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Abstract—We consider the problem of two wireless networks
operating on the same (presumably unlicensed) frequency band.
Pairs within a given network cooperate to schedule transmissions,
but between networks there is competition for spectrum. To make
the problem tractable, we assume transmissions are scheduled
according to a random access protocol where each network
chooses an access probability for its users. A game between the
two networks is defined. We characterize the Nash Equilibrium
behavior of the system. Three regimes are identified: one in which
both networks simultaneously schedule all transmissions, one in
which the denser network schedules all transmissions and the
sparser only schedules a fraction, and one in which both networks
schedule only a fraction of their transmissions. The regime of
operation depends on the path loss exponent �, the latter regime
being desirable but attainable only for � � �. This suggests that
in certain environments, rival wireless networks may end up
naturally cooperating. To substantiate our analytical results, we
simulate a system where networks iteratively optimize their access
probabilities in a greedy manner. We also discuss a distributed
scheduling protocol that employs carrier sensing and demonstrate
via simulations that again a near cooperative equilibrium exists
for sufficiently large �.

Index Terms—Carrier sensing, game theory, Nash equilibrium
(N.E.), price of anarchy, random access, spectrum sharing, wireless
ad hoc networks.

I. INTRODUCTION

T HE recent proliferation of networks operating on unli-
censed bands, most notably 802.11 and Bluetooth, has

stimulated research into the study of how different systems com-
peting for the same spectrum interact [1]. Communication on
unlicensed spectrum is desirable essentially because it is free,
but users are subject to random interference generated by the
transmissions of other users. Most research to date has assumed
devices have no natural incentive to cooperate with one an-
other. For instance, a wireless router in one apartment is not
concerned about the interference it generates in a neighboring
apartment. Following from this assumption, various game-the-
oretic formulations have been used to model the interplay be-
tween neighboring systems [2]–[6]. An important conclusion
stemming from this body of work is that for single-stage games,
the Nash equilibria (N.E.) are typically unfavorable, resulting in

Manuscript received August 25, 2008; revised September 20, 2009; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Modiano.

L. H. Grokop was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720 USA.
He is now with Qualcomm Inc., San Diego, CA 92121 USA (e-mail:
lgrokop@eecs.berkeley.edu).

D. N. C. Tse is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
dtse@eecs.berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2010.2043114

inefficient allocations of resources to users. A quintessential ex-
ample is the following. Consider a system where a pair of com-
peting links is subjected to white noise and all cross gains are
frequency-flat. Suppose the transmitters wish to select a one-
time power allocation across frequency subject to a constraint
on the total power expended (this problem is studied in [7], [16],
and [17], where it is referred to as the Gaussian Interference
Game). It is straightforward to reason (via a waterfilling argu-
ment) that the selection by both users of frequency-flat power
allocations, each occupying the entire band, constitutes a N.E.
This full-spread power allocation can be extremely inefficient.
Consider a symmetric system where the cross gains and direct
gains are equal. At high , each link achieves a throughput
of only 1 b/s/Hz, instead of b/s/Hz, which
would be obtained if the links cooperated by occupying orthog-
onal halves of the spectrum. At a of 30 dB, the throughput
ratio between cooperative behavior and this full-spread N.E. be-
havior, referred to as the price of anarchy, is about 5. This ex-
ample highlights an important point in relation to single-stage
games between competing wireless links: Users typically have
an incentive to occupy all of the available resources.

In this work a different approach is taken. Rather than as-
suming total anarchy—that is, competition between all wireless
links—we instead assume competition only between wireless
links belonging to different networks. Wireless links belonging
to the same network are assumed to cooperate. In short, we as-
sume competition on the network level, not on the link level. In
a practical setting this may represent the fact that neighboring
wireless systems are produced by the same manufacturer or
are administered by the same network operator. Alternatively,
one may view the competition as being between coalitions of
users [8].

To make the problem analytically tractable but still retain its
underlying mechanics, we assume each network operates under
a random access protocol, where users from a given network
access the channel independently but with the same probability.
Analysis of random access protocols provides intuition for the
behavior of systems operating under more complex protocols, as
the access probability can broadly be interpreted as the average
degrees of freedom each user occupies. For the case of competi-
tion on the link level, game-theoretic research of random access
protocols such as ALOHA have been conducted in [9] and [10].
In our model, each network has a different density of nodes and
chooses its access probability to maximize average throughput
per user. Note this access protocol is essentially identical to one
in which users select a random fraction of the spectrum on which
to communicate. Thus, an access probability of one corresponds
to a full-spread power allocation.

We first assume all links in the system have the same trans-
mission range and afterward show that the results are only triv-
ially modified if each link is assumed to have an i.i.d. random
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transmission range. We characterize the N.E. of this system for
a fixed-rate model, where all users transmit at the same data rate.
We show that unlike the case of competing links, a N.E. always
exists and is unique. Furthermore, for a large range of typical
parameter values, the N.E. is not full-spread —nodes in at least
one network occupy only a fraction of the bandwidth. We also
identify two modes, delineated by the path loss exponent . For

, the N.E. behavior is distinctly different than for
and possesses pseudocooperative properties. Following this, we
show that the picture for the variable-rate model, in which users
individually tailor their transmission rates to match the instanta-
neous channel capacity, remains unchanged. Before concluding,
we present simulation results for the behavior of the system
when the networks employ a greedy algorithm to optimize their
throughput, operating under both a random access protocol and
a carrier sensing protocol.

In Section II, we formulate the system model explicitly. In
Section III-A, we introduce the random access protocol and an-
alyze its N.E. behavior in the fixed-rate model. In Section III-B,
we analyze the variable rate model. In Section IV, we extend our
results to cover the case of variable transmission ranges. Sec-
tion V presents simulation results and the carrier sensing pro-
tocol. Section VI summarizes and suggests extensions. The Ap-
pendix contains proofs of the main theorems presented.

II. PROBLEM SETUP

Consider two wireless networks consisting of and
tx–rx pairs, respectively. Without loss of generality, we will as-
sume . The transmitting nodes are uniformly distributed
at random in an area of size . To avoid boundary effects, sup-
pose this area is the surface of a sphere. Thus, is the density
of transmitters (or receivers) in network . For each transmitter,
the corresponding receiver is initially assumed to be located at
a fixed range of meters with uniform random bearing. Time is
slotted, and all users are assumed to be time-synchronized.

Both networks operate on the same band of (presumably un-
licensed) spectrum, and at each time slot, a subset of tx–rx pairs
are simultaneously scheduled in each network. When sched-
uled, a tx–rx pair uses all of the spectrum. It is generally desir-
able to schedule neighboring tx–rx pairs in different time slots.
This scheduling model is a form of time division multiplexing
(TDM), but is more or less analogous to a frequency division
multiplexing (FDM) model where each tx–rx pair is allocated a
subset of the spectrum (typically overlapping in some way with
other tx–rx pairs in the network).

Transmitting nodes are full buffer in that they always have
data to send. Transmissions are assumed to use Gaussian code-
books, and interference from other nodes is treated as noise.
Initially, we analyze the model where all transmissions in net-
work occur at a common rate of . We refer to
as the target . Thus, a transmission in network is suc-
cessful iff . Later, we explore the model where trans-
mission rates are individually tailored to match the instanta-
neous capacities of the channels. The signal power attenuates
according to a power law with path loss exponent . We
assume a high- or interference-limited scenario, where the
thermal noise is insignificant relative to the received power of in-
terfering nodes, and thus refer to the as the . For a given

realization of the node locations, the time-averaged throughput
achieved by the th tx–rx pair in network is then

per complex d.o.f., where is the fraction of time the th tx–rx
pair is scheduled. The notation denotes the probability
of the event occurring. The average (represented by the bar
above the ) is essentially taken over the distribution of the
interference as different subsets of transmitters are scheduled
at different times.

As for , the bulk of the interference is generated by the
strongest interferer. To make the problem tractable, we compute
the as the receive power of the desired signal divided by
the receive power of the nearest interferers signal. We refer to
this as the Dominant Interferer assumption. This assumption is
also employed in the analysis of similar networks in [11]–[14].
Further justification is provided by way of simulations presented
in Section V. These illustrate that our results remain unchanged
when the assumption is removed.

Denote the range of the nearest interferer to the th receiver
at time by . Then

The metric of interest to each network is its expected time-
averaged rate per user

The subscript indicates this expectation is taken over the
geographic distribution of the nodes. As the setup is statistically
symmetric, this metric is equivalent to the expected sum rate of
the system, divided by , in the limit .

III. RANDOM ACCESS PROTOCOL

A. Fixed-Rate Model

Suppose each network uses the following random access pro-
tocol. At each time slot, each link is scheduled i.i.d. with proba-
bility . The packet size is for all communications
in network . The variables are optimized over.

Let us first compute the optimal access probability for the
case of a single network operating in isolation on a licensed
band as a function of the node density and the transmission
range. This problem has recently been studied independently in
[11]–[14] with equivalent results derived. In [15], similar results
are derived for the case where the is computed based on all
interferers, not just the nearest.

Let the r.v. denote the number of interfering transmit-
ters within range of the th receiver.
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in the limit .
In order to obtain better insight into the problem at hand,

a change of variables is required. We refer to the set of all
points within the transmission range as the transmission disc.
The quantity is the average number of nodes (tx or rx)
per transmission disc. We often refer to it simply as the number
of nodes per disc and represent it by the symbol

Assume is larger than a certain threshold (we make this
precise later). Maximizing over the access probability yields

(1)

with the optimal access probability being

(2)

One can further optimize over the target so that is re-
placed by in the above two equations. Inspection of (1) re-
veals that the optimal target is a function of alone. Thus,
if we define the quantity

will be a constant independent of . The quantity
represents the average number of (simultaneous) transmissions
per transmission disc. We sometimes refer to it simply as the
transmit density. Whereas the domain of is , the domain
of is . Thus, we see that for sufficiently large, the
access probability should be set such that an optimal number
of transmissions per disc is achieved. What is this optimal
number? What is the optimal target ?

For the purposes of optimizing (1), define the function
as the unique solution of the following equation:

(3)

This equation comes from the observation that maximizing (1)
over is equivalent to maximizing over .
A plot of is given in Fig. 1. So as to avoid confusion,
note that the symbol represents a predefined function, not
necessarily the same as the symbol , which is a variable. As

Fig. 1. Optimal average number of transmissions per transmission disc as a
function of the path loss exponent.

(1) is smooth and continuous with a unique maxima, by setting
its derivative to zero, we find that the optimal target is

, and the optimal number of transmissions per disc is
, when is larger than a certain threshold.

When is smaller than this threshold, there are not enough
tx–rx pairs to reach the optimal number of transmissions per
disc, even when all of them are simultaneously scheduled. In this
case, the solution lies on the boundary with . This cor-
responds to the scenario where the transmission range is short
relative to the node density such that tx–rx pairs function as if
in isolation. It is intuitive that in this case all transmissions in
the network will be simultaneously scheduled. Our discussion
is summarized in the following theorem.

Theorem III-1: (Optimal Access Probability) For a single net-
work operating in isolation under the random access protocol,
when , the optimal access probability is ,
where is given by the unique solution of (3). The optimal
target is .

When , and is given by the unique
solution to

The expression for at the end of this theorem is the first-
order stationarity condition for maximizing the last equation
over with . The region satisfying is re-
ferred to as the partial reuse regime. The complement region
is referred to as the full reuse regime. Note the optimal access
probability of the above theorem is equivalent to the results of
[11, Section IV.B], and those discussed under the title “Max-
imum Achievable Spatial Throughput and TC” in [13, p. 4137].

Now, we perform the same computation for the case where
both networks operate on the same unlicensed band. In this case,
there is both intranetwork and internetwork interference. It is
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straightforward to extend the above analysis to show that for
network

in the limit . For a given , the first network can op-
timize and , and vice-versa. That is each network can it-
eratively adjust its access probability and target in response
to the other network. In this sense, a game can be defined be-
tween the two networks. A strategy for network is a choice of

and . Its payoff function (also referred to as
utility function) is the limiting form of times

(4)

(5)

Here, we have scaled the throughput by to emphasize the
simple form of the payoff functions. At first glance, this setup
seems desirable, but there is a redundancy in the way the strategy
space has been defined. The problem is that the variable
only appears in and thus should be optimized over separately
rather than being included as part of the strategy. This leads to
the following game setup.

Definition III-2: (Random Access Game) A strategy for net-
work in the Random Access Game is a choice of .
The payoff functions are

The above formulation is intuitively appealing as a network’s
choice of access probability constitutes its entire strategy. If we
could explicitly solve the maximization problems, the variables

would be removed altogether. When and are large, this
can be done, and

(6)

(7)

but, in general, it is not possible. Instead, since we are only in-
terested in analyzing the Nash equilibrium (N.E.) or equilibria
of this game, we do the following.

Observe that the objective function within the maximization
is smooth and continuous. This enables the order of maximiza-
tion to be swapped. That is, for a given , we first maximize
over in (4) and then over the ; likewise for (5). The ben-
efit of this approach is that the maximizing can be explicitly
expressed as a function of . This was demonstrated earlier for
the single-network scenario. The resulting expressions are

.

The set of N.E. of the above game and their corresponding
values of and are identical to those of the Random Ac-
cess Game. Inspection of the above equations reveals a further
simplification of the problem is at hand: The set of N.E. of the
above game are identical to the set of N.E. of the following
game (though the values of and at the equilibria may be
different).

Definition III-3: (Transformed Random Access Game) A
strategy for network in the Transformed Random Access
Game is a choice of . The payoff functions are

We now analyze the N.E. of the Random Access Game by
analyzing the N.E. of the Transformed Random Access Game.
The first question of interest is whether or not there exists a N.E.
It turns out a unique N.E. always exists, but its nature depends
crucially on the path loss exponent. There are two modes,

and . We start with the first. Recall we have
assumed .

Theorem III-4: (Random Access N.E. for ) For
, the unique N.E. occurs at and defined

by either the solution of

(8)

or , whichever is smaller.
The N.E. described in Theorem III-4 occurs on the boundary

of the strategy space. This is because for , each
network tries to set its number of transmissions per disc higher
than the other (see the proof of the theorem). The equilibrium is
then only attained when at least one network has maxed out and
scheduled all of its transmissions simultaneously.

The N.E. can be better understood when , corre-
sponding to the case in which transmissions span several inter-
mediate nodes.

Theorem III-5: (Random Access N.E. for and
) In the limit , the N.E. occurs at

.

This result stems from using the limiting form
as in the utility functions and , as was done in (6)
and (7). From it, we see that if the denser network has more than

times as many nodes as its rival, the N.E. will corre-
spond to partial reuse, i.e., the denser network will only occupy
a fraction of the total available bandwidth. This is in stark con-
trast to the case of competing individual transmissions where
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Fig. 2. The solid line represents the solution to (8) for � � �. The N.E. value
� is equal to the minimum of this line and � . The limiting solution used in
Theorem III-5 is plotted as a dashed line.

the N.E. typically corresponds to a full spread, i.e., both com-
peting links spread their power evenly across the entire band-
width. The limit result of Theorem III-5 is plotted in Fig. 2 as a
dashed line.

We now investigate the average throughput at equilibrium for
the mode . We define the metric

This quantity has a natural interpretation. Recall is the
average throughput per tx–rx pair, and is the average number
of tx–rx pairs per transmission disc in network . Thus,

is the average throughput per transmission disc in net-
work . This is the average number of bits successfully received
in network within an area of size per time slot, per d.o.f.
The quantity is then the average throughput per transmission
disc in the system, that is, the average number of bits success-
fully received in both networks within an area of size per
time slot, per d.o.f.

Theorem III-6: In the limit

.

where and
.

The important property of this result is that as the number
of nodes per transmission disc increases, decreases roughly
like . Let us compare this to the average
throughput per transmission disc in the cooperative case, that is
when the two networks behave as if they were a single network
with nodes per disc. From (1), this average throughput
per disc is

which is independent of the number of nodes per disc. Thus, as
the number of nodes per disc grows, so does the price of anarchy

For , the N.E. behavior is different. Whereas the solu-
tion always lies on the boundary for , for it
typically does not.

Theorem III-7: (Random Access N.E. for ) For ,
the unique N.E. occurs at

if ; otherwise , and is defined by
either the solution of (8) or , whichever is smaller.

A plot of versus is given in Fig. 6. The condition
corresponds to network 1 having more than

nodes per transmission disc. We refer to this as the
partial/partial reuse regime.

The interpretation of Theorem III-7 is that for in the
partial/partial reuse regime, the solution lies in the strict interior
of the strategy space. This is because on the boundary of the
space network can improve its throughput by undercutting the
transmit density of network , i.e., setting . The sym-
metry of the N.E. then follows by observing that the
utility functions are symmetric and the solution is unique.

There is a cooperative flavor to this equilibrium in that both
networks set their transmission densities to the same level, and
this level is comparable to the optimal single-network density

. Moreover, the equilibrium level does not grow with the
number of nodes per transmission disc as it does for

. Actual cooperation between networks corresponds to setting
the access probability based on (2), taking into account that the
effective node density is . Thus, the cooperative solution
is

Under cooperation, the average throughput per transmission
disc at the N.E. is [from (1)]

Under cooperation in the partial/partial reuse regime, it is

The price of anarchy is the ratio of these two quantities
( ). Comparing the two modes, we see that while for

the price of anarchy grows in an unbounded fashion
with the number of nodes per transmission disc, for the
price of anarchy in the partial/partial reuse regime is a constant
depending only on . This constant is plotted versus in Fig. 4.

We now summarize the equilibria results. There are three
regimes.
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Fig. 3. These plots can be used to determine which regime the N.E. is in. The
x-axis and y-axis correspond to the average number of nodes per transmission
disc in networks 1 and 2, respectively. Note the lower left vertex of the par-
tial/partial reuse regime always occurs at � ���� � ��� and the inter-

section of the full/full reuse regime with the axes always occurs at �� ������
and ���� ����.

1) Full/Full reuse
— and

— Both networks schedule all transmissions.
2) Full/Partial reuse

— and

.
— Denser network schedules all transmissions; sparser

schedules only a fraction.
3) Partial/Partial reuse

— .
— Both networks schedule only a fraction of their

transmissions.
In the full/full reuse regime, . In the full/
partial reuse regime, the sparser network sets and
the denser network sets as the solution to (8). In the partial/

partial reuse regime, .
The regimes are essentially distinguished by which boundary

constraints are active. For , the partial/partial reuse
regime is not accessible. Fig. 3 provides an illustrated means for
determining which regime the system is in for a range of values
of the path loss exponent. In these plots, we consider all values

Fig. 4. For � � �, the price of anarchy depends only on the path loss exponent
in the partial/partial reuse regime.

of and , not just those satisfying . Notice that
as , the entire region corresponds to the full/full reuse
regime; for , almost the entire region corresponds to the
full/partial reuse regime; and for , the entire region
corresponds to the partial/partial reuse regime.

B. Variable-Rate Model

In this section, we examine the case where tx–rx pairs tailor
their communication rates to suit instantaneous channel condi-
tions, sending at rate during the th time slot.
Various protocols can be used to enable tx–rx pairs to estimate
their .

Consider first the single, isolated network scenario. The ex-
pected time-averaged rate per user is now

As before, the rate is both time-averaged over the interference
and averaged over the geographic distribution of the nodes. The

is the instantaneous value observed by a given rx node and
is distributed according to

where the variable denotes the distance to the nearest inter-
ferer. By optimizing over one arrives at

(9)

Define as the maximizing argument of the uncon-
strained version of the above optimization problem or, more
specifically, as the unique solution to

The function is plotted in Fig. 6. Then,
. From this, we see that the solution for
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the variable-rate case is the same as the fixed-rate solution,
differing only by substitution of the function for .

Now, we turn to the case of two competing wireless networks.
Using an approach similar to the previous one, it can be shown
that

In this way, we can define the game between the two networks
like so.

Definition III-8: (Variable-Rate Random Access Game) A
strategy for network in the Variable-Rate Random Access
Game is a choice of . The payoff functions are

From the above definition, we see that the Fixed-Rate Game
is derived from the Variable-Rate Game by merely applying a
step-function lower bound to the players’ utility functions, with
the width of the step-function optimized, i.e.,

It is natural to wonder whether the N.E. of the Variable-Rate
Game bears any relationship to the N.E. of the Fixed-Rate
Game.

As in the Fixed-Rate Game, the utility functions of the Vari-
able-Rate Game can be explicitly evaluated when and are
large, yielding

Compared to (4) and (5), we see that for large , , the
utility functions of the Variable-Rate Game have exactly the
same functional dependency on , as the utility functions
of the Fixed-Rate Game, differing only in an -dependent
constant.

As anticipated by the above discussion, the N.E. behavior of
the Variable-Rate Game parallels that of the Fixed-Rate Game.
The same two modes are present, and . These
give rise to the same three spreading regimes, the only difference
being that the boundaries delineating them are shifted slightly.
The N.E. values in each regime take on a similar form.

Theorem III-9: The Variable-Rate Random Access Game has
a unique N.E. , which lies in one of three regions. Let

be the unique solution of

(10)

for and equal to positive infinity for .

Fig. 5. The three regimes for the N.E. of the Variable-Rate Game.

Fig. 6. The functions � ��� and � ��� for the Variable-Rate model versus
the equivalent functions � ��� and �� ������ for the Fixed-Rate model.

• (Full/Full reuse) If and , the unique
solution over of

(11)

then .
• (Full/Partial reuse) If and the unique

solution of (11), then and is equal to this unique
solution.

• (Partial/Partial reuse) If , then
.

A regime map is provided in Fig. 5. As is evident from the
above theorem, it is not possible to characterize the behavior
of the N.E. for the Variable-Rate Game as explicitly as for the
Fixed-Rate Game. This is in part due to the more complex repre-
sentation of the utility functions in terms of integrals and in part
due to the fact that the function cannot be represented
in terms of the function , as in the case of the Fixed-Rate
Game where one function equals the square root of the other
evaluated at .

For large , however, we can use the approximation adopted
in Theorem III-5 to explicitly characterize the behavior of the
N.E. in the full/partial reuse regime.
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Theorem III-10: (Variable-Rate Random Access N.E. for
and ) In the limit , the N.E. occurs at

.

Thus for and large , the behavior of the N.E.
in the Variable-Rate Game is identical to that of the Fixed-Rate
Game. As discussed earlier, the values of and at equilib-
rium are equal to those of the Fixed-Rate Game times a constant

.

C. Explanation of Behavior

The intuition behind our result is the following. The average
throughput per link is essentially equal to the product of the
fraction of time transmissions are scheduled, and the average
number of bits successfully communicated per transmission.
Adjusting the transmit density has a linear effect on the former
term, but a nonlinear effect on the latter. The latter depends on
the , and the essentially depends on the path loss expo-
nent via

When the nearest interferer is closer than the transmitter, the
ratio inside the parentheses is less than 1, and a large value of
substantially hurts the , dragging it to near zero and causing
the link capacity to drop to near zero. However, when the nearest
interferer is further away than the transmitter, the ratio is greater
than 1 and a large value of substantially improves the ,
resulting in a large link capacity. Thus for large , the average
number of bits successfully communicated per transmission is
very sensitive to whether or not the transmission disc is empty.

This insensitivity for sufficiently small means that in-
creasing the transmit density in network causes a linear
increase in the fraction of time transmissions are scheduled,
but has little effect on the number of bits successfully commu-
nicated per transmission, up until the point where the transmit
density of network starts to dwarf the transmit density of
network . Thus, network will wish to increase its transmit
density until it is sufficiently larger than network ’s. Likewise,
network will wish to increase its transmit density until it is
sufficiently larger than network ’s. Ultimately this results in
either:

1) a full/full reuse solution, which occurs when the sparser
network maxes out and winds up simultaneously sched-
uling all of its transmissions, and the denser network is
insufficiently dense such that its optimal transmit density
based on the sparser networks choice results in it simulta-
neously scheduling all of its transmissions; or

2) a full/partial reuse solution, which occurs when the sparser
network maxes out and winds up simultaneously sched-
uling all of its transmissions, but the denser network is suf-
ficiently dense such that its optimal transmit density based

on the sparser networks choice results in it simultaneously
scheduling only a fraction of its transmissions.

The opposite effect occurs for sufficiently large , where the
average number of bits successfully communicated per trans-
mission depends critically on whether or not there is an inter-
ferer inside the transmission disc. In this scenario, network
will set its active density to a level lower than network ’s in
order to capitalize on those instances in which network hap-
pens to not schedule any transmissions nearby to one of net-
work ’s receivers, resulting in the successful communication
of a large number of bits. Likewise, network will set its active
density to a level lower than network ’s, and the system con-
verges to the partial/partial reuse regime.

IV. VARIABLE TRANSMISSION RANGE

One of our initial assumptions was that all tx–rx pairs have
the same transmission range . In this section, we consider the
scenario where the transmission ranges of all tx–rx pairs in the
system are i.i.d. random variables . When the variance of
is large, some form of power control may be required to ensure
long-range transmissions are not unfairly penalized. A natural
form of power control involves tx nodes setting their transmit
powers such that all transmissions are received at the same .
This means transmit power scales proportional to . Denote
the distance from the th tx node to the th rx node . Then,
the interference power from the th tx node impinging on the
th rx node is proportional to . In the fixed transmis-

sion range scenario, this quantity was proportional to .
There we assumed the bulk of the interference was generated
by the dominant interferer. Denote the scheduled set of tx nodes
at time by . This assumption essentially evoked the fol-
lowing approximation:

The equivalent approximation for the variable transmission
range problem is

Thus for variable range transmission, the dominant interferer
is not necessarily the nearest to the receiver. Under this assump-
tion, the at the th rx node at time is then

where is the index of the tx node that is closest to the th
receiver relative to its transmission range.

Let us compute the throughput for the variable transmission
range model under the Fixed-Rate Random Access protocol.
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The probability the is greater than the threshold

as . For notational simplicity, let . If we define
as the average number of nodes per transmission disc, where

the average is taken over both the geographical distribution of
the nodes and the distribution of the size of the transmission
disc, i.e., , we wind up with

, which is the same result as the fixed-transmis-
sion range model. It is straightforward to extend the analysis to
the case of two competing networks. The throughput per user in
network 1 is then

and likewise for network 2. From this, we see that all results
for the fixed-transmission range model extend to the variable-
transmission range model by simply replacing by .

V. SIMULATIONS

A. Random Access Protocol

In order to get a sense of the typical behavior of the players
in the (Variable-Rate) Random Access Game, and to justify the
validity of the Dominant Interferer assumption, we simulate the
behavior of the following greedy algorithm with the interference
computed based on all transmissions in the network, not just the
strongest.

Inputs: , ,
Outputs: , for .
For to 500
Form estimate
Form estimate
If

Else

End
Form estimate
Form estimate
If

Else

End
End

Each update time , network 1 performs a simple gradient de-
scent search by temporarily increasing and then decreasing its
access probability to determine which option leads to a higher
throughput. Shortly afterward, network 2 does the same. If
is small, then both networks can perform these measurement
operations simultaneously without significantly affecting the
outcome.

The topology used in the simulations consisted of 400 tx
nodes from network 1 and 200 tx nodes from network 2, all
i.i.d. uniformly distributed on the surface of a sphere of unit
area. For each tx node, its corresponding rx node was located at
a point randomly chosen at uniform from a disc of radius 0.15.
This corresponds to and

. A step-size of was used. The
results for , 3.5, and 4.5 are displayed in Fig. 7. The
observed behavior corresponds to the analytical results. For the
values of and used, the N.E. lies in the Full/Full regime
for , the Full/Partial regime for , and the Par-
tial/Partial regime for , as can be seen from Fig. 3.

B. Carrier-Sensing Multiple-Access-Based Protocol

The high-level conclusion from our analysis of the Random
Access protocol is that the N.E. is cooperative in nature for a
sufficiently high path loss exponent. Ideally, we would like to
be able to draw this conclusion for a more sophisticated class
of scheduling protocols employing carrier sensing. Due to the
analytical intractability of the problem, we present simulation
results to illustrate this effect. We assume both networks operate
under the following protocol. We present a centralized version
of it due to space constraints, but claim there exists a distributed
version that performs identically in most cases. During the
scheduling phase, each tx–rx pair is assigned a unique token at
random from . Tx nodes proceed with their trans-
mission so long as they will not cause excessive interference
to any rx node with a higher priority token. More precisely,
a tx node will be scheduled for transmission so long as it
will not cause the of any higher priority rx node to fall
below a silencing threshold ( for network 1 and
for network 2). These higher priority ’s are computed as
the ratio of the received signal power to the interference of tx
node plus noise. Thus, a game between the two networks
can be defined where the strategies are the choices of silencing
thresholds and . We refer to this as the CSMA Game.
The silencing threshold for the CSMA Game essentially plays
the same role as the access probability in the Random Access
Game: It determines the degree of spatial reuse. A high value
of leads to a low density of transmissions, and a low value of

leads to a high density.
We simulate the behavior that arises when both networks opti-

mize their silencing thresholds in a greedy manner. Analogously
to before, we have the following algorithm.

Inputs: , ,
Ouputs: , for .
For to 500
Form estimate
Form estimate
If
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Else

End
Form estimate
Form estimate
If

Else

End
End

The topology used in the setup is identical to before, the only
exception being that at each iteration of the algorithm, 10 old
tx–rx pairs leave each network, and 10 new pairs join in i.i.d.
locations drawn uniformly at random. This is to ensure sufficient
averaging.

In a similar fashion to before, each network estimates the ef-
fect of either increasing or decreasing the silencing threshold,
and then makes a permanent choice. For the same parameter
values, the results of the simulation are displayed in Fig. 8. On
the y-axes of these plots, we have drawn the fraction of nodes
simultaneously scheduled at each iteration, which we denote

and , rather than the silencing thresholds in order to
draw a simple visual comparison with Fig. 7. For this reason,
there is more fluctuation in the results, as the fraction of simul-
taneously scheduled transmissions varies not only due to the
up/down movements of the silencing thresholds, but also due
to the changing topology.

We conclude from these plots that for small values of
(namely ), the system converges to a competitive
equilibrium, where both networks simultaneously schedule a
large fraction of their transmissions, and for large values of

(namely and 4.5) the system converges to a near
cooperative equilibrium, where both networks schedule a small
fraction of their transmissions.

VI. CONCLUSION

This work studied spectrum sharing between wireless devices
operating under a random access protocol. The crucial assump-
tion made was that nodes belonging to the same network or
coalition cooperate with one another. Competition only exists
between nodes belonging to rival networks. It was found that
cooperation between devices within the same network created
the necessary incentive to prevent total anarchy between net-
works. For path loss exponents greater than 4, we showed that
contrary to one’s intuition, there can be a natural incentive for
devices to cooperate to the extent that each occupies only a frac-
tion of the available bandwidth. Such results are optimistic and
encouraging. We demonstrated via simulations that it may be
possible to extend them to more complex operating protocols
such as those that employ carrier sensing to determine when the
medium is free. More generally, one wonders whether a mul-
tistage game capturing the system dynamics under such a pro-
tocol can be formulated and whether the desirable properties of

Fig. 7. Simulations of greedy algorithm under Random Access protocol.

the single-stage game continue to hold. It would also be worth-
while investigating the incentives wireless links have to form
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Fig. 8. Simulations of greedy algorithm under Carrier-Sensing Multiple Ac-
cess protocol.

coalitions, as it was in essence assumed in this work that coali-
tions had been predetermined. Such an investigation would re-

quire extending the results of this work to the case of more than
two competing networks.

APPENDIX

PROOFS

For brevity, we only include the proof of Theorem III-7. The
proof of Theorem III-4 is subsumed by that of III-7. The proof
of Theorem III-9 is more or less built upon the same ideas as
that of III-7. The remaining proofs are straightforward.

Theorem III-7: First consider the partial/partial reuse
regime where . We show that a N.E. cannot
occur on the boundary of the strategy space. Suppose .
Then, . As is the solution to the
equation

and is a monotonically decreasing function
for , we have

If lies on the boundary of the strategy space, then
, which implies

This in turn implies

At equilibrium, , so

a contradiction. Thus, . Now assume . By
assumption, , so . By repeating the
same arguments, we can generate the same style of contradic-
tion, and thus . This establishes that a N.E. cannot
occur on the boundary of the strategy space. In essence, each
network is trying to undercut the active density of the other. This
drags the equilibrium away from the boundary.

Now, we establish any N.E. must be symmetric, i.e.,
. Suppose a N.E. with exists. Then, as it must lie

on the interior of the strategy space and as the utility functions
are symmetric, must also be a N.E. On the interior of
the strategy space, the N.E. criterion is ,
and so the function is monotonically increasing in .
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However, this implies we cannot have N.E. at both and
, a contradiction. Thus, .

By differentiating the utility functions, this implies that at any
N.E., satisfies

with . However, this is equivalent to .
Thus, the N.E. is unique and occurs at

.
Next, consider the partial spread and full spread regimes

where . We first show that . Suppose
. Then, , which implies

At equilibrium, , so

which, in conjunction with the equilibrium condition
, implies , a contradiction. Thus,

. Now, we can solve for to conclude that is the
unique solution to (8) or , whichever is smaller.
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