmetric nature of the area and the uniform dis-
tribution of sensors, the formation of clusters is also symmetric,
i.e., any two CHs with the same distance to the sink should
have the same coverage. Such clusters are said to be of the same
type. Suppose there are types of clusters in the network. We
consider the following clustering approach: sensors whose dis-
tances to the sink fall in are organized into clusters of
the th type, where and

. As a result, clusters of the th type cover the th ring, de-
fined by the area .
Accordingly, the CHs of the th ring are placed along the circle

with equal spacing between consecu-
tive CHs, where . A sensor located in the th ring
is assigned to the nearest CH in the same ring. In the analysis,
we assume that a sufficiently large number of CHs are placed in
each ring such that the area covered by each CH can be approx-
imated by a small circle, as shown in Fig. 2. Such a ring-based
model enables us to analytically capture the relationship be-
tween the traffic volume relayed by a CH and the CH’s distance
to the sink. Our subsequent optimization treatment is based on
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Fig. 2. Cluster formation in a cone-like region.

Fig. 3. Shapes that can be approximated by a cone.

this relationship. In practice, the above clustering can be im-
plemented as follows. First, CHs are placed according to the
outcome of the optimization procedure. Then, each SN asso-
ciates itself with the CH from which it receives the strongest
beacon signal. In the simulations section, we test the validity
of this implementation approach and show that the perfect-ring
model assumed in the analysis has a negligible impact on net-
work performance. Unless indicated otherwise, we assume the
same channel and energy models used in the previous section.

Remark: Although our model assumes a cone-like sensing
area and a two-tier network structure, the analysis adequately
captures the intrinsic interaction between inter- and intracluster
traffic. In addition, we note that this cone shape is general
enough to approximate many other shapes. For example, as
shown in Fig. 3, a cone can approximate the shapes of circle,
triangle, square, and rectangle, respectively, when the angle
is properly set. The analysis can also be extended to handle
a nonregularly-shaped region by covering it with a series of
element shapes that can be approximated by cones, similar to
the approach used in cellular networks (in cellular networks, the
region is approximately covered by hexagons). A multilayered
organization of sensors, such as the “spine” hierarchy [11],
can also be accommodated in our analytical framework. In this
case, our analysis provides the optimal CH coverage time for
the “base” layers and a suboptimal coverage time for the whole
network. The details of such extensions are beyond the scope
of this paper and will be considered in a future work.

B. Routing Models

Our coverage-time maximization is carried out under two dif-
ferent routing models, which are described below. Because the
two models differ in the hop-count of the path from the source

CH to the sink, it is more appropriate to reflect the quality of the
communication in terms of a constraint on the probability
of a successful end-to-end reception. For a path of links that
experience independent and identically distributed (i.i.d.) fad-

ings,4 the link reliability should be at least .
1) Shortest-Distance Relay: In this scenario, traffic is relayed

through the closest CH in the adjacent ring towards the sink.
More specifically, a CH in the th ring receives traffic originating
from its own cluster as well as traffic relayed from CHs in the
( 1)th ring and forwards the combined traffic to the closest CH
in the th ring. Relaying continues hop-by-hop until the
sink is reached.

For the shortest distance relay, we consider a routing-aware
clustering mechanism that balances power consumption at dif-
ferent CHs. Clearly, the radius profile of the clusters, given by

, is critical to power con-
sumption at different CHs. For example, reducing
results in smaller clusters in the th ring, which leads to less
local traffic from these clusters, shorter transmission distances
to subsequent CHs in the 1 th ring, and a higher number
of CHs in the th ring. Because of the symmetry in the topology
and traffic load, the traffic from the CHs in the 1 th ring
will be evenly shared by a higher number of CHs in the th ring,
so the volume of the relayed traffic carried by individual CHs
in the th ring will decrease. All of these factors contribute to
a reduced power consumption at the CHs in the th ring. On
the other hand, the reduction in the area of the th ring must be
compensated for by other clusters (e.g., the clusters in the th
ring) because of the fixed number of rings in the system. In an
analogous manner, power consumption at CHs in ring will in-
crease. Therefore, by deliberately adjusting the cluster size in
different rings, a more balanced power consumption at different
CHs is achieved, leading to an increase in the coverage time.
This is addressed in the routing-aware optimal cluster planning
scheme presented in Section III-C.

2) Random Relay: In this scenario, a CH has the freedom to
relay its data to the closest CH in any of the inner rings (this
also includes the case of sending data directly to the sink). Let

be the fraction of the load that a CH in the th ring transmits
to the closest CH in the th ring, where and
denotes direct transmission to the sink. For a given clustering
structure that contains rings, the relaying matrix is defined
as follows:

...
...

...
...

...

(12)

where the th row of represents the probabilities for re-
laying a packet at the th ring to the closest CH in rings
0, 1, 1. The matrix plays a critical role in bal-
ancing power consumption at different CHs. For example,
increasing will reduce the relayed traffic carried by
all CHs in rings 1 2 1. But this comes
at the expense of higher power consumption at the CHs

4The assumption of i.i.d. link fadings is justified by noting that the distance
between consecutive CHs is much larger than the carrier wavelength for a
system operating in the 2.4 GHz frequency region, which is typical in current
WSN standards.
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in the th ring because of the longer transmission dis-
tance, which, on average, increases from approximately

to
. By deliberately adjusting

the relay probabilities at different CHs, a more balanced power
consumption at different CHs can be achieved.

In Section III-D, we propose a clustering-aware optimal
random relay scheme that addresses the problem of finding
the optimal relay matrix for a given clustering structure. More
specifically, we consider a homogeneous clustering structure,
i.e., , so that all
clusters roughly has the same number of sensors. This structure
is exactly the “load balanced” clustering presented in [15].
It is highly desirable in practice because of its simplicity.
Through numerical examples, we show that the proposed
clustering-aware optimal random relay scheme achieves longer
expected coverage time compared with pure “load balanced”
clustering.

Let be the average power consumption of a CH in the th
ring. For both routing strategies, we adopt the following energy
model:

(13)

where is the expected intracluster bit rate (in bits/second),
is the expected bit rate of the incoming intercluster traffic

that is to be relayed by the underlying CH, and is the
RF transmission power expressed as a function of the outgoing
bit rate and the employed routing scheme . The quantities
and were previously defined.

As in Section II-C, under the assumption of equal initial
battery energies, the coverage-time maximization problem is
equivalent to the following problem:

minimize (14)

where the optimization is carried out with respect to either
the clustering or the relaying parameters, depending on which
routing approach is employed, as explained next.

C. Routing-Aware Optimal Cluster Planning Scheme

In this section, we formulate the optimal cluster organiza-
tion problem in the context of shortest-distance (hop-by-hop)
routing. Under this routing scheme, a CH in the th ring trans-
mits its data to the nearest CH in the 1 th ring. Let be the
physical distance between these two CHs. The expected trans-
mission power is given by

(15)

where is the consumed transmission energy per bit for the
underlying CH. Substituting (15) into (13), the expected com-
munication power consumption of any CH in ring is given by

(16)

Given , the corresponding received energy is given by

(17)

The link-reliability requirement can be expressed as

(18)

Under min-hop routing, the maximum number of links of an
end-to-end path is . So to guarantee the constraint on path
reliability, the minimum link reliability must be

(19)

Equating (18) and (19), the minimum transmit energy per bit
that satisfies the end-to-end reliability requirement is given by

(20)

An approximation that provides an upper bound on the expected
coverage time can be obtained by replacing in (20) with a
lower bound that is given by

for
for .

(21)

This lower bound represents the sum of the radius of a cluster in
the th ring and the radius of the nearest cluster in the th
ring. It is easy to see that the distance between the CHs of the
corresponding two clusters is at least .

Let , , denote the bit rate of the aggregate
traffic that originates from the clusters in rings through .
Then

(22)

Because relaying is done hop-by-hop, the total traffic load car-
ried by the CHs in the th ring is equal to the total traffic volume
originating from all clusters in rings to . Due to the sym-
metry of the rings and the uniform distribution of sensors, the
traffic from the th ring is evenly distributed among all CHs in
that ring. The number of CHs in the th ring is approximately
given by

(23)

The quality of this (and other) approximations is evaluated in
Section IV through a comparison with more realistic simula-
tions.

Accordingly, the average traffic load at any CH in ring is
given by

(24)
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Substituting (24), (20), and (21) in (16), the expected power
consumption of any CH in the th ring can be approximated by
signomial functions5 of the radius profile .
More specifically, they are given by

(25)

and

(26)

Our goal now is to determine the optimal that minimizes
the average maximum power consumption among all CHs. This
optimization problem can be formulated as follows:

minimize
such that (27)

where , , are given by (25) and (26).
By introducing the auxiliary variable for ,

the optimization problem in (27) can be transformed into the
following equivalent form:

minimize
such that

(28)

An examination of (28) reveals that its objective function is
a monomial, the inequality constraints are signomials, and the
equality constraint is a monomial of the variables (refer to
the Appendix for the concepts of monomial, posynomial, and
signomial). Therefore, (28) is a signomial optimization problem
of the standard form [12]. Its optimal solution can be efficiently
found using GGP algorithms introduced in [12] and [23].

D. Clustering-Aware Optimal Random Relay Scheme

For a given clustering structure, i.e., under a given radius pro-
file , we now address the maximization of cov-
erage time by determining the optimal relay probabilities at dif-
ferent CHs. Recall that in this scenario, a CH in the th ring re-
lays its traffic to the closest CH in the th ring with probability

. To facilitate our analysis, we first introduce the variable ,
, and , which represents the aggregate

traffic (in bits/second) from the CHs in the th ring to the CHs
in the th ring. The basic idea is to first formulate the optimiza-
tion problem in terms of s. After the optimal flow parameters

s are obtained, the optimal relay probabilities can be simply

5See the Appendix for the definition of signomial functions.

calculated as

(29)

For the th ring, the aggregate traffic must satisfy the fol-
lowing flow-conservation constraints:

(30)

where denotes the aggregate traffic that originates from
the clusters in ring . It is given by

(31)

In addition, all data should be finally sent to the sink, i.e.,

(32)

By construction, the traffic load of the th ring is evenly
distributed among all CHs in that ring. Therefore, the average
traffic load at any CH in the th ring is given by

(33)

where is the number of CHs in the th ring, and its value is
given in (23).

Substituting (33) into (15), the average transmission power
for a CH in the th ring is given by

(34)

where , , is the transmission energy
per bit for relaying traffic from a CH in the th ring to its nearest
CH in ring . Following a similar development to the one in
Section III, is derived as follows:

for and (35)

where is the shortest distance between a CH in the th ring
and its nearest counterpart in the th ring. Keeping in mind the
symmetry of our topology, a lower bound on is simply given
by

for
for

(36)

The above analysis applies to any clustering technique. In the
special case of “load-balanced” clustering, i.e., each cluster is
of the same size and thus each ring has the same “thickness,”
this lower bound reduces to

for
for

(37)
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where now , for . To obtain a lower
bound on power consumption, can be used in place of
in (35).

In (35), the factor 1 is used instead of in (20)
to accommodate a worst case link reliability requirement. Recall
that in deriving (20), we split the end-to-end path reliability
among links, providing a conservative estimate of the link
reliability for each of the hops. In the case of the random
relay scheme, the traffic that is relayed to a CH in the th ring
from outer rings may have traversed from one to hops
before reaching the th ring. So if this traffic is to be transmitted
from the th ring to the th sink, its maximum hop count would
be 1 , which explains the appearance of this factor
in (35).

Substituting (33) and (34) into (13), the expected power con-
sumption of any CH in ring is given by

(38)

From (38), it is clear that for a given radius profile
, the expected power consumption at dif-

ferent CHs can be expressed as linear functions of the traffic
flows . Our goal is to determine the optimal values for
these flows that maximize the expected coverage time. This is
equivalent to the following min-max optimization problem:

minimize
such that

(39)

where the s are given in (38).
By introducing the auxiliary variable , (39) can be trans-

formed into the following equivalent optimization problem:

minimize
such that

(40)

An examination of (40) and (38) shows that this is a standard
linear programming problem, which can be solved using ex-
isting numerical algorithms such as Simplex. After obtaining
the optimal , the optimal relaying matrix can be calculated
according to (29).

Remark: As verified in Section IV, in most cases, the ob-
jective functions in (40) and (28) are minimized when power
consumptions at different CHs are equalized. This is because if
there is a CH with power that is larger than the power con-
sumption of other CHs, then can always be lowered without
violating the constraints by decreasing in (28) or in
(40), leading to an increase in the power consumption of some
other CHs. As a result, the maximum power consumption will
be minimized when a balance is reached across all CHs.

Fig. 4. Shortest distance relay scheme.

Fig. 5. Random relay scheme.

In addition, we note that the clustering-aware optimal
random relay algorithm can be easily used to tackle the sce-
nario in which the average traffic rate fluctuates over time (i.e.,
the traffic generation process is stationary only for a certain
time interval but becomes nonstationary over the lifetime of
the network). A sliding-window mechanism can be used to
decide the average traffic rate in each stationary time interval.
Whenever there is a significant change in the average load, the
optimization algorithm can be rerun to compute new values for
the routing parameters of the random relay scheme. This way,
the actions of each CH become adaptive to network dynamics.

IV. NUMERICAL RESULTS AND SIMULATIONS

A. Deterministic Scenario

We first consider a WSN for which the node-location infor-
mation is available (Section II). We start with a simple line
topology (Fig. 6) that is meant to demonstrate important aspects
of the power-balancing approach. The network is composed of
four CHs and 200 sensor nodes. The CHs and the sink are spaced
out evenly with 10 m between each other. Let bits/s,

, nJ/bit, m,
, , J, , and the car-

rier frequency be 2.4 GHz. Table III depicts the optimal clus-
tering vector and routing matrix, derived from (11). The pro-
posed power-balancing (PB) clustering approach is compared
with a load-balancing (LB) clustering approach [15] that uses
hop-by-hop traffic relay between consecutive CHs. In the LB
approach, the total intracluster traffic ( bits/s) is
split equally among the four CHs. Each CH relays its traffic to
the sink hop-by-hop through intermediate CHs. For example,
CH4 sends its 250 bits/s traffic to CH3, and CH3 in turn trans-
mits 500 bits/s to CH2, and so on.

As expected, the PB approach produces unequal cluster sizes
(second column in the table) but whose CH power consumptions
are equal (37.3 W). Power balance is achieved by assigning
more intracluster traffic (larger clusters) to CHs that are closer to
the sink. In contrast, the LB approach produces equal-size clus-
ters with variable CH power consumptions. Specifically, CH1
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TABLE III
COMPARISON BETWEEN POWER-BALANCING (PB) AND LOAD-BALANCING (LB) APPROACHES UNDER THE DETERMINISTIC SETUP (LINE TOPOLOGY)

TABLE IV
COMPARISON BETWEEN PB AND LB APPROACHES UNDER THE DETERMINISTIC SETUP WITH � � ��� bits/s (LINE TOPOLOGY)

Fig. 6. Line topology for a deterministic WSN.

has the highest power consumption, so it is the first CH to run
out of battery. Compared with the LB approach, the PB ap-
proach prolongs the coverage time by about 170%. The results
in Table III indicate that for the PB approach, direct CH-to-sink
communication is preferable (in terms of coverage time) over
multihop communications. At first this may be surprising, as the
channel nonlinearity suggests that a multihop path with short
distance per hop is more energy-efficient than a single-hop path
with a long transmission distance. However, the optimal struc-
ture of the above example can be explained by noting that the
optimization is performed under min-max power consumption
criterion. As a result, if a given solution requires some traffic to
be relayed between intermediate CHs, then we can always con-
struct another solution that requires a smaller maximum power
consumption than the original one. In fact, it is easy to show the-
oretically that under the min-max power consumption criterion,
for any line topology with no imposed limit on the cluster size,
direct CH-to-sink communication is the optimal strategy.

The optimization in Section II-C was carried out without im-
posing an upper bound on the number of sensors that can be-
long to a cluster. In practice, MAC considerations may require
imposing such a bound. To test the impact of imposing such a
bound, we consider a variant of the optimization procedure of
Section II-C, in which we let for all . Table IV de-
picts the resulting optimal clustering vector and routing matrix
for the same line topology and using bits/s (60
sensors/cluster). In this case, we notice that for the farthest CH
(CH4), some traffic is “optimally” delivered using multihop for-
warding via CH1 and CH2.

B. Stochastic Scenario

We now consider the stochastic scenario for a circular (
) sensing region. We study the performance of the optimal

cluster planning and optimal random relay schemes and contrast
them with the LB clustering approach. To get a clear picture of
the advantages of adjusting the routing parameters, we use LB

clustering for the random relay scheme. Recall that the analysis
in Section III was conducted under some simplifying assump-
tions (e.g., circular clusters, lower bounds on CH-to-CH dis-
tances, etc.). To validate the adequacy of our analytical results,
we contrast them with simulations conducted under a more real-
istic setup (explained below). For the two proposed schemes, we
use the analytical results to compute the optimal radius profile

and optimal relaying matrix . We use these optimal values
to drive the simulations of the two proposed schemes. Our main
performance metric is the maximum expected power consump-
tion of a CH, . The smaller the
value of , the longer the coverage time is. We set the radius
of the circular sensing region to m. Sensors are uni-
formly distributed throughout this region at density , i.e.,
the number of sensors in any area follows a spatial Poisson
distribution with parameter . The number of CHs in both the
analysis and the simulations is set to , where is ob-
tained from (23) and is given. The location of these CHs is
also taken to be the same for the analysis and the simulations.
However, in the simulations, clusters are not necessarily cir-
cular, and the notion of rings is not strictly followed. Instead,
each sensor in a given simulation run is assigned to the nearest
CH. As a result, two CHs that have the same distance to the sink
may have different cluster sizes. Each sensor generates data ac-
cording to a Poisson process of rate bits/s.6 Because
of the randomness in the traffic and node locations, the powers
consumed by different CHs that have the same distance to the
sink may be different in the simulations. In this case, is
taken as the maximum of , where is
the average power of a CH in the th ring. We take m,

, J, and .
Figs. 7 and 8 depict versus the number of rings ( )

for two path loss factors: and . The transmit-
plus-receive per-bit circuit energy is set to

nJ/bit. It is observed that the gap between the (approximate)
analytical results and the simulations is reasonably small for all
examined schemes, with the simulation results being slightly
more conservative than the analysis. The disparity between the
two is attributed in part to the approximate nature of the analysis
and in part to the randomness in the packet generation process

6The choice of the traffic model has no impact on the relative performance of
the investigated schemes. For this reason, we opted for a simple traffic model.
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Fig. 7. � versus number of rings (� � ��� nJ}/bit, � � �).

Fig. 8. � versus number of rings (� � ��� nJ/bit, � � �).

Fig. 9. Number of clusters versus number of rings.

and the distribution of sensors within a CH. When ,
both the optimal cluster planning and the optimal random relay
schemes result in significantly longer coverage times (smaller

values) than the LB scheme. For (Fig. 8), the op-
timal cluster planning scheme maintains its advantage, but the
optimal random relay scheme is shown to achieve only limited
power efficiency over LB clustering. This phenomenon can be
explained by comparing the optimal relaying matrices for
and . An example of these relaying matrices when
is listed below. It can be observed that when , the optimal
random relay scheme prefers to relay most traffic to the CHs in
the next ring towards the sink (the values along the diagonal of

are close to one). This is because now the total power con-
sumption is dominated by the transmission power ( ), which
is highly nonlinear in the transmission distance. As a result, for
the random relay scheme, only a small portion of the traffic
at each CH is transmitted across intermediate hops; the rest is
sent hop-by-hop, making the scheme’s behavior quite similar
to the LB scheme. Therefore, when is large, the flexibility in
choosing the next-hop CH offers little performance benefit

Fig. 9 depicts the total number of formed clusters ( )
versus the number of rings ( ) for the optimal cluster planning
and the LB schemes. In addition to achieving a lower value
(longer coverage time), optimal cluster planning results in a
smaller number of clusters and hence reduced network-manage-
ment overhead. The reduction in the number of clusters comes
from the improved energy utilization of underdrained CHs, i.e.,
in order to balance the power consumption of different CHs, an
underdrained CH tends to carry more intracluster traffic, hence
expanding the size of the cluster and reducing the number of
clusters required to cover the sensing region.

In Figs. 10 and 11, we study the effects of and when
. As shown in these figures, when is small, optimal

random relay generally achieves better coverage time (smaller
) than optimal cluster planning. As increases, the rela-

tive difference between these two schemes becomes more sig-
nificant. On the other hand, when is large, the optimal cluster
planning scheme becomes superior to optimal random relay.
This phenomenon can be explained as follows. When is small,
the circuit power in transmitting and receiving data is compa-
rable with the communication power consumption ( ). Be-
cause optimal cluster planning relies solely on shortest distance
hop-by-hop routing, whereas optimal random relay sometimes
bypasses intermediate hops and uses long-distance communi-
cation, the latter scheme reduces the circuit power overhead at
intermediate CHs. When increases, circuit power becomes
dominant, and multihop routes become less energy-efficient. On
the other hand, when is large, the total power consumption at
a CH is dominated by the communication power consumption,
which is highly nonlinear in the transmission distance. As a re-
sult, short-distance communication becomes more energy-effi-
cient. This drives the optimal random relay to use hop-by-hop
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Fig. 10. � versus circuit energy efficiency � (� � �, � � �).

Fig. 11. � versus circuit energy efficiency � (� � �, � � �).

routing in sending data. Thus its actual routing style becomes
less random and closer to that of optimal cluster planning. In this
situation, the latter scheme has an extra benefit in optimally or-
ganizing its clusters, thus achieving better energy performance.

In Figs. 12 and 13, we study via simulations the effect of bal-
ancing the powers across different rings. We measure the effec-
tiveness in the power balance using

The smaller the value of , the more balanced is power con-
sumption across different CHs (and the larger is the coverage
time). The figures indicate that in most cases, our analysis-based
optimization of the radius profile and relay probabilities leads to
a small (e.g., less than 0.1). However, Fig. 13 shows that for
a small and , the optimal random relay scheme ex-
hibits a relatively large (comparable with the value of for
LB clustering). This can be explained by noting that, for a small

, the length of each CH-to-CH hop is considerably larger than
the distance between the sink and a CH in the first ring. Under
a highly nonlinear channel attenuation model ( ), even if

Fig. 12. Normalized standard deviation of power consumption versus� (� �

��� nJ/bit, � � �).

Fig. 13. Normalized standard deviation of power consumption vs. � (� �

��� nJ/bit, � � �).

(i.e., no traffic is sent directly to the sink), the power
consumption for CH-to-CH relaying is still much larger than the
power consumption of a CH in the first ring. Consequently, no
power balance can be reached in this scenario. As we increase

, the distance of each hop decreases, so the power tradeoff
between relay and direct transmission becomes dominant in the
optimization, leading to a better power balance.

V. CONCLUSIONS AND FUTURE WORK

We considered the problem of coverage-time optimization
by balancing power consumption at different CHs in a clustered
WSN. Stochastic as well as deterministic network models were
investigated in our analysis. Our study demonstrates the signif-
icance of simultaneously accounting for the impacts of intra-
and intercluster traffic in the design of routing and clustering
strategies. For the deterministic-topology scenario, we pre-
sented a joint clustering/routing optimization based on linear
programming. For the stochastic scenario, two mechanisms for
balancing power consumption were studied: the (routing-aware)
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optimal cluster planning and the (clustering-aware) optimal
random relay. The control parameters in both mechanisms
(radius profile and relay probabilities) were optimized with
respect to the maximum power consumption of a CH. The opti-
mization problems were formulated as signomial optimizations
and linear optimization, which were efficiently solved using
generalized geometric programming and linear programming,
respectively. For tractability purposes, our analysis for the sto-
chastic model is necessarily approximate, as it relies on several
simplifying assumptions. Simulations were conducted to verify
the adequacy of this analysis and demonstrate the substantial
benefits of the proposed schemes in terms of prolonging the
coverage time of the network.

For simplicity, in our simulations we assumed a TDMA-like
MAC. The implications of various types of MACs (e.g.,
CSMA/CA, TDMA, hybrid TDMA/CDMA, etc.) on our al-
gorithms is an important issue and will be investigated in our
future work. We will also consider extending the analysis to
hierarchically clustered WSNs (e.g., the “spine” hierarchy).

APPENDIX

GENERALIZED GEOMETRIC PROGRAMMING

A function is a monomial in the variables
if it can be written as for any
real-valued exponents . Furthermore, a function is
a posynomial in the variables if it can be written
as

(41)

where, for , and is a monomial in
.

Let be a vector of variables and let
and be any two positive integers. A standard geometric

program is an optimization problem of the form

such that
(42)

where are posynomials in and
are monomials in .

A geometric program in the standard form is not a convex
optimization problem. However, with the change of variables

and , it can be transformed into the
following convex form:

such that

(43)
where is the exponent

vector of the th monomial in the th posynomial and
is the optimization variable. The logarithm of a

sum of exponentials is a convex function. Thus, (43) is a convex

optimization problem that can be efficiently solved using nu-
merical algorithms such as the interior point method [8].

A signomial is a more generalized form of a posynomial,
whereby the coefficients , , can have any real
values. If in (42) the constraints consist of signomials, the
formulation is called a signomial program or generalized
geometric programming.

Any signomial program can be transformed into an equivalent
program of the form

such that
(44)

where is a posynomial for . The form (44)
is called a reversed posynomial program.

One approach for solving signomial problems is to “con-
dense” the posynomial in each reversed constraint (i.e., approx-
imate the sum of monomials by using their geometric average,
leading to another monomial) and obtain a posynomial program
that approximates the original signomial program. Upon solving
the posynomial program by any convex optimization algorithm,
the solution is used to generate a better approximation. For ex-
ample, suppose a program of the form (44) contains a single
reversed constraint

(45)

Let be the monomial obtained by condensing with an
arbitrary set of weights using the arithmetic-geometric mean
inequality. Let denote the program obtained from , where
(45) is replaced by

(46)

Since is a monomial, (46) is a standard posynomial con-
straint and is a posynomial program that approximates the
signomial program . Moreover, the arithmetic-geometric in-
equality implies that . Thus, if is feasible for ,
then it is feasible for . The minimum value for , , is an
upper bound on the minimum value for , .

Suppose that is optimal for . Define a new set of weights

(47)

Using these weights, one can define a new condensed posyno-
mial and form the program , where replaces

in . Since and is feasible for ,
it follows that is feasible for . The minimum value for ,

, therefore satisfies

(48)

This defines an iterative process for generating a sequence of
posynomial programs whose minimum values are monotoni-
cally decreasing upper bounds of the desired minima of .

Since is nonconvex in general, it may have local minima
that are not global minima and the above process may converge
to such a point. Additional efforts have been made in the liter-
ature to enhance the above algorithm so that it converges to a
global minima for nonconvex signomial programs. The detailed
algorithmic description of signomial programming is outside
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the scope of this paper. A comprehensive survey on algorithms
for generalized geometric programming is given in [12].
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