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Abstract—The maximum differential backlog (MDB), or “back-
pressure” control policy of Tassiulas and Ephremides has been
shown to adaptively maximize the stable throughput of multihop
wireless networks with random traffic arrivals and queueing. The
practical implementation of the MDB policy in wireless networks
with mutually interfering links, however, requires the develop-
ment of distributed optimization algorithms. Within the context
of code-division multiple-access (CDMA)-based multihop wireless
networks, we develop a set of node-based scaled gradient projec-
tion power control algorithms which solves the MDB optimization
problem based on the high-signal-to-interference-plus-noise ratio
(SINR) approximation of link capacities using low communication
overhead. We investigate the impact of the high-SINR approxima-
tion and the nonnegligible convergence time required by the power
control algorithms on the throughput region achievable by the
iterative MDB policy. We show that the policy can achieve at least
the stability region induced by the high-SINR capacity region.

Index Terms—Distributed optimization, multihop wireless net-
works, stochastic control.

I. INTRODUCTION

T HE optimal control of multihop wireless networks is a
major research and design challenge due, in part, to the

interference between nodes, the time-varying nature of the com-
munication channels, the energy limitation of mobile nodes,
and the lack of centralized coordination. This problem is fur-
ther complicated by the fact that data traffic in wireless net-
works often arrive at random instants into network buffers. Al-
though a complete solution to the optimal control problem is
still elusive, a major advance is made in the seminal work of
Tassiulas and Ephremides [1]. In this work, the authors consider
a stochastic multihop wireless network with random traffic ar-
rivals and queueing, where the activation of links satisfies spec-
ified constraints reflecting, for instance, channel interference.
For this network, the authors characterize the stability region,
i.e., the set of all end-to-end demands that the network can sup-
port. Moreover, they obtain a throughput optimal routing and
link activation policy which stabilizes the network whenever the
arrival rates are in the interior of the stability region, without a
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priori knowledge of arrival statistics. The throughput optimal
policy operates on the Maximum differential backlog (MDB)
principle, which essentially seeks to achieve load-balancing in
the network. The MDB policy (sometimes called the “backpres-
sure algorithm”) has been extended to multihop networks with
general capacity constraints in [2] and has been combined with
congestion control mechanisms in [3], [4].

While the MDB policy represents a remarkable achievement,
there remains a significant difficulty in applying the policy to
wireless networks. The mutual interference between wireless
links imply that the evaluation of the MDB policy involves a
centralized network optimization. It is shown in [5] that when
there are finitely many feasible schedules, the centralized opti-
mization can be approximated by a randomized algorithm with
linear complexity while preserving throughput optimality. In
wireless networks with limited transmission range and scarce
battery resources, however, any centralized algorithm is unde-
sirable. The call for more distributed scheduling algorithms with
guaranteed throughput has given rise to two main lines of re-
search.

One approach is to adopt simple physical and MAC layer
models and apply computationally efficient scheduling rules in
a distributed manner [6]–[10]. It is shown in [6] that Maximal
Greedy Scheduling can achieve a guaranteed fraction of the
maximum throughput region. This result is generalized in [7],
[8] to multihop networks where the end-to-end paths are given
and fixed. Despite its simplicity, the distributed scheduling con-
sidered in the above work applies to only a limited class of
networks. Moreover, the simplicity is gained at the expense of
throughput optimality [11]. Recently, the work in [10] devel-
oped a distributed implementation of Tassiulas’s linear com-
plexity randomized algorithm [5] in networks with primary in-
terference constraints. The scheme, which involves distributed
randomized matching, schedule selection, and improvement, is
shown to achieve a throughput region arbitrarily close to the op-
timal region.

Another line of research develops distributed power control
and rate allocation algorithms for implementing the MDB
policy in interference-limited networks with the aim of pre-
serving the throughput optimality. Thus far, distributed MDB
control has been investigated only for networks with relatively
simple physical layer models. For example, Neely [12] studies
a cell-partitioned network model where different cells do not
interfere with each other so that scheduling can be decentralized
to each cell. In general, the MDB policy for interference-lim-
ited networks has to choose from a continuum of rate vectors.
Therefore, the randomized technique developed in [5], [10]
for simple physical layer models is not readily applicable in
this context. So far, the question of how the MDB policy can
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be efficiently applied in general interference-limited wireless
networks remains unanswered.

In this paper, we consider the implementation of the MDB al-
gorithm within interference-limited CDMA wireless networks,
where all links can potentially be active at the same time, and
transmission on any given link can interfere with transmissions
on all other active links. We consider a control strategy where
transmission powers and link service rates are dynamically ad-
justed according to the queue state in order to maximize net-
work throughput. A major difficulty in realizing this goal is
the fact that the physical-layer capacity region of the interfer-
ence-limited code-division multiple-access (CDMA) network
is in general nonconvex. To achieve all arrival rates in the sta-
bility region induced by the nonconvex physical-layer capacity
region typically requires the use of scheduling, which is often
not amenable to distributed and efficient implementation, espe-
cially for medium- to large-scale networks. In light of this, we
focus on achieving the stability region induced by the approx-
imate physical-layer capacity region for the high-signal-to-in-
terference-plus-noise ratio (SINR) regime, which turns out to
be a convex subset of the full capacity region. It turns out that
this latter problem is amenable to distributed and efficient im-
plementation through power control algorithms.

We present two main sets of results for achieving throughput
optimality with respect to the high-SINR stability region. First,
we develop a set of node-based scaled gradient projection
power control algorithms which solves the MDB optimization
using the high-SINR approximation of the link capacities.
Specifically, as the transmission powers are iteratively updated
by the algorithms, the high-SINR capacity expressions (which
are always feasible since they underestimate the actual link
capacities) are used. However, the network queues are still
served using the actual link capacities. We show that the power
control algorithms which use the high-SINR approximation
can be implemented in a distributed manner using low commu-
nication overhead. On the other hand, since the power control
algorithms typically require nonnegligible time to converge,
the optimal high-SINR capacities for any given queue state can
only be found iteratively over time. In the second result, we
develop a new geometric approach for analyzing the expected
Lyapunov drift, and show that the iterative power control policy
with convergence time is guaranteed to achieve the stability
region induced by the high-SINR capacities, as long as the
second moments of traffic processes are bounded. Combining
these two results, we conclude that our iterative power control
algorithms represent a distributed and nearly optimal solution to
the problem of throughput optimal control of CDMA wireless
networks with random traffic arrivals in the high-SINR regime.

To the best of our knowledge, the iterative distributed power
control algorithms developed in this work are the first node-
based scheme for implementing the MDB policy in interfer-
ence-limited wireless networks. Concurrent with our study, iter-
ative implementation of the MDB policy has also been studied
independently by Giannoulis et al. [13]. They investigate dis-
tributed power control algorithms for CDMA networks which
are iterated once for every update of the queue state. In their
scheme, the power and rate allocation algorithms are iterated
only once in a slot, after which the queue state is re-sampled.

In contrast, our algorithms re-sample the queue state only after
the power and rate allocation has converged to the optimum
for the previous queue state. This paper is organized as fol-
lows. Section II introduces the model of stochastic multihop
wireless networks and reviews the throughput optimal MDB
(Backpressure) policy. In Section III, we introduce the inter-
ference-limited physical-layer model and present node-based
power control algorithms that achieve the optimal rate alloca-
tion based on the high-SINR approximation of link capacities.
In Section IV, we prove that the iterative MDB policy proposed
in Section III is guaranteed to achieve the stability region in-
duced by the high-SINR capacity region, even in the presence
of nonnegligible convergence time.

II. NETWORK MODEL AND THROUGHPUT OPTIMAL CONTROL

A. Model of Stochastic Multihop Wireless Networks

Consider a wireless network represented by a directed and
connected graph . Each node models a
wireless transceiver. An edge represents a unidi-
rectional radio channel from node to . For convenience, let

and denote the
sets of node ’s next-hop and previous-hop neighbors, respec-
tively. Let the vector represent the (constant)
channel gains on all links.

Denote the transmission power used on link at (con-
tinuous) time by , and the instantaneous service
rate of link by . A feasible service rate vector

must belong to a given instantaneous
capacity region reflecting the physical-layer coding
mechanism. Under individual power constraints , let

be the set of feasible power allocations and

be the long-term capacity region. Here, the convex hull oper-
ation indicates the possibility of time sharing among
different feasible power configurations .

Let the data traffic in the network be classified according to
their destinations. Traffic of type is destined for a set of
nodes (when type- traffic reaches any node in ,
it exits the network), where is the set of all traffic types. Let

be a given time slot length. Let the number of bits of
type- traffic entering the network at node from time to

be a nonnegative random variable . Assume that
for all , are independent and identically distributed
with finite first and second moments and .
Let denote the average (exogenous) arrival rate
of type- traffic at node . Furthermore, assume all arrival pro-
cesses , , are mutually independent.

Assume node provides a (separate) infinite buffer
for each type of traffic that is not destined for . Denote the
unfinished work in at time by . We focus on the queue
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states sampled at slot boundaries , . Let
denote the instantaneous backlog at the beginning of the th slot,
i.e., . Over the th slot, link serves at
average rate . Thus, we have the
following queueing dynamics:

(1)

Here denotes , and the inequality comes from
the fact that in general, since certain queues may be empty, the
actual endogenous arrivals are less than or equal to the nominal
amount . Finally, the aggregate service rate
on link over the th slot is .

B. Stability Region and Throughput Optimal Policy

Given the wireless network model, we now define notions of
stability and throughput optimal control policies.

Definition 1: [2] The queue is stable if
as . Input

processes are stabilizable if

there exist service processes for all and
such that for every , and the

resulting queueing processes are all stable.
Definition 2: The stability region of a wireless multihop

network is the closure of the set of the average arrival rate vec-
tors of all stabilizable input processes.

For a general wireless multihop network, its stability region
has a simple characterization in terms of supporting multicom-
modity rates that are feasible for a given capacity region.

Theorem 1: [2] The stability region of the wireless mul-
tihop network with transmission power constraint is the set
of all average rate vectors such that there exists a
multicommodity flow vector satisfying

and

where

We refer to the stability region characterized in Theorem 1
as the stability region induced by the capacity region and
denote it by . The following Maximum Differential
Backlog (MDB) policy has been shown to be throughput op-
timal [1], [2] in the sense that it stabilizes all input processes
with average rate vectors belonging to the interior of ,
without knowledge of arrival statistics. The policy can be de-
scribed as follows:

1) At slot , find traffic type having the maximum dif-
ferential backlog over link for all . That is,

, where

if . Let , where
.

2) Find the rate vector which solves

(2)

3) The service rate provided by link to queue is de-
termined by

if
otherwise.

For wired networks, the above MDB policy can be imple-
mented in a fully distributed manner. In wireless networks, how-
ever, the capacity of a link is usually affected by interference
from other links. Therefore, solving (2) in general requires cen-
tralized computation. Thus far, distributed solutions for (2) are
available only for relatively simple physical layer models [12].

In the following, we develop efficient distributed MDB con-
trol algorithms for interference-limited CDMA networks with
random traffic. Throughout the rest of the paper, we assume all
nodes have synchronized clocks so that the boundaries of time
slots at all nodes are aligned. This assumption guarantees that
the MDB values in (2) are taken at the same instant across all
links. The study of MDB policy based on asynchronously sam-
pled queue state will be a subject of future work.

III. DISTRIBUTED MAXIMUM DIFFERENTIAL BACKLOG

CONTROL

A. Throughput Optimal Power Control

We study a wireless network using direct-sequence
spread-spectrum CDMA. The received signal-to-interfer-
ence-plus-noise ratio (SINR) per channel code symbol of link

is given by

SINR

where is the processing gain, is the
total transmission power of node , and represents the noise
power of receiver .

Assume the receiver of every link decodes its own signal
against the interference from other links as Gaussian noise. The
information-theoretic capacity of link is given by

(3)

For convenience, we normalize the channel symbol rate
to be one for subsequent analysis. We also take to be the
natural logarithm to simplify differentiation operations.

For a given power configuration , let

denote the corresponding capacity region. It is known that func-
tion is not concave in , and therefore that the achiev-
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able capacity region under the individual power
constraints is not convex. Thus, scheduling and time-sharing
are generally needed to achieve the long-term capacity region

Scheduling and time-sharing, however, are often not amenable
to distributed implementation, especially for medium- to large-
scale networks. As we explain next, however, the achievable ca-
pacity region based on the high-SINR approximation of link ca-
pacities is convex. This region is a subset of the actual capacity
region . The gap between the actual capacity re-
gion and the approximate high-SINR region is typically small
in CDMA networks.

In most CDMA systems, due to the large multiplication factor
, the SINR per symbol

is typically high [14]. Therefore, the link capacity in (3) is well
approximated by [15], [16]

We call the region

the achievable high-SINR capacity region under the individual
node power constraints . Notice that is an under-
estimate of , since for any power configuration ,

, and thus and
. The gap between and is characterized

by

SINR

which is close to zero if SINR is large. Thus, is a close
approximation of in the high-SINR regime.

Note that is an analytical approximation of the actual
region . When is the instantaneous link power config-
uration, the physically-feasible capacity region is still given by

. We wish to analytically approximate the true capacities
by for the following reason.

With a change of variables , , and
, the high-SINR capacity function becomes

(4)

Fig. 1. Transmission powers in terms of the power control and power allocation
variables.

which is known to be concave in [15], [16]. It follows that
the high-SINR capacity region is convex. Thus,

. Therefore, any
point in the long-term high-SINR capacity region can be
achieved by using an appropriate power configuration, without
the need for scheduling and time sharing among different power
configurations.

In a given time slot, the MBD optimization problem with ca-
pacities approximated by the high-SINR expression (4) is given
by (2) with the long-term capacity region being .1

It can be rewritten as the following concave maximization
problem:

maximize

subject to

(5)

Without loss of generality, we assume the MDB for
all [otherwise, we can simply exclude those links having

from the objective function in (5)]. Next, we will
develop distributed power control algorithms which iteratively
solve the optimization in (5).

B. Power Adjustment Variables

First we introduce a set of node-based control variables for
adjusting the transmission powers on all links. They are

Power allocation variables:

Power control variables:

These variables are illustrated in Fig. 1. With appropriate
scaling, we can always let for all so that .
Therefore, we have the equivalent High-SINR Power Control
(HSPC) problem shown in equation (6) at the bottom of the
next page.

C. Conditions For Optimality

To solve the HSPC problem in (6), we compute the gradi-
ents of the objective function, denoted by , with respect to the

1Notice that even if ��� ����� � is not convex, restricting the feasible set
of the optimization in (2) to ��� ����� � does not lose any optimality. This is
because the objective function is linear in the link rates, and so the maximum
over ��� ����� � is equal to the maximum over ���� � ����� ��� ����� ��.
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power allocation variables and the power control variables, re-
spectively. For all and

where the power allocation marginal gain indicator is

(7)

For all

where the power control marginal gain indicator is

(8)

The term appearing above is short-hand notation for the
overall interference-plus-noise power at the receiver end of link

, that is

The marginal gain indicators fully characterize the optimality
conditions as follows.

Theorem 2: A feasible set of transmission power variables
and is the solution of the HSPC problem

(6) if and only if the following conditions hold. For all ,
there exists a constant such that

(9)

if (10)

if (11)

Here, all since by assumption.
For the detailed proof of Theorem 2, see [17]. Due to the

distributed form of the optimality conditions, every node can
check the conditions with respect to its controlled variables lo-
cally, and adjust them towards the optimum. In Section III-D,
we present a set of distributed algorithms that achieve the glob-
ally optimal power configuration for the HSPC problem.

D. Distributed Power Control Algorithms

We design scaled gradient projection algorithms which iter-
atively update the nodes’ power allocation variables and power
control variables in a distributed manner, so as to asymptotically
converge to the optimal solution of (6). At each iteration, the
variables are updated in the positive gradient direction, scaled
by a positive definite matrix. When an update leads to a point
outside the feasible set, the point is projected back into the fea-
sible set [18].

1) Power Allocation Algorithm (PA): At the th iter-
ation at node , the current local power allocation vector

is updated by

Here, and the matrix is symmetric, pos-

itive definite on the subspace . Finally,

denotes the projection on the feasible set of relative to

the norm induced by .2

Suppose each node can measure the value of SINR for any
of its incoming links. Before an iteration of , node collects
the current SINR ’s via feedback from its next-hop neighbors
. Node can then readily compute all ’s according to

SINR

Note that since the calculation of involves only locally ob-
tainable measures, the algorithm does not require global
exchange of control messages.3

2) Power Control Algorithm (PC): After a phase for ex-
changing control messages (which will be discussed below),
every node is able to calculate its power control marginal gain
indicator . From a network-wide viewpoint, the power con-
trol vector is updated by

Here, the scaling matrix is symmetric and positive definite.
Note that becomes amenable to distributed implementation
if and only if is diagonal.

2In general, ������ � �����	��� 
���� ����� �� � 
���� �����, where � is the

feasible set of ���.
3It is assumed here and for the following that control messages are exchanged

between nodes on a communication channel separate from the main channel
where the network traffic is carried.

maximize

subject to

(6)
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Fig. 2. Information exchange protocol for power control algorithm.

We now derive an efficient protocol which allows each node
to calculate its own given limited control messaging. We
first reorder the summations on the RHS of (8) as

(12)
With reference to the above expression, we propose the fol-
lowing procedure for computing .

Power Control Message Exchange Protocol: Let each node
assemble the measures from all its incoming links .
For this purpose, an upstream neighbor needs to inform of
the value . Since node can measure both SINR
and , it can calculate

SINR

After obtaining the measures from all incoming links, node
sums them up to form the power control message

It then broadcasts to the whole network. The process
for control messaging is illustrated by Fig. 2, where the solid
arrows represent local message communication and the hollow
arrow signifies the broadcasting of the message.

Upon obtaining from node , node processes it
according to the following rule. If is a next-hop neighbor of , it
multiplies the message with and subtracts the product from
the local measure . Otherwise, it multiplies
with . Finally, node adds up the results derived from pro-
cessing all other nodes’ messages, and this sum multiplied by
equals . Note that in a symmetric duplex channel, ,
and node may use its own measure of in place of . Oth-
erwise, it will need channel feedback from node to calculate

. To summarize, the protocol requires only one message from
each node to be broadcast to the whole network. Moreover in
practice, node can ignore the messages generated by distant
nodes, since they contribute very little to due to the negli-
gible multiplicative factor on when and are far
apart [cf. (12)].

3) Convergence of Algorithms: We now formally state the
central convergence result for the and algorithms dis-
cussed above.

Theorem 3: From any feasible initial transmission power
configuration and , there exist appropriate scaling ma-
trices and such that the sequences generated by the

algorithms and converge, i.e., for all ,
and as . Furthermore, and constitute
a set of jointly optimal solution to the HSPC problem (6).

In the and algorithms, the scaling matrices are
chosen to be appropriate diagonal matrices which approximate
the relevant Hessians such that the objective value is increased
by every iteration until the optimum is achieved. This allows
the scaled gradient projection algorithms to approximate con-
strained Newton algorithms, which are known to have fast
convergence rates. Furthermore, the scaling matrices are shown
to guarantee convergence from all initial conditions. These
features are crucial for the applicability of these algorithms to
large networks which lack the ability of centrally scheduling
and synchronizing node operations. Finally, we note that the
scaling matrices can be easily calculated at each node using
very limited control messaging. The detailed derivation and the
full proof of Theorem 3 can be found in [17].

Also note that convergence of the algorithms does not require
any particular order of running and algorithms at dif-
ferent nodes. Any node only needs to update its own variables

and using and until its local variables satisfy the
optimality conditions (9)–(11).

IV. STABILITY REGION OF ITERATIVE MAXIMUM DIFFERENTIAL

BACKLOG POLICY

The MDB policy in Section II-B is implemented through the
node-based power control scheme as follows.

1) At the beginning of the th slot, i.e., at time ,
queue state is sampled by every node for each type

of traffic.4 Every node then computes the maximum
differential backlog (MDB) on each of its outgoing links

for the current slot. Denote the MDB by
, and if , de-

note the type of traffic attaining the MDB by
.

2) At any time , the link capacities are
determined by the instantaneous transmission powers

according to the actual capacity formula
. The instantaneous service rates for different

queues are allocated as follows:

if
otherwise.

(13)

3) The link transmission powers, and thus the link capaci-
ties and service rates, are iterated in time. Specifically at
any , each node iterates the or

algorithms to update its local power or . Algo-
rithm parameters such as and are calculated using
the MDB values at the beginning of the
slot. All calculations and iterations are performed using
the high-SINR capacity formula , as described
in Sections III-B–D.

4) At the beginning of the th slot, the queue state is
re-sampled and the MDBs are recalculated as in step (1).
Steps (2)–(3) are carried out using the new queue state.

4For � � � , � ��� is always taken to be 0.
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The above implementation of the MDB policy deviates from
the original policy in two important respects. First, the high-
SINR link capacity formula (4) is used in the iterated optimiza-
tion of the power configuration , while the network queues
are served at the actual link capacities given by (3). Second,
since the PA and PC algorithms require a certain number of iter-
ations before reaching a close neighborhood of an optimum to
the problem in (6), the transmission rates (which are computed
according to the actual link capacity formulas) corresponding
to the optimal high-SINR power configuration cannot be ap-
plied instantaneously. Rather, the optimal high-SINR transmis-
sion powers can only be found iteratively over time. At any mo-
ment in the convergence interval, the queues are served at rates
which are iteratively updated towards the transmission rates cor-
responding to the optimal power configuration for the queue
state at the beginning of the slot. The power configuration ob-
tained at the end of a convergence period are optimal only for
the queue state some time ago. The effect of using lagging op-
timal service rates is studied in the context of packet
switches by Neely et al. [19]5 and in a queueing network with
Poisson arrivals and exponential service rates by Tassiulas and
Ephremides [20]. In [19], [20], however, the process of finding
the optimal service rates is not iterative. It is assumed that once
the (outdated) queue state information becomes available, the
optimal service rates are obtained instantaneously.

In the following, we will analyze the impact of both the high-
SINR approximation and the convergence time on the stability
region achievable by the proposed iterative MDB policy. We
show that the policy can stabilize any arrival processes (with
finite second moments) whose average arrival rates are within
the stability region induced by the high-SINR capacity region.
To accomplish this, we develop a new geometric approach for
computing the expected Lyapunov drift of the queue state.

A. Transient Optimal Rates

Without loss of generality, assume that the convergence time
of the distributed power control algorithms in Section III-D is
the length of a time slot ,6 i.e., at time , the optimal
high-SINR transmission power vector for is obtained. For
ease of analysis and without loss of generality, we further scale
time so that .

Recall from Section II that denotes the instantaneous
service rate on link for type traffic. The service rate
vector is understood to vary continuously over time
according to the iterations of the PA and PC algorithms. The
total service rate (in bits/slot) provided by to type- traffic
over the th slot (from time to , where ) is
given by

5In [19], the current queue state is taken to be the state of the Markov chain
used for stability analysis. As we show below, however, the Markov state should
consist of the current queue state as well as the previous queue state.

6In practice, the gradient projection algorithms can only find an approximate
optimal solution within a finite period of time. In this work, we make the ideal-
ization that the exact optimum can be achieved after the convergence period � .
Such an assumption simplifies the following analysis while its loss of precision
is small when we take � sufficiently large.

Instead of studying the service rates or ,
in this section we focus on net service rates. First define the
instantaneous net service rate of queue by7

Let be the set of net service rate vectors induced by service
rate vectors such that . This represents
the feasible set of instantaneous net service rates when the power
configuration is . Next, let be the set of induced

by such that . That is, is the
feasible set of instantaneous net service rates under the high-
SINR approximation.

Working with net service rates considerably simplifies our
subsequent analysis. The net service rates (in bits/slot) over the
th slot, induced by service rate vector , are given by

Let be the set of induced by , and let

be the set of induced by . It is straight-
forward to verify that both and are compact and
convex. By Theorem 1 of [3], the intersection of and
with the positive orthant are the stability regions induced by the
actual capacity region and by the high-SINR capacity re-
gion , respectively.

Using the net service rates , we can re-write
the queueing dynamics in (1) as follows:

(14)

In the following, we use to denote the net service rate vector
induced by the actual service rates allocated according to (13).
Correspondingly, we let denote the net service rates calcu-
lated using the high-SINR capacity formula, i.e., is induced
by the service rates allocated according to

if
otherwise.

(15)

It is easy to verify that for any and any net service rate
vector

with equality if and only if is induced by the service rates
allocated according to (13). Similarly, for any , we
have

with equality if and only if is induced by the service rates al-
located according to (15). Therefore, if is the optimal power

7Net service rates can be negative, as when a queue’s endogenous incoming
rate is higher than its outgoing rate.
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configuration for (5), then the net service rates induced by the
service rates allocated according to (15) maximize over
all . Denote the maximizing by .
In the rest of the paper, we denote by for brevity. Ex-
pressed using the simplified notation

In the following, we will simply refer to as the service rate
vector and as the optimal rate allocation for queue
state .

Recall our discussion of the distributed MDB control algo-
rithms in the last section. Due to the iterative nature of the al-
gorithms, the optimal power vector and the optimal rate alloca-
tion for a given queue state can be found only when the algo-
rithms converge. Therefore in practice, the rate vector solving
(2) for cannot be applied instantly at the beginning of
the th slot. The service rates , are always in tran-
sience, shifting from the previous optimum to the next optimum.
Thus, the instantaneous rate vector at time is

, and at time , .

B. Lyapunov Drift Criterion

Following the previous model, the process
forms a Markov chain. The state
lies in the state space

where is the total number of queues. As an extension
of Foster’s criterion for a recurrent Markov chain [21],
the following condition is used in studying the stability of
stochastic queueing systems [1], [19].

Lemma 1: [1] If there exist a (Lyapunov) function
, a compact subset , and a positive constant such

that for all

(16)

and for all

(17)

then the Markov chain is recurrent.8 Hence, the
queueing system is stable in the sense of Definition 1.

We use the Lyapunov function from [20]

where denotes the norm.

8For a Markov chain with continuous state space to be recurrent, the following
condition usually is required in addition to those in Lemma 1: there exists a
subset of states which can be visited from any other state (in a finite number of
steps) with positive probability. For ���� ���� studied here, the zero state consti-
tutes such a subset because by assumption �� ��� � �� � � for all queues
� .

Now let service rates be allocated according to (13). Using
(14), we derive the following upper bound on the expected one-
step Lyapunov drift conditioned on :

where is the vector of second

moments of the random arrival rates and denotes the
norm. The detailed derivation of the above inequality is left to
Appendix A.

Recall that the distributed power control algorithms in
Section III-D increase the objective value

with every iteration from time to . Therefore,
given , we have

Equation (a) holds because the iterative MDB policy always al-
locates actual service rates according to (13). Inequality (b) is
obvious since for all . Inequality
(c) follows from the fact that is in-
creasing over .

Note that because the second moment vector is assumed
to be finite and the actual service rates must be bounded,

we can find a finite constant such that .
Thus, the conditional expected Lyapunov drift is upper bounded
by

Using the above Lyapunov function and the upper bound for
the expected Lyapunov drift, we show the following main result.

Theorem 4: The iterative MDB policy with convergence time
can stabilize all arrival processes whose average arrival rate
vector is in the interior of the stability region in-
duced by the high-SINR capacity region .

Guided by the Lyapunov drift criterion, the proof aims to find
an and a compact set (which may depend on )
which satisfy the conditions (16)–(17) for any average arrival
rate vector . As we have explained,
coincides with (which we simply denote by ) in the pos-
itive orthant. So from now on, we assume . Note
that condition (16) is always satisfied since the first and second
moments of arrival rates as well as the service rate vector are
bounded. Now consider the compact region characterized by

(18)
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Given , we need to specify a finite and show that when

(19)

Towards this objective, we devise a geometric method to re-
late the position of and in the state space to the value
of the inner product . In order to reveal the
insight underlying this approach, we first develop the method-
ology in . The generalization to higher dimensions as well as
the proof for Theorem 4 can be found in Appendices B and C.

C. Geometric Analysis

In this section, we analyze vectors of arrival rates, service
rates, and queue states geometrically. In view of condition (19),
we characterize a neighborhood around which has the fol-
lowing properties: if lies in the neighborhood, then the
first term is substantially negative

; if lies outside the neighborhood (meaning that
is relatively large), then the second term

is sufficiently negative for (19) to hold.
We assume an average arrival rate vector . There

must exist a point , and a positive constant such that
. Therefore the point is also in the

interior of .
Given the current queue state vector , the hyper-

plane is perpendicular to and
crosses the point . The intersection of halfspace

with , denoted by , is closed and
convex with nonempty interior [22].

Lemma 2: For , .
Proof: Since , by definition .

Thus

The last inequality follows from since .
1) Two-Dimensional Heuristic: Assume there are two

queues in the network and index them by 1 and 2. In this
subsection, all vectors, hyperplanes, surfaces, etc., are in .
The hyperplane must intersect at two different
points, as illustrated in Fig. 3. Let the two points be and ,
where is the upper-left one. Denote the hyperplane (which
is a line in ) tangent9 to at by , where is the
unit normal vector of the tangent line. Specifically, we require

to be pointing outward from . Since is not confined in
, is not necessarily nonnegative, and neither is . If

there exist multiple tangent lines at , take to be any one
of them. Let the unit normal vector at be , defined in the
same manner. Let

9The tangent hyperplane contains ��� and defines a halfspace containing �.

Fig. 3. The geometry when �������� � intersects �� � at two different points in
.

Fig. 4. The geometry of ��� lying in the neighborhood of ��� , where � �
���� � � ������ �.

where stands for the normalized vector of . Since
, and can never be parallel to . Thus

and , . Moreover, and

are bounded away from zero for all . To see
this, we make use of Fig. 3 again. The point is on
the boundary and the vector is parallel to . By
simple geometry, the convexity of the capacity region implies

. Because is an interior
point, . Moreover, since

is a bounded region. Therefore, .

The same is true for . Thus, we can construct a
nonempty cone emanating from the origin sweeping from the
direction of vector clockwise by and counterclock-

wise by . Such a cone always contains in its strict
interior. This is illustrated in Fig. 4.

We consider the following two cases. First, if

,

then the pair of points both lie in the cone described
above. In this case, is said to be in the neighborhood of

. See Fig. 4.
Let be the infimum of over all nonnegative unit

vector . Because all and are strictly posi-

tive, must be strictly positive. If ,
is also in the cone with . In this case, the hyperplane of normal
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vector tangent to the capacity region touches at
somewhere between and , i.e.,

. By Lemma 2, the inner product
. Then for all such that

, , and therefore

which is the desired condition (19).
If and assume ,

then

Define

(20)

Then for all such that ,
and (19) holds.

Combining the above two cases and letting
, we see that the region specified in (18) sat-

isfies Lemma 1 and Theorem 4 follows.

V. NUMERICAL EXPERIMENTS

To assess the practical performance of the node-based dis-
tributed MDB policy in stochastic wireless networks, we con-
duct the following simulation to compare the total backlogs re-
sulting from the same arrival processes under different MDB
schemes.

Our scheme iteratively adjusts the transmission powers
during a slot to find the optimal rates (under the high-SINR
approximation) for the queue state at the beginning of a slot.
As a consequence, the MDB optimization is done with delayed
queue state information. The transmission rates keep changing
with time, and the optimal rates are achieved only at the end
(beginning) of the current (next) slot. Recently, Giannoulis et
al. [13] proposed another distributed power control algorithm
to implement the MDB policy in CDMA networks. Instead
of converging to the optimal solution for the current MDB
problem (also under the high-SINR approximation), their
scheme updates the link powers based on the present queue
state only once in a slot. The new queue state at the beginning
of the next slot is used for the subsequent iteration. To highlight
the above difference, we refer to our method as “iterative MDB
with convergence”, and the method studied in [13] as “iterative
MDB without convergence”.

For a single run of the experiment, we use a network with
nodes uniformly distributed in a disc of unit radius. Nodes and

share a link if their distance is less than , so that
the average number of a node’s neighbors remains constant with

. The path gain is modeled as . The processing

Fig. 5. Total backlogs under three MDB schemes (� � ��, � � �).

gain of the CDMA system is . All nodes are subject to
the common total power constraint and AWGN with
power .

Each node is the source node of one session with the destina-
tion chosen from the other nodes uniformly at random.
At the beginning of every slot, the new arrivals of all ses-
sions are independent Poisson random variables with the same
parameter . At any instant, queues are served at actual link ca-
pacities determined by the instantaneous power configuration.
As an approximation, we assume the iterative MDB scheme
converges after 50 iterations of the and algorithms.
The convergence time is taken to be the length of a slot, as in
Section IV. The network performance is investigated under each
of the MDB schemes with the same set of arrival processes. The
total backlog in the network is recorded after every slot. Fig. 5
shows the backlog curves generated by the three schemes after
averaging 10 independent runs with the parameters
and . Each point on a given curve represents the average
total backlog sampled at boundaries of time slots. The three
schemes all manage to stabilize the network queues in the long
run (we show the trajectories up to 2.5 time slots in Fig. 5).
However, the iterative MDB scheme with convergence and the
instantaneous MDB scheme result in lower queue occupancy,
hence lower delay, than the iterative MDB scheme without con-
vergence.

For a closer look at the performance of our iterative MDB
scheme, we show in Fig. 6 the average trajectory of the MDB
objective value generated by our scheme.
Note that the objective value is computed using the high-SINR
capacity formula. In Fig. 6, one iteration involves every node
updating its power allocation and power control variables using
PA and PC once, respectively. The MDB values at the th
iteration are computed based on the last sample of queue state

where . In this simulation, the length
of a time slot is taken to be 50, i.e., the queue state is sampled
every 50 iterations. It can be observed from the plot that our
MDB scheme constantly improves the objective value within a
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Fig. 6. MDB objective value under iterative MDB with convergence (� � ��

and � � ��).

time slot and readjusts the link rates toward the new optimum
once the queue state is updated after each slot.

VI. CONCLUSION

In this work, we studied the distributed implementation of
the Maximum Differential Backlog (backpressure) algorithm
within interference-limited CDMA wireless networks with
random traffic arrivals. In the first half of the paper, we devel-
oped a set of node-based iterative power control algorithms for
solving the MDB optimization problem using the high-SINR
approximation of the link capacities. Our algorithms are based
on the scaled gradient projection method. We showed that
the algorithms can be implemented in a distributed manner
using low communication overhead, without the need for time
sharing and scheduling. Although the high-SINR capacity
approximation is used in optimizing the transmission powers,
the actual link capacities are still used to service the network
queues.

Since the power control algorithms require nonnegligible
time to converge, even the optimal high-SINR capacities for
any given queue state can only be found iteratively over time. In
the second half of the paper, we investigated the impact of both
the high-SINR approximation and the convergence time on the
stability region achievable by the iterative MDB policy. Using
a new geometric approach to analyze the expected Lyapunov
drift, we proved that the iterative MDB policy can stabilize
all arrival processes whose average arrival rates are within the
stability region induced by the high-SINR capacity region, as
long as the second moments of arrival process are bounded.

The stability region induced by the high-SINR capacity re-
gion is a subset of the stability region induced by the actual ca-
pacity region. The gap between the two, however, is negligible
in the high-SINR regime. Thus, our iterative power control al-
gorithms represent a distributed and close-to-optimal solution to
the problem of throughput optimal control of CDMA wireless
networks with random traffic arrivals in the high-SINR regime.

APPENDIX

Derivation of Lyapunov Drift: By definition, the difference
of Lyapunov values and can be written
as

Using relation (14), we have

Therefore, we finally obtain

Geometric Analysis in : We now generalize our geo-
metric analysis in Section IV-C to -dimensional space. We
retain the notation from Section IV-C.

Analogous to the argument used in the two-dimensional case,
we focus on characterizing the neighborhood of .

Lemma 3: For any , there exists a region
such that

1) ;
2) has nonempty and convex interior relative to any

one-dimensional affine space containing ;
3) for all , the optimal rate vector

with respect to is in .
Note that is the -dimensional analogue of the circle

of radius around in Fig. 4. To facilitate the proof,
define the set of feasible unit incremental vectors around a non-
negative unit vector as

and if

Proof of Lemma 3: Each spans a one-dimen-

sional affine space containing . It is sufficient to show that
given any , there exists such that for all

and satisfying

(21)
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we have .
We prove the claim by construction. We make use of the dom-

inant point of such that (also ).
Define the parameter

(22)

which is at least zero (by setting in the objective func-
tion). It is possibly equal to zero, and must be bounded from
above, because is a unit vector and the optimization region
is compact.

Now consider

which by the above analysis is positive. Because is convex and
compact, for any there exists at least one satisfying
(21). Picking any one such and specifically letting on
the RHS of (21), we have

By using the inequality

we have

Thus, we can conclude that . Since is chosen
arbitrarily, the claim at the beginning of the proof is proved.

Finally, define as

(23)

where is defined as in (22). To accommodate the special
case of , we define . It is easily verified
that the so-constructed is a valid neighborhood of , as
required by the lemma.

Proof for Theorem 4: If

then where is defined in (23). In this case,
for all such that ,

, and therefore

which is the desired condition (19).
If , define as in (20), then for all

such that ,
and (19) holds.

Combining the above two cases and letting
, we see that the region specified in (18) sat-

isfies Lemma 1 and therefore the queueing system is stable
under any average arrival rate vector .
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