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Toward Practical Opportunistic Routing With
Intra-Session Network Coding for Mesh Networks

Božidar Radunović, Christos Gkantsidis, Peter Key, and Pablo Rodriguez

Abstract—We consider opportunistic routing in wireless mesh
networks. We exploit the inherent diversity of the broadcast
nature of wireless by making use of multipath routing. We
present a novel optimization framework for opportunistic routing
based on network utility maximization (NUM) that enables us
to derive optimal flow control, routing, scheduling, and rate
adaptation schemes, where we use network coding to ease the
routing problem. All previous work on NUM assumed unicast
transmissions; however, the wireless medium is by its nature
broadcast and a transmission will be received by multiple nodes.
The structure of our design is fundamentally different; this is due
to the fact that our link rate constraints are defined per broadcast
region instead of links in isolation. We prove optimality and
derive a primal-dual algorithm that lays the basis for a practical
protocol. Optimal MAC scheduling is difficult to implement, and
we use 802.11-like random scheduling rather than optimal in our
comparisons. Under random scheduling, our protocol becomes
fully decentralized (we assume ideal signaling). The use of network
coding introduces additional constraints on scheduling, and we
propose a novel scheme to avoid starvation. We simulate realistic
topologies and show that we can achieve 20%–200% throughput
improvement compared to single path routing, and several times
compared to a recent related opportunistic protocol (MORE).

Index Terms—Broadcast, fairness, flow control, multipath
routing, network coding, opportunistic routing, rate adaptation,
wireless mesh networks.

I. INTRODUCTION

O NE of the main challenges in building wireless mesh
networks [1]–[3] is to guarantee high performance de-

spite the unpredictable and highly variable nature of the wire-
less channel. In fact the use of wireless channels presents some
unique opportunities that can be exploited to improve the per-
formance. For example, the broadcast nature of the medium can
be used to provide opportunistic transmissions as suggested in
[4]. In addition, in wireless mesh networks, there are typically
multiple paths connecting each source destination pair, hence
using some of these paths in parallel can improve performance
[5], [6].

However, most of the existing work on optimal wireless pro-
tocol design (cf. [7]) ignores the broadcast nature of the channel.
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Instead, a transmitter selects a priori the next-hop for a packet,
and if the selected next-hop has not received the packet, the
packet is retransmitted (even though another next-hop neighbor
may have received it correctly). The routing is not opportunistic
(as in [4]), and the diversity of the broadcast medium is ignored.

The main focus of this paper is the optimal use of both mul-
tiple paths and opportunistic transmission. We use intra-session
network coding [8] to simplify the problem of scheduling packet
transmissions across multiple paths, as others have done [5], [6],
[9]. We propose a network optimization framework that opti-
mizes the rate of packet transmissions between source and des-
tination pairs.

In order to use the resources of a wireless mesh network effi-
ciently, the system needs to take into account: 1) the existence of
multiple paths; 2) the unreliable nature of wireless links; 3) the
existence of multiple transmission powers and rates (which in
turn affects the probability of correct packet reception); 4) the
broadcast nature of the channel; 5) competition among many
flows; 6) fairness and efficiency. Observe that optimizing across
all these parameters implies optimizing across multiple layers of
the networking stack; for example, the choice of transmission
power and rate is typically done at the physical layer, whereas
coordination among different flows is typically done at the net-
work layer. As we shall see, it is important to perform such
cross-layer optimizations to achieve optimal performance.

We use an optimization framework to design a distributed
maximization algorithm. We account for transport layer controls
and address questions of fairness by maximizing the aggregate
utility of the end-to-end flows, where we associate a utility func-
tion with a flow. Because we use network coding, our op-
timization leverages existing theory [9], [10]. Our algorithm is
a primal-dual algorithm [11]. The primal formulation expresses
the optimization problem as a function of the rates of the var-
ious flows in the network; the dual formulation uses as variables
the queue lengths (per flow and per node). The main advan-
tage of using the dual formulation of the optimization problem
is that the dual variables (also referred as shadow prices) re-
late to queue lengths and can be directly used by back-pres-
sure algorithms for flow control [7], [12]. As a simple example,
a large number of queued packets for a particular flow at an
internal node can be interpreted that the path going through
that node is congested and should be avoided. The main ad-
vantage of using the primal-dual formulation is that it adapts
the primal variables (i.e., flow rates) more slowly, hence, al-
lows TCP-like window-based rate control modeling (as origi-
nally mentioned by Erylimaz et al. [12]). We propose a novel al-
gorithm for cross-layer optimization and prove, using Lyapunov
functions, that it converges to the optimal rate allocation.

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:48:06 EDT from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Despite using similar optimization techniques to prior work
(e.g., [7] and [11]–[14]), the solution to our problem is very dif-
ferent. We define rate constraint for each set of broadcast re-
ceivers. Consequently, dual variables are related to these broad-
cast sets and allow us to adjust the level of opportunism as a
function of a congestion in the rest of the network.

The proposed optimization framework is difficult to imple-
ment; indeed, the joint scheduling, rate, and power control
problem is NP-hard [15]. Additionally, current wireless MAC
protocols use uncontrolled randomized channel scheduling. We
propose a distributed heuristic based on the optimal algorithm.
We show that, even in the absence of optimal channel sched-
uling, the other aspects of the optimization problem (i.e., flow
selection and transmission rate selection) still give performance
advantages. Hence, our heuristic hints toward an implemen-
tation in practical systems. The fundamental idea behind our
algorithm (and of its distributed implementation) is to assign
credits to nodes, transfer credits between nodes, and schedule
on the basis of credits (see Section III for more details).

The main contributions of our paper are as follows:
• We propose a network wide optimization algorithm that

maximizes rate-based global network performance and
extends previous work by incorporating broadcast/op-
portunistic routing, multipath routing, and fairness/rate
control (Sections II and III). We introduce a notion of
virtual packets, called credits, that enable us to decouple
routing and flow control from actual packet transmissions
and delivery. We prove the optimality of the algorithm.

• Based on the optimization algorithm, we give a distributed
implementation (assuming ideal signaling) of routing, rate
adaptation, and flow control for networks with random
scheduling (Section III-C) that outperforms existing algo-
rithms. We prove that our algorithms extends and outper-
forms a recent proposal, MORE [5]. The distributed algo-
rithm can be used with the current 802.11 MAC and, in-
deed, is MAC-independent.

• Practical network coding schemes use finite generation
sizes. We show that a naive approach for scheduling
generations may lead to starvation. We propose a novel
heuristic, and we demonstrate that it circumvents network
starvation (Section IV-A).

• We demonstrate that rate selection is important for opti-
mizing performance in 802.11a networks (Section IV-B).
We confirm the findings from [5] that such optimizations
are not necessary for 802.11b networks.

• Using simulation on realistic topologies, we show we can
achieve 20%–100% throughput improvement with our dis-
tributed implementation compared to single path routing,
and 20%–300% compared to MORE [5] (Section V).1

The rest of the paper is organized as follows. Section II de-
scribes the model we are using. Section III gives the optimiza-
tion problem, describes an approximation of the problem that
can be computed in a distributed system, and compares with
a recent proposal for multipath routing. Section IV discusses
some practical issues, namely the effect of limited generation

1Observe that MORE optimizes the number of delivered packets for flows in
isolation, and, when multiple flows are active, may perform worse than single
path routing with respect to rates.

sizes, and the effect of randomized 802.11-compatible channel
scheduling. Section V evaluates the performance of our system
using simulation. Section VI provides related work.

II. MODEL

In this section, we introduce our notation, denoting vectors
in bold typeface. We extend the model of a wireless erasure
network developed in [16] to include multiple flows.

A. PHY and MAC Characteristics

We consider a network comprising a set of nodes
. Whenever a node transmits a packet, several nodes may

receive it. We model packet transmission from node to a set
of nodes with a hyperarc . We define an ac-
tivation profile to be a set of hyperarcs active at
the same time. There may be several constraints on feasible
activation profiles. For example, a node may be limited to re-
ceive from but one node or transmit to only one node at a time.
The only condition we shall impose is that a node can be the
source of only one hyperarc in one activation profile. All the
other constraints can be expressed through reception probabil-
ities, and our model is general enough to incorporate them (in
particular, it is possible that a node transmits while some in-
formation is being sent to it, in which case we shall set the
probability of successful reception to 0; see below for details).
We denote by the set of feasible activation profiles and let

be the set of
transmitters in activation profile .

Each transmission has two associated parameters, power
and rate , where is the set of allowed transmission

powers (e.g., , where is given by regulations)
and is sets of available PHY transmission rates, defined by
supported spreading, coding, and modulations.

Consider an activation profile in which node trans-
mits to set of nodes , and suppose node is transmitting
with power and rate . We can associate power vector

rate vector to these transmissions.
Let be an indicator of a random event such that

if a packet is successfully delivered from
to . It depends on the packet transmission power

and rate , as well as on the interference from concurrent
transmissions described through and . We also denote by

the indicator of the event that at least one of the nodes from
receives a packet. Consequently

By convention, we assume if ,
for . Our model does not require any assumptions
on channel conditions; in particular, events and are not
assumed independent.

We can now calculate , the average number of
packets per unit time conveyed from node to any of the nodes
in . We have

(1)
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B. Traffic, Forwarding, and Flow Scheduling

There is a set of unicast end-to-end flows in the network,
and each flow has a source and a destination node

, respectively. We denote by the rate of
flow .

Opportunistic routing does not a priori rely on a notion of a
path or a route. Consider the example of Fig. 2: A packet going
from node 1 to node 5 may be relayed by any of the nodes 2,
3, 4, depending on which node happens to hear it. Thus implic-
itly, opportunistic routing implies multipath routing without pre-
specifying the path. Formally, a packet from node can reach
node if there exists an activation profile that allows such a
transmission (there exists such that and

). The goal of our optimization framework is to derive
how many packets should be forwarded by each of the nodes.

In practice, an external routing protocol can be combined with
the opportunistic approach to further improve efficiency. Con-
sider again the example from Fig. 2: If a packet is broadcast by
node 2 destined for 5, it may be received and potentially for-
warded by node 1. Our opportunistic routing protocol will, as
described later, eliminate such events, but will take some time
to discover them. Instead, one may use a readily available ex-
ternal routing protocol to promptly eliminate obviously subop-
timal paths (e.g., path (1,2,1,3,5) from Fig. 2). Our model can
be easily extended to include constraints imposed by an external
routing protocol, but we omit such extensions to simplify the
exposition. We do constrain the set of available paths in the nu-
merical results, as explained in Section V.

A node that transmits a packet cannot control who will receive
the transmitted packets due to channel randomness. A node that
receives a packet has to decide whether it will forward it or not.
This decision is made through credit assignment, described in
Section II-D.

Whenever a node is about to transmit, it needs to decide which
flow it will transmit. This is defined through a flow-scheduling
profile matrix . If node transmits a packet from flow we
set , otherwise . We say that a flow scheduling
profile is valid if for each there exists only one
such that . denotes the set of all valid flow scheduling
profiles.

To illustrate the use of flow scheduling profile, consider the
example in Fig. 1 having two flows , both from 1 to
4. The number of packets for flow sent by node 1 and received
by node 2 depends not only on how often (1,2) is scheduled, but
also on how often is scheduled to transmit a packet
from . This is why the flow scheduling decision is assigned to
a node instead of a link, which is in sharp contrast to [12], [17],
and [18].

C. Network Coding

We assume network coding per flow is used [5], [16]. The
main benefit of network coding is that it facilitates scheduling.
If the same packet is received by several nodes, a mecha-
nism is needed to prevent two or more nodes forwarding the
same packets [4]. To eliminate this problem, each relay for-
wards a random linear combination of all previously received
packets from the same flow. It has been show in [9] that the

Fig. 1. A network with four nodes is shown on the left. For example, an acti-
vation profile ���� ��� ������ depicts a profile where nodes 1 and 3 are trans-
mitting, node 2 is receiving a packet from node 1, while node 4 is receiving
from node 3. Profile ����������� depicts node 1 transmitting and nodes 2
and 3 receiving (the same) packet from node 1. The feasible rate region for
�� � � � is given on the right, described by inequalities: � � �

for all � � �����.

Fig. 2. Forwarding example. Lines connect nodes that can exchange packets.
Opportunistic routing implies multiple-paths. Possible paths from 1 to 5 are,
for example, (1,2,3,4,5), (1,2,3,5), (1,2,4,5), (1,3,4,5), (1,3,5). Path (1,2,1,3,5)
is also possible, but will be typically eliminated by a routing protocol due to
suboptimality.

random linear combinations received at the destination will be
independent with high probability, hence the packets can be
restored.

Ideally, network coding should be performed across the entire
flow. However, this is not practical. Instead, packets are divided
in generations, and only packets from the same generation are
combined. For more details, see [5] and [16]. In Section III, we
analyze the optimal network design assuming very large gen-
eration sizes (as in [16]); we address finite generation sizes in
Section IV.

D. Credits

As remarked on earlier, whenever a packet is transmitted, it
may be received by several nodes, and it is important to decide
which should forward packets to avoid redundant transmissions
(as explained in [5] and [19]).

We introduce the concept of credits, which is similar to the
control decision variable of Neely [19]. One credit is created
for each packet at the source node. Credits are identified with a
generation, not a specific packet. They are conserved until they
arrive at the flow’s destination. In this way we guarantee that
the destination will receive as many linear combinations of the
packets as the number of packets generated at the source and,
hence, will be able to decode the packets.

Credits are interpreted as the number of packets of a spe-
cific flow to be forwarded by a node. By controlling the rate
of credits, we control the rate of packets forwarded by next-hop
relays. Consider again the example from Fig. 1. Node 1 should
adapt the rate of packets forwarded through 2 and 3 not only
as a function of link qualities and , but also as a func-
tion of and , the quality of paths from 2 and 3 to the
destination 4. For example, if , then node 2 should
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not forward any packet, regardless of how many it has received.
Node 1 cannot control what nodes 2 and 3 receive due to ran-
domness of the channel. Instead, node 1 sends a credit to node 2
(or node 3) whenever it wants node 2 (or node 3) to forward a
packet.

The main advantage of the credit scheme is that it simplifies
scheduling. Credits are declarations of intent. The actual packet
transmissions may occur at arbitrary time instants. Due to the
use of network coding, we only need to ensure that the total
number of packets per generation transmitted between each two
nodes corresponds to the number of credits. Thus, scheduling is
done at a generation level and not at the packet level, incurring
significantly smaller overhead (especially when the generation
size is large).

In practice, credits can be piggybacked with packet transmis-
sions. The receiving node only updates its credits when a suc-
cessful packet transmission actually occurs. In this work, we as-
sume there is an ideal (no loss and no delay) signaling plane that
transmits credits and feedbacks.

As each credit delegates one packet to a node, we may express
all the rates in the system in terms of credits. For example,
is the rate of credits of flow passed from node to node , and
it equals the rate of innovative linear combinations of packets of
flow delivered from to . Theorem 1 shows that the rate of
independent packets received at a destination of each flow will
correspond to the number of credits delivered when the genera-
tion size is large.

E. Dynamics and Stability

We further assume the system is slotted in time. In each slot
, a medium access protocol assigns an activation

profile and a flow-scheduling profile , and to each
transmitter , we assign transmit power
and rate . Let be the number of credits for flow
transmitted from node to node during slot , and let
denote the number of packets of flow actually delivered from

to any of the nodes in during slot (as if all nodes in are
grouped as a single receiver). Let be the number of fresh
packets/credits generated at the source of flow .

Note that because each successful packet delivery is always
associated with a credit transmission, we look at credit queues.
Let be the amount of credits of flow queued at node .
The system is stable if every queue size is bounded. We define
stability more formally in Section III-D.

F. Constraints of the Model and Possible Generalizations

We make several simplifying assumptions to make the anal-
ysis tractable. First, we assume that the system is slotted. All op-
erations within a slot occur concurrently and instantly. Second,
we assume the perfect signaling. There is no loss or delay in
signaling messages (credit transfers and acknowledgments).

Our results can be extended to consider imperfect signaling
and arbitrary but limited delays in the system (see, for example,
[20, Part 2], on a discussion of how a delayed feedback affects
the speed of convergence). Also, see [21] for a practical imple-
mentation of a back-pressure-based system and its interaction
with TCP.

III. OPTIMAL FLOW CONTROL FOR FAIRNESS

In this section, we introduce the optimization problem
(Section III-B), propose an algorithm for solving it
(Section III-C), and prove that the algorithm converges
(Section III-D). Section III-A introduces some further notation
that is needed for the description of the optimization problem.
Finally, in Section III-E, we compare our algorithm with the
MORE algorithm proposed in [5].

A. Feasible Average Rate Set

In this section, we define a set of constraints on average rates
in the system. Assume an assignment of average end-to-end
rates , for each flow , and denote the average rate vector
by . The vector of rates is valid under the fol-
lowing three conditions. First, traffic at node is stable if the
total ingress traffic is smaller than the total egress traffic, which
we write as

(2)

for all , where if is true, 0 otherwise, and
where .

Second, traffic at each broadcast region is stable if we do
not receive more credits than we can actually forward (see also
Fig. 1)

for all (3)

Recall that is the average number of credits of flow node
assigns to node and is the average number of packets of
flow actually delivered from to any of the nodes in .

Finally, we define scheduling constraints. A schedule is a se-
quence that defines scheduling
profile , routing profile , and power and rate alloca-
tions in each slot . Since we are interested in
long-term average rates, we define

to be the fraction of time the network uses scheduling profile
, routing profile and power and rate allocations . By

definition, and . The
schedule defined by is stable if it can sup-
port broadcast traffic , and we write the scheduling
constraints as

(4)

We use the following characterization of feasible rates
from [9].

Definition 1: Vector is said to be feasible if each flow can
transport information from to at average rate .

Theorem 1: Let be the set of average end-to-end
rate vector such that there exists vec-
tors , and

that satisfy (2), (3),
and (4) subject to and .
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The vector is feasible when coding generation size goes to
infinity if and only if it belongs to . Moreover, the set of
feasible end-to-end rates is convex.

Proof: Proof of feasibility follows directly from [9]. The
set is convex since all constraints are convex.

B. Utility Maximization

For each flow , we define a utility function to be
a strictly concave, increasing function of end-to-end flow rate

. The utility of flow is then . For example,
represents proportional fairness [22], and

approximates TCP’s utility [11]. The goal of utility maxi-
mization is to achieve a tradeoff between efficiency and fairness.
Proportional fairness is an example of such an approach [22].

We can write the network-wide optimization problem as

(5)

Since set is convex and the objective is strictly concave, there
exists a unique solution to the maximization problem. Cor-
responding also exist, but are not necessarily unique.

Let us denote with and the Lagrangian multipliers as-
sociated with inequalities (2) and (3), respectively. To simplify
the notation, we will also define . We can write the
KKT conditions at the optimal point for (2) and (3)

(6)

(7)

Also, combining the condition that the rates are nonnegative
and the gradient KKT condition, we can write

(8)

Note that here we do not write the KKT for (4), but we keep it in
the explicit form [see, for example, (10)]. We see that if
egress traffic is larger than ingress traffic and there is no accumu-
lation of credits at node . Hence, intuitively we can relate to

, the number of credits for flow queued at . Similarly we
can relate to the number of packets queued for broadcasting
at . In Section III-C, we express this relationship more formally.
We will also use (8) to develop a flow control algorithm.

As a consequence of KKT, and by optimizing the dual
problem [23], one can derive the conditions

(9)

(10)

We will use (10) in Section III-C to derive the optimal
scheduling.

C. Maximization Algorithm

We now present an algorithm that converges to the optimal
value of (5).

Node and Transport Credits: Recall that is the amount
of commodity credits queued at node . We call such credits
node credits. In addition, let be the number of credits of
commodity queued at and corresponding to packets that have
to be delivered to any of the nodes in (as previously decided by
the credit transmission scheme). We call these transport credits.

When a credit for flow is transferred from node to node ,
we decrease , we increase , and we increase for all

(all by one unit). Note that this transfer happens in-
stantly and before a corresponding packet has actually been
transmitted. We decrease when a packet from flow is ac-
tually delivered from to any of the nodes in . The amount of
node credits is conserved: When a responsibility for a credit is
transferred from to , we decrease and increase . Trans-
port credits are of a different nature. They are created when a
forwarding decision is made and are destroyed when the actual
delivery takes place. Transport credits are local, and they are
never transferred between nodes.

Routing protocol: Node credits represent intentions of
packet transmissions, and a routing protocol describes when
and how such node credits transferred. Let be the number
of node credits for flow transferred from node to node
at time , and let us define . A
back-pressure between nodes and is defined as

(11)

the difference between the excess credits queued of flow at
node not destined for node and the node credits at
node . Back-pressure in (11) includes the credits queued at
the next-hop as well as the credits assigned to different broad-
cast regions, which is the main difference compared to previous
work [12], [17], [18].

A credit is transferred from to with the following dynamics

(12)

where is 1 if or 0 otherwise, and
is the number of neighbors of that have a positive back-pres-
sure for flow . The queue then has the following dynamics
in time:

Note that by definition , hence is always
positive.

The intuition is as follows. We transfer a credit from to
only if the back-pressure is positive. Moreover, we share all of
the available credits equally among all neighbors with a
positive back-pressure.

Scheduling, rate and power control: The optimal central-
ized scheduling, rate, and power control algorithm is the tuple
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that solves the following optimization
problem:

(13)

(14)

(15)

(16)

(17)

(18)

Intuitively, (13) follows from (10) and the fact we can equate
and , since the transport credit update (21) corresponds

to the gradient update equation of . The other update rules
follow directly from KKT conditions.

Equations (13)–(18) represent a joint scheduling, rate, and
power control problem. We find the optimal scheduling, power,
and rate control by solving (14). Then, (16)
is used to select which flow will be transmitted by each node in
slot .

The main novelty in our approach is that we explicitly in-
corporate all broadcast regions in the scheduling algorithm in
(13) through broadcast transport credits . This is in con-
trast to previous works on back-pressure [12], [14], [17], [18]
that are not able to exploit the broadcast diversity. It is only
[19] that considers network optimization with broadcast diver-
sity, but using different optimization techniques. Also, unlike
[4] and [5], we are able to make a tradeoff between broadcast
diversity and network congestion.

Another difference with respect to [12], [14], [17], and [18] is
that, as explained in Section II-B, we cannot decouple the flow
selection process and routing/scheduling/rate/power con-
trol. Also, unlike in [12] and [17]–[19], we do not explicitly use
back-pressure information for scheduling in (13)–(18); instead,
we use transport credits .

The algorithm (13)–(18) is centralized. Observe that all equa-
tions except (14) and (15) use local information only. Hence,
with the exception of (14) and (15), the problem could have
been solved with a distributed algorithm. We use this observa-
tion to propose a heuristic based on modified rules (14) and (15)
and to derive a practical, distributed protocol that is presented
in Section IV.

Flow control: The optimal flow rate at the source, can
be calculated using a primal-dual approach, as in [12]

(19)

where . Each flow adapts its rate based on the
previous rate and current number of credits queuing for trans-
mission at the source node for that flow . The primal-
dual approach well describes additive-increase multiplicative-
decrease transport protocols, like TCP [11].

D. Convergence of the Algorithm

We now consider a fluid model of the system, and show that
it converges to the optimal point. Analysis of a discrete-time
model can be derived from our fluid-model analysis, using a
similar approach to [12].

We assume that time is continuous and that queue evolutions
are governed by the following differential equations:

(20)

(21)

where if , and otherwise. Simi-
larly, flow rate evolution in the fluid-model is given by

(22)

We next prove that the algorithm presented in Section III-C
stabilizes the system with flow rates that maximize the optimiza-
tion problem (5).

Definition 2: We say that link is active for flow if
there exist a finite number such that for each that satisfies

, there exists such that .
Theorem 2: Starting from any vectors and

applying rules (11)–(22), the rate vector converges to as
goes to infinity. Furthermore, queue sizes and
on all active links for flow are bounded and converge to
the shadow prices , and , respectively.

Also, if a node is completely disconnected from the rest of
the network, or in any way not used by a flow, credits will nei-
ther arrive to nor will leave from the node. Thus, technically,
we cannot guarantee that an arbitrary initial number of credits
at this node will converge to any particular value. Instead, we
consider only links that have at least “some” traffic throughout
the network run-time (called active links, formalized in Defini-
tion 2).

The proof uses a Lyapunov function with stability defined on
the set of active link, and we show that on all active links that
carry a positive amount of traffic, the delays are bounded and
hence the system is stable. The details are given in the Appendix.

E. Comparison With MORE

In this section, we compare the performance of our algo-
rithm with the MORE forwarding algorithm described in [5] and
[24]. We summarize it here for sake of completeness. Consider
a single flow and the delivery of a single packet from the source
of the flow Src to the destination of the flow Dst. Let be the
number of transmissions made by node to successfully deliver
the packet. The goal of MORE is to minimize the number of
transmissions [24, Equations (1)–(4)]

(23)

(24)
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(25)

(26)

Note that the MORE forwarding algorithm is designed for a
single flow. As the authors note in [5] and [24], its performance
drops as the number of flows increases.

Our algorithm converges to the optimal solution of the opti-
mization problem (5) (as shown in Theorem 2), hence MORE is,
at best, as good as our algorithm. We first show under what con-
ditions MORE is guaranteed to give the optimal solution. We
then illustrate by two examples that MORE can yield strictly
suboptimal rate allocations.

Theorem 3: If there is only one flow in the system, if trans-
mission rates and powers of all nodes are fixed, and if only one
node can transmit at a time (that is for all ),
MORE and our algorithm give the same performance.

Proof: Since only one node can transmit at a time, we have
. Furthermore, transmission powers and rates are fixed,

hence, (3) and (4) reads as . We also omit
as there is only one flow in the system.

We start with the MORE optimization problem (23)–(26) and
we introduce and . The
optimization (23)–(26) is then equivalent to

(27)

(28)

(29)

(30)

which is exactly the optimization problem (5).
We next give two examples where the performance of MORE

is strictly suboptimal. Consider a hexagonal network depicted in
Fig. 3. Let us first consider a case with a single flow

, and where and
. Since not all links interfere, the conditions of Theorem 3 are

clearly not satisfied. The optimal rate allocation that maximizes
(5) is with and

. However, MORE will transmit all packets over the path
1-2-4-6, hence the total rate will be , some 15%
less than the optimal. Intuitively, the reason why MORE is sub-
optimal is that it does not consider possibility that links 3-5 and
5-6 transmit in parallel with 4-6 and 2-4. (Recall that MORE’s
goal is to minimize the number of transmissions and not to max-
imize the flow rate.) It will then conclude that forwarding any
packet to 3 is largely suboptimal since links 3-5 and 5-6 are of
a bad quality. Thus, if and are sufficiently smaller than

, and , as in this example, MORE will not use route
1-3-5-6 at all.

In the second example, we again consider the same hexagonal
network, but with two flows active. Since MORE does
not take into consideration contention among flows, it will again
assign all traffic to the path 1-2-4-6. This traffic will contend
with the traffic from flow 2, and feasible end-to-end rate alloca-
tions have to satisfy . Note that the routing scheme

Fig. 3. A network with six nodes. Due to a dividing wall, nodes 2 and
4 do not interfere with nodes 3 and 5. The set of activation profiles is
� � ����� ����������������������������	�������	���������� �������
������� ���	���������� ���	���. There are two flows in the system: flow
� � � 
 � , which is assigned two routes (� � � and
� � � ), and flow � � � , which is assigned a single route
�� � � �.

is fixed by MORE and does not depend on flow control applied
by transport layer. If, for example, the transport layer on top
of MORE is designed to maximize log utility, the optimal rates
will be . On
the contrary, our distributed algorithm will adapt routing to con-
tentions among flows, and it will assign

, and . As we can see, our algorithm
balanced flow 1 by decreasing and increasing . As a result,
the rate of flow stayed the same while the rate of increased.

IV. PRACTICAL ISSUES

In this section, we consider two practical issues that concern
implementation of the protocol proposed in Section III in a mesh
network: finite coding generation size and rate adaptation for
randomized scheduling. We leave other practical issues, such as
the effect of delayed feedback, for future work.

A. Finite Generation Size

Previous results assume that generation size used for network
coding tends to infinity (see Theorem 1). Practical reasons, such
as the complexity and performance of decoding, and header
overhead for storing the coefficient vector require us to limit the
size of the header; some practical systems limit the size to 32
bytes [5], [6]. We now modify our optimization framework for
a finite generation size.

Let be the set of generations. Let us define and
to be the number of node credits and transport credits

for generation of flow queued at . Similarly, we define
as before, but with respect to gen-

eration (thus, we have for example ,
and by analogy for the other variables). The encoding processes

are defined at the source. For example, if the size of each
generation is , we have for all .

Extending the distributed maximization algorithm from
Section III-C to this setting is not straightforward. For ex-
ample, a naive way to modify scheduling rule (18) would be to
schedule the oldest generation available

(31)

that is , if and .
However, this rule may yield poor rates.
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Fig. 4. A simple example of a network with nodes ��� �� �� and a single flow,
going from 1 to 3 (directly or via node 2), where set � � � � � and �

is close to 0. The values of corresponding transport credits � ��� �� are given
on the right at time � � � for generations � � �� � (in the example, we assume
only two generations are in the networks).

To see why, consider the example of Fig. 4, where one link
(1-3) has very poor quality compared to the others. For sim-
plicity, we assume there are only two generations in the system,
and we assume that node credits are constant hence only
the transport credits are the focus of the scheduling policy. The
oldest generation that has a transport credit at node 1 is genera-
tion 1. Thus, when node 1 is selected to transmit, it will transmit
a packet from generation , according to (31). On
one hand, node 2 will certainly receive the transmitted packet,
but,since , node 2 does not need
more packets from generation 1, and the received packet will
be useless. On the other hand, node 3 is not likely to receive
the transmitted packet as . Therefore, in the next slot,

will most probably remain at 1 and generation 1 is
again selected for transmission. The same situation will repeat
until the transmitted packet is finally received by node 3, and
only then will we be able to transmit a packet from generation 2.

It is easy to see that in such a scenario we may completely
starve the network. Instead of benefiting from diversity, the op-
portunistic routing acts as a hindrance. The main reason for
starvation is the fact that the naive approach implicitly restricts
scheduling diversity over a single generation. Observe that the
problem persists even when the number of generations increases
and the queues build up; the naive approach tries to maintain the
optimal traffic splitting strictly per each generation instead on a
cross-generation, long-term average. Nevertheless, there is no
reason why we should not be able to exploit the diversity of link
1-3 because even a few occasional packets transmitted over that
link will improve overall performance.

Finding a jointly optimal coding and scheduling strategy that
maximizes system utility for finite generation sizes is a difficult
problem. Apart from the scheduling issue, when the generation
size becomes finite, the coding results from [16] no longer hold.
This implies that packets received at the destination may not be
linearly independent and Theorem 1 does not hold. Instead, we
propose a heuristic inspired by the Proof of Theorem 2, which
minimizes the drift . It consists of modi-
fying rules (12) and (18) to

(32)

(33)

(34)
if
otherwise

(35)

where is true when there are queued transport
credits for generation .

Intuitively, the idea behind the heuristic is to transmit the
generation that has the highest chance of being useful. We
select flow to transmit according to (16). The benefit of such
a transmission is , the expected decrease in
transport credits. However, this is only true if the generation
size is infinite. The transmitted packet from generation
will not be useful if the generation size is finite, and some of
the nodes no longer need any more packets from generation
(that is for some , as illustrated in the example).
To maximizes the actual expected decrease of the amount
of transport credits we select a generation that maximizes

, which is indeed (34).
To see how the new policy works, consider again the ex-

ample of Fig. 4. Unlike the naive policy (31) that selects genera-
tion 1 as the oldest generation among all queued generations, the
new policy (34) will select the most useful generation— gener-
ation 2, which circumvents network starvation. A detailed ex-
planation of how this policy is derived is given in the Appendix.
Performance simulations for finite generation sizes are given in
Section V.

The policy (33)–(35) needs a slight caveat in that some credits
from old generations may get stuck in the network (as the credit
from generation 1 did in the previous example). A straightfor-
ward extension is to reassign the credits from the selected gen-
eration and from the oldest queued generation, such
that the total number of credits is not altered, and to guarantee
in-order delivery. However in practice, unless a network is very
asymmetric, this is not needed, as the simulations in Section V
verify.

B. Rate Adaptation for 802.11-Compatible Scheduling

Finding the optimal scheduling rule (14) is an NP-hard cen-
tralized optimization problem, as Sharma et al. show [15]. Some
recent research [15], [25], [26] explores decentralized imple-
mentations of similar problems. Applying these ideas to our set-
ting is outside the scope of this paper and left for future work.
Instead, we consider a more realistic, suboptimal scheduling
process, and we show how our algorithm can be applied as a
distributed heuristic.

We assume that nodes always transmit packet at the full power
, which reflects current practice in most ex-

isting wireless mesh networks deployments. We call a set of fea-
sible activation profiles 802.11-compatible if for all
and for all there is no such that
reception probabilities or

. Intuitively, this corresponds to 802.11-like
protocol with RTS/CTS mechanism. When node establishes
communication with nodes , all nodes involved in commu-
nication send an RTS/CTS. All nodes that hear the RTS/CTS
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will be prevented from transmission or reception during
the same slot.

Furthermore, we will assume that the underlying scheduling
process is outside our control, and that it is indepen-
dent of the actions of our protocol. At every time , the sched-
uling process will select a set of noninterfering nodes
to transmit (i.e., for each ). Each node

has a set of possible destinations
, which in turn de-

fine a schedule . A set of activation profiles
is clearly 802.11-compatible.

With such a schedule , the optimization (13)–(18) sim-
plifies to

(36)

where are the average rates ob-
served over a long period of time. This optimization can be
easily solved in a distributed manner, locally and separately at
each node. Node can estimate either by probing or
by using statistics from previous transmissions. In practice, as
reported in [27], successful transmissions and are often
independent for , which further simplifies the estimation.
The rest of (36) clearly relies only on local information. Al-
ternatively, if one deploys a form of interference-aware sched-
uling (e.g., [28]) that disposes of in any slot, algorithm (36)
can be improved by estimating for each scheduling
policy separately instead of using the average estimate

. In the simulation part of our paper, we implement the
simpler, interference-oblivious form, as given in (36).

Note that for an arbitrary scheduling process , the
distributed routing (12) and rate adaptation (36) algorithm
do not necessarily minimize the optimization problem (5).
The optimal algorithm will depend on the characteristics of

will depend on our routing algorithm, and it
is difficult to characterize these dependences. We present (12)
and (36) as a heuristic that can be used as a practical imple-
mentations of opportunistic multipath routing in networks with
802.11-compatible scheduling. We illustrate by simulations
in Section V that in the case of random, 802.11-compatible
scheduling, the heuristic (36) outperforms a conventional,
single-path routing approach.

V. SIMULATION RESULTS

We now present simulation results that quantify the perfor-
mance advantages of the opportunistic routing, scheduling, and
flow control algorithms defined in the previous sections. We are
primarily interested in algorithms that can be applied in 802.11-
like mesh networks, where the scheduling algorithm is not under
our control. Hence, in our simulations, we used an 802.11-com-
patible schedule , as defined in Section IV-B, assuming

is randomly selected among backlogged nodes.
We use the roofnet network topology based on 802.11b cards,

given in [4], for our simulations. We further assume the (802.11-
compatible) node-exclusive model with random channel param-
eters from [1]. We developed a slotted discrete-event simulator

that implements the routing, flow, and rate control algorithms.
A scheduler randomly selects a set of nonexclusive nodes for
transmission in each slot. The amount of data transmitted in
each slot is proportional to the transmission rate, and the packet
loss probability is obtained from [1] (assuming that a concurrent
transmission is allowed; otherwise, it is set to 0). Unless stated
otherwise, we assume finite generation size of 32 and use rules
(33)–(35) to select which generation to transmit. In addition, we
allow credit and packet transmissions by a node only if a node
has received an innovative packet for a given generation since
the previous transmission. We used , hence the
rate allocation that maximizes (5) is the proportionally fair rate
allocation [22].

We looked at three performance metrics. The first one is the
improvement in total utility . Allocation

is better than if the sum is positive. The proportional fair
rate maximizes the optimization problem (5) and, hence, has
the highest utility.2 The second metric is the total rate improve-
ment . Allocation is better than if the quo-
tient is larger than 1. The proportionally fair allocation does
not always have highest total rate. The third metric is the Jain’s
fairness index improvement. Jain’s fairness index is defined as

, and the Jain’s fairness index
improvement is . Note that the fairness index can
be deceiving as a metric in some cases: If has all rates larger
than , it may still have smaller fairness index although the
system has clearly improved.

We compared our algorithm to a conventional, single-path
routing algorithm, and with the MORE algorithm [5]. To make
the comparison fair, we assumed that the single-path routing
algorithm used the same kind of jointly optimal routing and
flow-control approach as our scheme, which boils down to [12],
constrained to the best path. In contrast, MORE does not inte-
grate flow control or flow scheduling with the routing algorithm.
When simulating the MORE algorithm, defined in [5] and [24],
we assumed that each source had a large backlog of packets to
transmit and that each relay performed FIFO scheduling among
packets from different flows.

We ran simulations to obtain end-to-end rate allocations.
Fig. 7(a) illustrates the optimal rate allocations, obtained by
our algorithm, for eight randomly selected source–destination
pairs on one example. In this case, we can see both utility and
total rate increase if we use the opportunistic routing instead of
the single-path routing, where we benefit from broadcast and
multipath diversity.

We then ran the previous experiment with 100 random real-
izations of four or eight coexisting unicast sessions and com-
pared the performances of the different algorithms with respect
to the two performance metrics.

Single Path Versus Opportunistic: We start by illustrating the
benefits of the opportunistic routing over the single-path routing
in Fig. 5. We first look at the network utility. The rate alloca-
tion obtained by the optimal algorithm (Section III-C) always
maximizes the utility. However, this is not the case for the dis-
tributed heuristic (Section IV-B). In our simulations, we saw

2Since we use random and not the optimal scheduling in the simulations, the
resulting rate allocation does not necessarily have the highest utility.
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Fig. 5. Cumulative performance improvement of opportunistic over single-path (� -rates using single path, � -rates using multiple paths). (a) Absolute
improvement in utility � ����� � � ����� ��. (b) Relative improvement in total rate � � � � �. (c) Relative improvement in fairness index
����� ������ ��. We perform the experiments with four and eight concurrent flows. In all cases, we ran 100 experiments and sorted them by performance
improvement. In many cases, for single-path routing, some flow had zero rates for the duration of the simulation, caused by slow convergence; we omitted such
plots (as they would give an infinite utility difference).

Fig. 6. Cumulative performance improvement of our algorithm over MORE (� -rates using single path, � -rates using multiple paths). (a) Relative improvement
in utility � ����� �� ����� ��. (b) Improvement in total rate � � � � �. (c) Improvement in fairness index ����� ������ ��. We perform the
experiments with four and eight concurrent flows. In all cases, we ran 100 experiments then sorted them by performance improvement.

that in about 90% of the runs, the distributed heuristic for op-
portunistic routing achieves higher utility than does single-path
routing. In only about 10%–15% of cases is the utility for single-
path routing higher.

Also, in more than 80% of runs, our decentralized heuristic
achieved higher total rate than the conventional, single-path al-
gorithm. In more than half of the runs, the total rate has in-
creased by 20%, and in some cases by over 100%. From these
results, we see that there is a significant advantage in using our
opportunistic routing algorithm over the single-path one. Fair-
ness index also improves in more than half of the cases.

Decentralized Heuristic Versus MORE: We next compare our
decentralized heuristics with MORE. The results are depicted
in Fig. 6. Network utility is increased in about 90% of the runs.
Total rate is increased in almost all of the runs, sometimes up to
a factor of 4–5. The fairness index has also increased in most of
the cases. The performance of MORE drops with the number of
flows.

From these results, we can see that in many cases MORE
behaves worse than the single-path routing. This resonates with
the findings of [5], where the benefits of opportunistic routing

decrease as the number of flows increase (for an explanation, see
Section III-E). MORE is essentially a routing protocol, whereas
our single-path routing algorithm also includes more intelligent
flow control and flow scheduling.

Effects of Finite Generation Size: Fig. 7(b) illustrates the im-
pact of a finite generation size. The performance drop is due
to imperfect generation scheduling (34) and occasional linear
dependency of received packets. We can see that a finite gen-
eration size of 32 packets can cause a performance drop of up
to 22% with respect to the infinite generation size.3 However, a
larger generation size would impose more overhead in transmit-
ting larger coefficients in the packet header.

The Optimal PHY Rate Selection: Finally, we consider the
optimal PHY rate selection at different nodes. We analyze how
frequently each node uses each PHY rate. In the case of roofnet
topology with 802.11b cards, we find that in almost all cases it
is optimal to use the highest rate of 11 Mbps, which confirms
the findings from [5]. We then used the SNR data from roofnet
topology and measurements from [29] to analyze the approxi-

3Note that an additional performance drop for finite generation size may occur
due to imperfect signaling, but we do not consider it in our model.
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Fig. 7. (a) End-to-end rate allocation example: eight flows among randomly selected source-destination pairs. The vertical axis shows flows rates. Small bars
denote rates per flow. Large bars show total rate. The marks connected by a line gives utilities with an arbitrary scaling (to fit the figure). (b) Relative efficiency for
total rate � � � � � for opportunistic routing with a finite generation size of � � ��. (c) Optimal distribution of PHY rates for roofnet network
with 802.11a cards, for one random selection of eight source–destination pairs.

mately optimal performance in the same network topology with
802.11a cards. The results are depicted in Fig. 7(c). As expected,
the optimal PHY rate selection is no longer uniform, a conse-
quence of the large number of available rates. This demonstrates
the need for an intelligent PHY rate selection algorithm.

VI. RELATED WORK

One of the first uses of opportunistic routing for unicast ses-
sions in wireless mesh networks is presented in [4]. It has been
extended in [5] to include network coding to facilitate sched-
uling. However, in [5], the authors do not explicitly consider
multiple flows, fairness, or scheduling, and in fact show that the
performance benefit drops as number of flows increases.

One of the works most similar to our own is the optimization
framework for opportunistic routing that minimize power con-
sumption, presented in [19], which shows significant benefits
over [4]. Nevertheless, [19] considers neither network coding
nor the TCP-like primal-dual rate adaptation. It is not clear how
to generalize [19] to use network coding with finite generation
size and to derive a generation scheduling policy analog to (34).

Another related paper is the work on energy-efficient oppor-
tunistic network coding [30], which uses a similar formulation
of an optimization problem that can further be extended to in-
tersession network coding. [30] does not consider a problem of
a limited generation size, TCP dynamics, nor a suboptimal rate
allocation algorithms and has a less general interference model.
Cross-layer design for network coding with unicast or multicast
sessions is considered in [9]; however, [9] considers only sta-
bility and not any form of rate maximization. End-to-end rate
maximization of a single flow is also considered in [31].

Several theoretical analysis of linear network coding algo-
rithms for unicast sessions have been performed [10], [16]. Net-
work coding for unicast sessions is used also in COPE [32].
Compared to COPE, we perform encoding operations only be-
tween packets of the same flow; in that respect, our approach is
orthogonal to COPE. Optimal control of intersession network
coding is presented, for example, in [33]; however, it does not
consider opportunistic routing and its inherent diversity.

Our work is an example of cross-layer optimization, and we
have built on top of and extended exiting research. Cross-layer
design in wireless is a widely research topics (see [7], [13],

[14], and references therein). Optimizing network performance
in terms of network utility is originally proposed in [22]; see
[11] and [14] for an overview. Our primal-dual approach is sim-
ilar to [11], where it is shown that it can capture different ver-
sions of TCP. None of the algorithms in [7], [11], [13], and [14]
consider opportunistic routing, broadcast diversity, and intra-
session network coding.

VII. CONCLUSION

This paper proposes an optimization framework for ad-
dressing questions of multipath routing in wireless mesh
networks. We have extended previous work by incorporating the
broadcast nature of wireless and simultaneously addressing fair-
ness issues. Implicit in our approach is the use of network coding,
which enables us to define notions of credits that are associated
with number of packets in a generation, rather than specific
packets. Using our framework, we show that our algorithm
significantly outperforms single-path routing and MORE [5].

When scheduling is predetermined by a MAC protocol, such
as by random scheduling or 802.11-like scheduling, we have
shown how our approach leads to a distributed heuristic, which
still outperforms existing approaches. Using simulation results
on a realistic topology, we found in our examples that for 802.
11b, using the maximal rate is optimal, but for 802.11a this was
not the case. We have addressed some of the practical issues as-
sociated with having a finite generation size for network codes.

Our primal-dual rate adaptation can be used to model
window-based flow control schemes, such as TCP. The per-
formance of applications that run on top of our system and
use TCP is an interesting open problem. Another interesting
direction is to analyze the performance of our protocol with
more realistic signaling schemes.

APPENDIX

Before proving Theorem 2, we first introduce the following
lemma.

Lemma 1: The following equalities and inequalities hold for
any :

(37)
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(38)

(39)

(40)

(41)

(42)

(43)

Proof: Equalities (37) and (38) follow directly from (6) and
(7). From (4), we further have . Together
with (10), this implies

which proves (39). From (38) and (39), we derive (40). Since by
definition , we have

from which we derive (41). Equality (42) follows from the def-
inition of . Also, by definition of scheduling (13)–(18), we
have

(44)

(45)

which yields (43).

A. Proof of Theorem 2

Proof: We will follow the idea of the Proof of Theorem 2
from [12]. First, let us define Lyapunov function

(46)

We want to show that the derivative . For brevity, we
define . Using (20), (21) and (22) gives
the derivative of as

(47)

As in [12, Equations(10)–(13)], we have that when ,
the derivative is by definition positive; also, . The
same holds for and , and we can upper-bound the
derivative

(48)

Let us further add and subtract , as in [12], to
obtain

Due to concavity of , we have
. Next, let us pick any set of link rates
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that correspond to the optimal flow allocation . We expand
using (37) and (41) to obtain

Let us denote . Then, from (40), (42), and
(43) we have

(49)

(50)

(51)

(52)

where (a) follows from KKT and the fact that , (b)
from (9), and (c) from the fact that whenever and

, then can be made arbitrarily large in the fluid
model limit as the slot length goes to zero.

Hence, we have that for all
. Let us define

(53)

Let us define . It is easy
to see from (50) that . We can further apply LaSalle’s
invariance principle as in [12] to show that converges to
and converges to .

However, set is not bounded in general. If link is
active for flow then for every we have

. If the maximum node degree in a network
is , we have that . Since

converges to , we see that queues and
are bounded for all active links of each flow .

B. Derivation of (33)–(35)

Let us write modified queue evolution equations:

Note that (20) and (21) do not hold anymore. Consequently,
we cannot claim that (48) follows from (47), and the Proof of
Theorem 2 cannot be applied.

We first consider . We see from (33) that
only if . Thus, the exact queue evolution is given by

Next, let us look at the evolution of . We have that
only if and , thus

if . Therefore, we can write

and from (47), we can write

(54)

(55)

(56)

(57)

Intuitively, (57) means that if we decide to transmit generation
, we will not remove any credit from queues for which

there is no such generation queued (that is ).
Note that this cannot happen with infinite generation sizes as

implies . Since we have already
proven in Theorem 2 that , we want to
minimize (57), which is equivalent to maximization in (34) and
(35) (with a slight caveat that the condition
in the fluid model reads as in the packet
model, due to continuity). It is also easy to see from (57) that
the naive policy (31) may yield an unbounded drift.

REFERENCES

[1] “MIT Roofnet—Publications and trace data,” 2005 [Online]. Available:
http://pdos.csail.mit.edu/roofnet/doku.php?id=publications

[2] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye, “Feasibility study of
mesh networks for all-wireless offices,” in Proc. ACM/USENIX Mo-
biSys, 2006, pp. 69–82.

[3] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual ring routing: Network routing inspired by DHTs,” in Proc.
ACM SIGCOMM, 2006, pp. 351–362.

[4] S. Biswas and R. Morris, “ExOR: Opportunistic multihop routing for
wireless networks,” presented at the ACM SIGCOMM, 2005.

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:48:06 EDT from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. ACM SIG-
COMM, 2007, pp. 169–180.

[6] B. Radunovic, C. Gkantsidis, P. Key, S. Gheorgiu, W. Hu, and P.
Rodriguez, “Multipath code casting for wireless mesh networks,”
MSR-TR-2007-68, Mar. 2007.

[7] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, 2006.

[8] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[9] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with
intra-session network coding,” presented at the 43rd Allerton Annu.
Conf. Commun., Control, Comput., 2005.

[10] D. Lun, M. Medard, and R. Koetter, “Network coding for efficient wire-
less unicast,” in Proc. IEEE Int. Zurich Seminar Commun., Feb. 2006,
pp. 74–77.

[11] R. Srikant, The Mathematics of Internet Congestion Control. Boston,
MA: Birkhauser, 2003.

[12] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and mac
for stability and fairness in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

[13] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer opti-
mization in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1452–1463, Aug. 2006.

[14] M. Chen, S. Low, M. Chiang, and J. Doyle, “Cross-layer congestion
control, routing and scheduling design in ad hoc wireless networks,”
presented at the IEEE INFOCOM, 2006.

[15] G. Sharma, R. Mazumdar, and N. Shroff, “On the complexity of sched-
uling in wireless networks,” in Proc. MobiCom, 2006, pp. 227–238.

[16] D. Lun, M. Medard, and M. Effros, “On coding for reliable commu-
nication over packet networks,” presented at the 42nd Allerton Conf.,
2004.

[17] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[18] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[19] M. Neely, “Optimal backpressure routing for wireless networks with
multireceiver diversity,” in Proc. Conf. Inf. Sci. Syst., Mar. 2006, pp.
18–25.

[20] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] B. Radunovic, C. Gkantsidis, G. Gunawardena, and P. Key, “Horizon:
Balancing TCP over multiple paths in wireless mesh network,” in Proc.
MobiCom, 2008, pp. 247–258.

[22] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[24] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “MORE: A
network coding approach to opportunistic routing,” MIT-CSAIL-TR-
2006-049, 2006.

[25] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” presented at the Allerton,
2005.

[26] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proc. ACM SIGMETRICS/IFIP
Perform., Jun. 2006, pp. 27–38.

[27] A. K. Miu, H. Balakrishnan, and C. E. Koksal, “Improving loss re-
silience with multiradio diversity in wireless networks,” in Proc. ACM
MobiCom, Cologne, Germany, Sep. 2005, pp. 16–30.

[28] R. Gummadi, R. Patra, H. Balakrishnan, and E. Brewer, “Interference
avoidance and control,” in Proc. 7th ACM Workshop Hot Topics Netw.
(Hotnets-VII), Calgary, AB, Canada, Oct. 2008.

[29] L. Huang, B. Johnson, D. Tadas, and M. Stoler, “802.11a performance
over various channels,” IEEE 802.11-03/0682-00-000k, 2003.

[30] T. Cui, L. Chen, and T. Ho, “Efficient opportunistic network coding
for wireless networks,” in Proc. IEEE INFOCOM, 2008, pp. 361–365.

[31] K. Zeng, W. Lou, and H. Zhai, “On end-to-end throughput of oppor-
tunistic routing in multirate and multihop wireless networks,” in Proc.
IEEE INFOCOM, 2008, pp. 816–824.

[32] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in Proc. ACM
SIGCOMM, 2006, pp. 243–254.

[33] A. Eryilmaz and D. Lun, “Control for inter-session network coding,”
presented at the NetCod, 2007.
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