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Abstract—We study oblivious routing in fat-tree-based system
area networks with deterministic routing under the assumption
that the traffic demand is uncertain. The performance of a routing
algorithm under uncertain traffic demands is characterized by the
oblivious performance ratio that bounds the relative performance
of the routing algorithm with respect to the optimal algorithm for
any given traffic demand. We consider both single-path routing,
where only one path is used to carry the traffic between each
source–destination pair, and multipath routing, where multiple
paths are allowed. For single-path routing, we derive lower
bounds of the oblivious performance ratio for different fat-trees
and develop routing schemes that achieve the optimal oblivious
performance ratios for commonly used topologies. Our evaluation
results indicate that the proposed oblivious routing schemes not
only provide the optimal worst-case performance guarantees but
also outperform existing schemes in average cases. For multipath
routing, we show that it is possible to obtain an optimal scheme for
all traffic demands (an oblivious performance ratio of 1). These
results quantitatively demonstrate the performance difference
between single-path routing and multipath routing in fat-trees.

Index Terms—Fat-tree, oblivious routing, system area networks.

I. INTRODUCTION

T HE FAT-TREE topology has many properties that make
it attractive for large-scale interconnects and system area

networks [17], [18]. Most importantly, the bisection bandwidth
of the fat-tree topology scales linearly with the number of net-
work ports.1 The topology is also inherently highly resilient with
a large number of redundant paths. The fat-tree topology is very
popular for building medium and large system area networks
[15], [21]. In particular, it has been widely adopted in high-per-
formance computing (HPC) clusters that employ the off-the-
shelf high-speed system area networking technology, such as
Myrinet [22] and InfiniBand [16].
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1As originally defined [17], fat-trees are a very broad class of networks with
substantial flexibility regarding the bisection bandwidth. The fat-tree topologies
used in the current system area networks, which are also known as constant
bisectional bandwidth (CBB) networks [21], scale bisection bandwidth linearly
with the number of network ports. This paper focuses on this type of fat-trees.

Although the fat-tree topology provides rich connectivity,
having a fat-tree topology alone does not guarantee high per-
formance; the routing mechanism also plays a crucial role.
Historically, adaptive routing, which dynamically builds the
path for a packet based on the network condition, has been
used with the fat-tree topology to achieve load balancing
[18]. However, the routing in the current major system area
networking technology, such as InfiniBand and Myrinet, is de-
terministic [16], [22]. For a fat-tree-based system area network
with deterministic routing, it is important to employ an efficient
load-balanced routing scheme in order to fully exploit the rich
connectivity provided by the fat-tree topology.

Traditional load-balanced routing schemes usually optimize
the network usage for a given traffic demand. Such demand-spe-
cific schemes may not be effective for system area networks
where the traffic demand is uncertain and changing. Consider,
for example, the traffic demand in a large HPC cluster. Since
many users share such a system and can run different applica-
tions, the traffic demand depends both on how the processing
nodes are allocated to different applications and on the commu-
nication requirement within each application. Hence, an ideal
routing scheme should provide load balancing across all pos-
sible traffic patterns. This requirement motivates us to study de-
mand-oblivious routing schemes that determine routes indepen-
dent of the traffic demand. Our focus is on oblivious routing with
routes being set deterministically since most current system area
networks use deterministic routing. It has recently been demon-
strated that oblivious routing can promise excellent performance
guarantees with uncertain traffic demands in the Internet envi-
ronment [1], [2], [28].

We investigate oblivious routing in fat-tree networks with de-
terministic routing under the assumption that the traffic demand
is uncertain. For a given traffic demand, the performance of a
routing scheme is measured by the maximum link load metric.
The performance of a routing algorithm under uncertain traffic
demands is characterized by the oblivious performance ratio
[1]. The formal definition of the oblivious performance ratio will
be introduced in Section II. Informally, a routing algorithm has
an oblivious performance ratio of if for any traffic demand, the
performance (maximum link load) of is at most times that
of the optimal routing algorithm for this demand. An oblivious
performance ratio of 1 means that the algorithm is optimal for
all traffic demands.

This study focuses on the fat-tree topologies that are formed
with -port switches, where is a parameter that is restricted
to be a multiple of 2. Although the results are obtained for this
type of fat-trees, the results, as well as our analysis techniques,
can be extended to other types of fat-tree topologies. We con-
sider both single-path routing, where only one path is used to
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carry the traffic between each source-destination pair, and mul-
tipath routing, where multiple paths are allowed. Let be the
height of the fat-tree. The major results of this paper include the
following.

• For single-path routing, we prove that 1) when ,
the oblivious performance ratio of any single-path routing
algorithm is at least ; 2) when , the obliv-
ious performance ratio of any single-path routing algo-
rithm is at least ; and 3) when , the oblivious per-
formance ratio of any single-path routing algorithm is at
least . We develop optimal single-path oblivious
routing schemes that achieve the oblivious performance
ratio lower bounds for the cases when and ,
which implies that the lower bounds for these two cases are
tight. These routing schemes are sufficient for most prac-
tical cases since the heights of most practical fat-trees are
no more than 4. The results of our performance study indi-
cate that the proposed optimal oblivious routing schemes
not only provide the optimal worst-case performance guar-
antees among all single-path routing schemes but also out-
perform existing schemes in average cases.

• For multipath routing, we show that it is possible to obtain a
scheme with an oblivious performance ratio of 1, that is, an
optimal scheme for any traffic demand. This suggests that
multipath routing is much more effective in balancing net-
work loads than single-path routing in fat-trees. Note that
although it is well known that single-path routing is simple
but not as effective as multipath routing in balancing net-
work loads in general, the performance difference between
single-path routing and multipath routing in fat-trees is not
well understood. Without a clear understanding of the per-
formance difference, it is difficult to make a wise decision
about whether a system should use single-path routing for
its simplicity or multipath routing for its performance. This
paper quantifies the performance difference and resolves
this issue.

The rest of the paper is organized as follows. In Section II, we
formally define routing and the metrics for evaluating routing
schemes, specifically the fat-tree topology. In Section III, we
present the results for multipath routing. In Section IV, we de-
rive the lower bounds of the oblivious performance ratio for any
single-path routing scheme in fat-trees. In Section V, we give
the optimal oblivious routing schemes for commonly used fat-
trees. Section VI reports the results of our performance study.
Section VII describes the related work. Finally, Section VIII
concludes the paper.

II. BACKGROUND

A. Routing and Its Performance Metrics

Let the system have processing nodes, numbered from 0
to . The traffic demand is described by an traffic
matrix, . Each entry in , ,

, denotes the amount of traffic from node to node .
Let be a set and be the size of the set.

A routing specifies how the traffic for each source–destination
(SD) pair is routed across the network. We consider single-path
routing, where only one path can be used for each SD pair, and

multipath routing, where multiple paths can be used. In multi-
path routing, each path for an SD pair routes a fraction of the
traffic for the SD pair.

A multipath routing is characterized by a set of paths
for each SD pair

, and the fraction of the traffic routed through each path
. . Let

link . The contribution of the traffic to link
through path is thus . Single-path routing is
a special case of multipath routing where and all
traffic from node to node is routed through .
Hence, a single-path routing can be specified by a path
for each SD pair .

For a given traffic matrix, the performance of a routing is
measured by the maximum link load. Since all links in a fat-
tree network have the same capacity, the maximum link load is
equivalent to the maximum link utilization. Let Links denote the
set of all links in the network. For a multipath routing mr, the
maximum link load is given by

���� ����

For a single-path routing , the formula simplifies to

���� ����

An optimal routing for a given traffic matrix is a routing
that minimizes the maximum link load. Formally, the optimal
load for a traffic matrix is given by

� �� � �	���
�

The performance ratio of a routing on a traffic matrix
measures how far is from being optimal on . It is defined
as the maximum link load of divided by the smallest possible
maximum link load on [1].

is at least 1. It is exactly 1 if and only if the
routing is optimal for . The definition of the performance
ratio follows the “competitive analysis” framework where per-
formance guarantees of a certain solution are provided relative
to the best possible solution. As such, the performance ratio
is not directly related to the absolute network performance.
The performance ratio of a routing scheme may be better when
the network is under heavy loads and worse when the network
is under light loads. The definition of performance ratio of a
routing is extended to be with respect to a set of traffic matrices
[1]. Let be a set of traffic matrices. The performance ratio of
a routing on is defined as
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Fig. 1. Topologies of (a) binary tree and (b) binary fat-tree.

Fig. 2. Approximate the topology in Fig. 1(b).

When the set includes all possible traffic matrices, the per-
formance ratio is referred to as the oblivious performance ratio
[1]. The oblivious performance ratio of a routing is denoted by

. The oblivious performance ratio is the worst perfor-
mance ratio that a routing obtains with respect to all traffic ma-
trices. A routing with a minimum oblivious ratio is an optimal
oblivious routing scheme, and its oblivious ratio is the optimal
oblivious ratio of the network.

B. Fat-Tree Topology

In a fat-tree network, all links are bidirectional with the same
capacity. Fig. 1 compares a binary tree with a binary fat-tree.
In the binary tree, the number of links (and thus the aggregate
bandwidth) is reduced by half at each level from the leaves to the
root. This can cause congestion toward the root. The binary fat-
tree topology remedies this situation by maintaining the same
bandwidth at each level of the network.

The fat-tree topology shown in Fig. 1(b) is not practical
for building large networks due to the large nodal degree of
the root. Alternatives were proposed to approximate such a
topology using multistage networks that are formed by nodes
with small nodal degrees [8], [15], [26]. For example, the
fat-tree in Fig. 1(b) can be approximated by the topology in
Fig. 2. These alternatives trade connectivity with implementa-
tion simplicity. In this paper, we focus on one such alternative:
the fat-tree topologies formed by -port switches, where is
a parameter that is restricted to a multiple of 2. Let an internal
node in the fat-tree topology be a node with a degree more than
1. All internal nodes in our fat-tree topology have a degree of

(so that they can be realized by -port switches). Such a
topology is a minor generalization of the topology proposed in
[15]. The technique we developed for this topology can easily
be extended for other fat-tree variations.

We will follow the naming convention in [15]. The fat-tree
is called -port -tree and denoted as . The param-
eter in , which must be a multiple of 2, specifies
the nodal degree of all internal nodes in the topology. The pa-
rameter specifies the number of levels of internal nodes in
the topology. Thus, the height of is . That is,

Fig. 3. The 4-port 3-tree ������ ���.

is an level tree. In the rest of this paper, in-
ternal nodes in may also be referred to as switches
since each of the internal nodes is realized by a switch when
the topology is constructed. Similarly, leaf nodes may also be
referred to as processing nodes. A 4-port 3-tree, , is
shown in Fig. 3.

Next, we will describe how is formed. More de-
tails can be found in [15]. is formed by connecting
the root-level switches to sub-fat-trees with levels of
switches. We will use the notation to denote
the sub-fat-trees with levels of switches.
is different from in that must provide
(open-ended) up links for the sub-fat-tree, while does
not have up links. is recursively constructed as
follows.

When , contains one -port switch.
of the ports in the switch connect to processing nodes, and
ports remain open. We will call these opened ports up-link ports
since they will be used to connect to the upper-level switches.
We denote the number of up-link ports in as

. . As will be shown later,
. The up-link ports in are numbered from 0

to .
is formed by connecting

-port top-level (of the sub-fat-tree) switches with
’s. Each of the top-level switches uses

ports to connect to all of the ’s. Let
us number top-level switches from 0 to .
The up-link ports , , in all of the

’s are connected to top-level switch . The
remaining ports in a top-level switch are up-link ports
of . Top-level switch provides up-link ports

to for . Fig. 4(a) shows
, and (b) shows the structure of .

Clearly, . Hence, each
has up-link ports and connects to

processing nodes.
is formed by having

root-level switches connecting with ’s. Let
us number top-level switches from 0 to . The up-link
port , , in all of the

Authorized licensed use limited to: Florida State University. Downloaded on March 19,2010 at 00:15:45 EDT from IEEE Xplore.  Restrictions apply. 



1442 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

Fig. 4. (a) �������� �� and (b) ����������.

Fig. 5. The structure of �������.

’s is connected to top-level switch . Each of the ports in
the root-level switch connects to one . The
structure of is shown in Fig. 5. supports

processing nodes. The root level contains
switches, and each of the other layers has

switches. Hence, the total number of switches in
is .

Let us number the levels of switches in from 0 to
(root-level switches being level 0 switches). We will clas-

sify the links according to their levels. For , the
links connecting level switches with level switches are
called level links. The links connecting level switches
with the processing nodes are level links. All links in

are bidirectional links, with an up channel for com-
munication from a lower-level switch to an upper-level switch
and a down channel from an upper-level switch to a lower-level
switch. We will use the term level up link to denote an up
channel from a level switch to a level switch, and level
down link to denote a down channel from a level switch to
a level switch. A path between two processing nodes
in has two phases. The first phase contains only up
channels, and the second phase contains only down channels.

From the definition of , one can easily derive the
following properties.

Property 1: contains ’s,
’s, , ’s.

Level 0 (root-level) switches do not belong to any sub-fat-
tree. Each level 1 switch is in a , each level 2
switch is in a and a , and
so on. A level switch, , is in a

, a , and a . In
, we will call switches in levels and

the upper-level switches for . The upper-

level switches for provide connectivity among
all ’s.

Property 2: Through upper-level switches for
, , an up-link port in a

is only connected to an up-link port of
the same port number in any other . More
specifically, up-link port , , in one

is only connected with the up-link port of
other ’s (but not other ports) through upper-level
switches for .

It is clear that this property is true for .
The property for general , , can be
formally proven by induction on (with base case ) and
by examining how the top-level switches in ’s are
connected.

Property 3: Let be the smallest sub-fat-tree
in that contains two processing nodes and ; there
exist different shortest paths from to . If such a sub-
tree does not exist, there are different shortest paths
from to . In this case, and are in different top-level sub-
fat-trees ( ’s).

Fig. 3 shows an example. From node to node in ,
there are shortest paths. In both cases in
Property 3, the number of shortest paths between any two nodes
can be represented as , with the value of , ,
depending on the positions of the source and the destination.

Property 4: In , let there exist different
shortest paths from processing node to processing node .
Each of the level up/down links that carry traffic from

to is used by shortest paths, .
This property is intuitive. For example, level links are

the links connecting processing nodes. Hence, all paths from the
processing node connected by a level link must use the
link. This is the case when : All shortest paths use
the link. For the next level , a source will have choices
(the fan-out from the first switch) to go to another node. Thus,
each such link will be used by shortest
paths. The cases for links in other levels are similar. Consider
the four paths from node to node in Fig. 3. All four paths
use the level 2 up/down links (the link connecting the processing
node), two paths use each of the level 1 up/down links that carry
traffic from to , and one path uses each of the level 0 up/down
links.

Property 5: In , a level , , up link
carries traffic from at most source nodes. A level
down link carries traffic to at most nodes.

This property is also intuitive. For example, when ,
a level link directly connects to a processing
node. Therefore, such a link carries traffic to/from at most

node. When , the link connects to
a level switch; and such a link carries traffic to/from the

nodes directly connected to that switch.

III. MULTIPATH OBLIVIOUS ROUTING

Let the traffic matrix be with entries ,
and , specifying the amount of traffic

from node to node . The total traffic sent from node is
, and the total traffic received by node is .
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Since there is only one link connecting each processing node to
the network, such traffic must be carried on that link regardless
of the routing scheme. Hence, for any routing scheme, the load
on the link (which has two directions) connecting to node is

. We define the base load of a traffic
matrix as

Clearly, for any and any , the minimum max-
imum link load with any routing scheme, single-path or multi-
path, is at least :

We will give a multipath routing algorithm, OMRMN, such
that for any

and any . OMRMN
works as follows. Let be the number of shortest paths be-
tween processing nodes and (since processing nodes are in
the same level of the fat-tree, is fixed for all pairs of nodes),
and let the different shortest paths between nodes and be

(From Property 3 in Section II-B, these paths
can be easily found). OMRMN makes use of all the paths and al-
locates exactly the same amount of traffic on each path. That is,

and .
Theorem 1: For any , .

Proof: Since in the up links and down links are
symmetrical, it is sufficient to show that, for any traffic matrix

, the load on each up link is no more than .
Consider a source in . Let us denote

the total amount of traffic sent from node . For
each source node , using OMRMN, each level link
carries at most traffic since the traffic is evenly dis-
tributed among the links at level that can carry
traffic from node (Property 4). In addition, each level
link carries traffic from at most source nodes (Property 5).
Let the nodes be and the load on a level

link be . We have .

Since , , we
have . Note that there is no restric-
tion on the link and traffic matrix . Hence, for all links
and all traffic matrices, we have

. Hence, .
Corollary 1: For any and any traffic matrix ,

.
Theorem 1 states that OMRMN is optimal for all traffic pat-

terns. However, OMRMN uses all of the shortest paths between
two processing nodes. We will refer to it as an unrestricted mul-
tipath routing scheme. Practical system area networks cannot
support such unrestricted multipath routing in large fat-trees,
and the performance of more restricted forms of routing must
be studied.

IV. LOWER BOUNDS OF OBLIVIOUS PERFORMANCE RATIO FOR

SINGLE-PATH ROUTING

We will first introduce some concepts that will be used later
in the lower bound derivation. Let
be a set of source–destination (SD) pairs.

Definition 1: The set of SD pairs
is said to be node disjoint if,

for any and with , we have
and .

Basically, in a node disjoint set of SD pairs, each source (in
the source–destination pairs) appears in the set as a source ex-
actly once, and each destination appears as a destination exactly
once. A node may appear as a source and as a destination in a
node disjoint set. For example, is not a node dis-
joint set, while is.

Definition 2: For a set of SD pairs , a set of SD pairs is
said to be a node disjoint subset of when 1) and 2)
is a node disjoint set.

Definition 3: For a given set of SD pairs , a set of SD pairs
is said to be a largest node disjoint subset of when 1) is a
node disjoint subset of , and 2) for any node disjoint subset
of , . We let be the size of a largest node
disjoint subset of .

Let be the set of SD pairs in with
source node and be the set of SD
pairs in with destination node .
is the set of source nodes in and
is the set of destination nodes in . We denote by the
largest number of SD pairs in either with the same source or
with the same destination. Formally,

For any node , and .
Consider for example

. The set
is a node disjoint subset of but not a

largest node disjoint subset. Both
and are largest node disjoint
subsets of . Hence, . ,
and . ,

, and .
, , , and

. Hence, .
Lemma 1: Let be a set of SD pairs, and

.
Proof: Straight-forward from the largest node disjoint

subset definition.
Lemma 2: Let and be two sets of SD pairs,

.
Proof: Let be a largest node disjoint subset of .

. Each element in must either be in , or
in (or in both and ). Let
and . We have

. Since is a node disjoint subset of and
is a node disjoint subset of , by definition,

and . Hence, .
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Fig. 6. ����� �� topology.

Lemma 3: Let be a set of SD pairs. If there is a source node
such that , then .

Proof: Since has only one source node, .
From Lemma 2, we have

. Hence,
.

Next, we will prove by contra-
diction. Let be a largest
node disjoint subset of . Assume that

. Since is a subset of ,
. Hence, must be exactly equal to . Since

, there exists at least one such
that , . Hence, the set
is node disjoint and . Since is a node dis-
joint subset of , . This is the contradiction. Hence,

.
Lemma 3a: Let be a set of SD pairs. If there is a node

such that , then .
Lemma 4: Let be a set of SD pairs. If there exist source

nodes , , such that , and desti-

nation nodes , , such that , then

.
Proof: The conclusion in this lemma is obtained by repeat-

edly applying Lemmas 3 and 3a. .
Lemma 5: Let be a set of SD pairs. .

Proof: See Appendix.
We use a topology called extended 2-layer fat-tree

in the derivation of the lower bounds.
contains two levels of switches. The top level con-

tains -port switches. The bottom level contains -port
switches. Half of the ports in the bottom-level switches
are used to connect to processing nodes, and the other half
connect to top-level switches. There is a link between each
top-level switch and each bottom-layer switch. The structure of

is similar to (shown in Fig. 6) except
that allows different types of switches in the two
levels. is the same as . A subgraph of

, called , contains all lower-level
switches and processing nodes in but only one
top-level switch. Fig. 7 shows the topology,
which is basically a regular tree topology with the root having

children and each level 1 switch having children. In Fig. 7,
we separate the two directional channels.

In , there are upper-level switches, and
each of the lower-level switches connects directly to each
of the upper-level switches. Hence, by routing different SD

Fig. 7. ���������� topology.

pairs through different upper-level switches, this topology can
provide link disjoint paths for any node disjoint SD pairs.
As a result, if a scheme routes , , node disjoint SD
pairs on a link, the performance ratio of this routing scheme
is at least since the node disjoint SD pairs can be routed
using a set of link disjoint paths. Lemmas 6 and 7 formally
capture this intuition.

Lemma 6: Let the processing nodes in be num-
bered from 0 to . Let
be a set of node disjoint SD pairs (for ,

, and ). When ,
the SD pairs in can be routed in with link
disjoint paths.

Proof: Since , we can assign a different top-level
switch for each SD pair . For each ,
if and connect to the same (lower-level) switch , the
path from to is . If and are not in the
same switch, let connect to and to . The path
for is . Since A is
node disjoint, all of the paths are link disjoint.

Lemma 7: Let be a single-path routing on .
Assume that under routing , there exists a link that carries
traffic for a set of node disjoint SD pairs, , Then,

.
Proof: Consider a traffic matrix where

for all and all other entries are 0. From Lemma 6,
there exists a routing scheme that routes the SD pairs in
using link disjoint paths. Hence, and

. Since using routing , the load on link is
and . Hence,

For a single-path routing , let us define the maximum disjoint
size on link , , to be the size of the largest node dis-
joint subset of the set of SD pairs routed on . In
and , the SD pairs on a level 1 link directly con-
nected to a processing node have at most one source node or one
destination node. From Lemma 1, the maximum disjoint size on
such a link is at most 1. The maximum disjoint size of routing ,

, is defined as .
Lemma 8 and Theorem 2 prove the lower bound of the obliv-

ious performance ratio for single-path routing on .
The proof follows the following logic. To realize routes for all
SD pairs in , there are SD pairs that
must be routed through upper-level switches. Since there are
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upper-level switches in , at least one upper-level
switch must carry at least SD pairs. This particular
upper-level switch, the lower switches, and processing nodes
form an . Lemma 8 proves a more general result,
implying that to carry traffic for SD pairs through
the root in the , at least one link must carry traffic
for node disjoint SD pairs. Combining these results with
Lemma 7, we derive the lower bound for .

Lemma 8: Consider using the topology to
route a subset of all possible SD pairs. If the largest of the
maximum disjoint sizes of all links is at most X, the number of
SD pairs routed through the root is at most when

.
Proof: Let be a SD pair. The pair must be routed

through the root only when nodes and are connected to dif-
ferent switches. We will call the root switch in
switch and the level 1 switches

as shown in Fig. 7. Let be a largest set of SD pairs
that are routed through the root when the largest of the max-
imum disjoint sizes of all links is at most . Let ,

, be the set of SD pairs in with source
nodes in switch and destination nodes in switch .

���� ����
. Let us denote

���� ���� ���

Let . For the SD pairs in , is the
number of source nodes in switch , each of which having
more than destination nodes in switch . contains
all such SD pairs. Similarly, we will denote

���� ���� ���

Let . For the SD pairs in , is
the number of destination nodes in switch , each of which
having more than source nodes in switch . con-
tains all such SD pairs.

All SD pairs in must pass through links
and . First, let us consider link

. Let all SD pairs with source nodes in
be . All SD pairs in

must go through link .
Hence, . From Lemma 4,

. Since

, we have

. Hence, applying Lemma 4,

Using the similar logic, by considering link ,
we can obtain

Combining these two inequalities, we
obtain

.

Each source or destination node in
can have no more than SD pairs in the set (otherwise,
these SD pairs would be included in either or

). Hence, .
From Lemma 5,

.

Hence,

.
The values of and are in the range – and are not

equal to . Thus, .
This can be seen by expanding the summation form. Each
term , , happens times in the summation.

Hence, . Sim-

ilarly, . Hence,

.
Since each switch connects to pro-

cessing nodes, and

. Hence,

When , . Thus, .
Let us denote by the maximum number of SD pairs

routed through when the largest of the maximum
disjoint sizes of the links in is . Obviously,
when and is less than the total number of SD
pairs that can be routed, regardless of the rela-
tion among , , and . Lemma 8 states that when ,

. Hence, when ,
.
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Theorem 2: Let be a single-path routing algorithm on
. If , .

Proof: Regardless of the single-path routing algorithm
used, SD pairs must be routed through

top-level switches. Since there are top-level switches
in , at least one top-level switch must carry

SD pairs. Consider the
formed by this particular top-level switch (with SD
pairs passing through) with all level 1 switches and all pro-
cessing nodes. Let the maximum disjoint size of the links con-
necting to this switch be . Under the assumption , if

, .
Since there are SD pairs that must be routed through
the switch , cannot be
true. Thus, . Since , from Lemma 7,

.
Theorem 3: Let be a single-path routing algorithm for

, , .
Proof: is equivalent to . Since

in , and , from Theorem 2,
.

Theorem 4: Let be a single-path routing algorithm for
, .

Proof: is composed of top-level switches
( -port) with ’s. Let us consider the
maximum disjoint sizes on the links that connect the

’s with the root-level switches (Level 0 links).
By treating each as one -port switch,

is approximated as . The top-level
links in correspond to the top-level links
in . For any routing algorithm on , there
is a routing algorithm on such that the
corresponding top-level links are used exactly the same. Fol-
lowing the proof of Theorem 2, since ,
for any on , the largest of the maximum

disjoint size of the level 0 links is at least .
Hence, for the any routing on , there exists a link
carrying at least node disjoint SD pairs. Let this set of
node disjoint SD pairs be . Consider the traffic matrix ,
where for all and all other entries are
0. Clearly, . Since is node disjoint,
each node sends and receives at most 1 unit of traffic and

(Corollary 1). Thus,

Theorem 5: Let be a single-path routing algorithm for
, .

Proof: Let us consider the maximum disjoint sizes
on links connecting to up-link ports of ’s,

, in . From Property 1 and Prop-
erty 2 of , the connectivity in can be
partitioned into two levels (with respect to such links): the
lower-level connectivity provided by ’s and the
upper-level connectivity provided by the upper-level switches

for ’s. The connectivity in can
be approximated as a -port switch, and the upper-level
switches that connect the up-link ports with the same port
number in each of the (Property 2), which
approximates a -port switch. Consider the case
when , the topology can be approximated by

. Following the same logic
as the proof of Theorem 4, for any on , there exists

a link carrying at least node
disjoint pairs and

V. OPTIMAL SINGLE-PATH OBLIVIOUS ROUTING

FOR AND

Most practical fat-trees have no more than three levels of
switches since such topologies can already support thousands
of processing nodes. For example, supports 3456
process nodes, supports 8192 processing nodes,
and can support 27648 processing nodes. Hence,
developing routing schemes for and bears
most practical significance. Moreover, the development of
these algorithms also has theoretical significance by making the
lower bounds of the oblivious performance ratio for
and (Theorems 3 and 4) tight bounds. The proposed
optimal single-path oblivious routing schemes are based on the
following lemma.

Lemma 9: If a single-path routing scheme routes SD pairs
such that the SD pairs in each of the links in are either
from at most sources or toward at most destinations, then

.
Proof: As discussed earlier, for any traffic demand ,

on , . Since each link
carries traffic either from at most X sources or toward X destina-
tions, the load of the link is no more than .
Hence, . Since this ap-
plies for any traffic demand , .

Existing routing schemes for the fat-tree topology [9], [15]
try to balance the link load by spreading the traffic among
different links. However, all of these schemes spread the traffic
with a “locally optimal” heuristic: They make sure that the
traffic from one node to all other nodes is spread out uniformly
among all possible links. However, such a locally optimal
heuristic is not globally optimal in the sense that a link can
potentially carry traffic from many sources and to many des-
tinations, which can potentially make the link a hot-spot for
some particular traffic patterns. The proposed optimal oblivious
routing schemes achieve global optimality by routing traffic
either from at most sources or to at most destinations
on each link in , and traffic either from at most
sources or to at most destinations on each link in .
From Lemma 9, this ensures that the performance ratios of our
schemes are at most for and for ,
which are optimal (Theorems 3 and 4).
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Fig. 8. Optimal oblivious routing for ����� ��.

Fig. 9. Optimal oblivious routing for ����� ��.

A. Optimal Oblivious Routing for

To describe the oblivious routing algorithm, we will give
a nonrecursive description of . contains

switches and supports processing nodes. In this
topology, switches are in the level 0 and switches are
in level 1. The top-level switches are labeled switches

. The level 1 switches are
labeled switches . Each level 1
switch , , is connected with processing
nodes numbered as . Notice that
the process nodes and switches are numbered independently.
There is a link between switch , , and
switch , . For , there is
a link between processing node , , and
switch . Fig. 8 depicts the topology as well as
the switch and processing node labeling.

To ease exposition, let us assume that is an integer. Our
algorithm OSRM2, described in Fig. 9, can also handle the case
when is not an integer. In , each level 1 link
connects to one processing node and can only carry traffic to
and from one node (Property 5). Thus, we only need to make
sure that the traffic on each level 0 link has no more than
sources or destinations.

Let . OSRM2 partitions the processing
nodes in each bottom-level switch into groups, each group
having nodes. More specifically, the processing nodes con-
nected to switch , , are partitioned into

groups. Group , , includes nodes
, , , . Let us denote
as SD pairs from nodes in group in the one switch

to nodes in group in all other switches. Fig. 8 shows how the
routing algorithm works on . In , and

. As shown in the figure, the nodes attached to
each lower-level switch are partitioned into two groups: group

0 and group 1, with each group having two nodes. The SD pairs
are scheduled such that goes through switch (0, 0),

goes through switch (1, 0), goes through
switch (2, 0), and goes through switch (3, 0). Since
each upper-level switch carries SD pairs from nodes in one
group to nodes in another group, each up link (to a top-level
switch) carries SD pairs with exactly sources, and each
down link (to a lower-level switch) carries SD pairs with ex-
actly destinations.

For a general , the SD pairs are scheduled as fol-
lows. The up-link , and

, carries SD pairs with source nodes in group
in switch and destination nodes in group in all
other switches. OSRM2 is shown in Fig. 9. When is an in-
teger, the algorithm works exactly as just described. When
is not an integer, the algorithm partitions the sources attached
with each of the level 1 switches into groups and
the destinations into groups. It then uses the
same logic as the cases when is an integer to schedule the
SD pairs.

Theorem 6: When is an integer,
.
Proof: As discussed earlier, using OSRM2, each link car-

ries traffic either from sources or to destinations.
From Lemma 9, . From Theorem
3, . Hence,

and OSRM2 is an optimal oblivious routing algorithm for
when is an integer.

B. Optimal Oblivious Routing for

We will now consider . contains three
levels of switches, with the top level having
switches and each of the other levels having switches
( ’s, each having switches at
each level). We label the switches by . The top-
level switches are labeled as , and

. The level 1 switches are labeled as ,
, and . The level 2 switches are

labeled as , and .
Notice that in the switch labeling, for levels 1 and 2, identifies
the columns corresponding to the th and
identifies the column corresponding to the th
within the th . A has
processing nodes, which are labeled as ,

, , and . A processing node
is attached to switch , ,

, and . A level 2 switch
, and , has a link

to each of the level 1 switches , .
A level 1 switch , and

, has a link to each of the level 0 switches ,
.

Like in the case, our optimal routing algorithm
ensures that the SD pairs on each link are either from at
most sources or toward at most destinations. From
Property 5 in Section II-B, each level 1 or level 2 link in

carries traffic either from no more than sources
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Fig. 10. Optimal oblivious single routing for ����� ��.

or to no more than destinations. Hence, routing within
each does not affect the performance oblivious
ratio. Hence, we only need to focus on level 0 links. The idea
is similar to that in OSRM2: The routing algorithm ensures
that each up link out of the sub-fat-tree carries
traffic from sources and each down link to a
carries traffic to destinations. Basically, we can treat each

as if it is a -port switch that connects to
processing nodes and has up links. The routing

algorithm partitions the processing nodes in
a into groups, each group having

nodes. Node is in group of the th
. The routing for links between

and the top-level switch is similar to that for links between
level 1 switches to level 0 switches in : The up link

carries traffic from group 0 processing
nodes (in the -th ) to group 0 processing nodes
in other ’s, carries
traffic from group 0 processing nodes to group 1 processing
nodes in other ’s, and so on. The detailed routing
algorithm, called OSRM3, is shown in Fig. 10

Theorem 7: .
Proof: From above discussion, using , the SD

pairs on each link have either at most source nodes or at most
destination nodes. From Lemma 9, .

From Theorem 4, an performance oblivious ratio of is the low
bound for any single-path routing scheme on . Hence,

and OSRM3 is an optimal oblivious
routing algorithm for .

The proposed oblivious routing algorithms, OSRM2, OSRM3,
and OMRMN, are quite simple. The paths between two nodes
can basically be enumerated and can thus be established with
either a centralized or a distributed scheme. Detailed realization
of the routing schemes is beyond the scope of this paper. Inter-
ested readers can refer to other literature, such as [10], for more
details.

TABLE I
OBLIVIOUS PERFORMANCE RATIOS OF DIFFERENT ROUTING ALGORITHMS

In fat-trees with uncertain traffic demands, the performance
of (unrestricted) multipath routing is much better than that of
single-path routing. These results argue strongly that in a large
fat-tree-based system area network, the unrestricted multipath
routing should be used to alleviate the network contention
problem. Moreover, these results raise questions in the current
system area networks that only support a limited form of
multipath routing. One example is the InfiniBand, where only
a limited number of paths (128) between any two processing
nodes are supported. With such a restriction, it is difficult
to achieve optimal load balancing with multipath routing in
fat-trees.

VI. PERFORMANCE STUDY

We compare the performance of several known single-path
routing algorithms, including the Multiple LID algorithm
(MLID) in [16] and the widest shortest routing (WSR) algo-
rithm. WSR was designed to achieve load balancing in the
Internet environment. It works as follows. We first generate a
traffic matrix where each SD pair has one unit of traffic. All
links in the network are initialized with the same weight. The
algorithm then computes routes for each SD pair in the fol-
lowing order:

. Every
time a route is computed, the weight of each of the links along
the route is increased by 1. When computing the route for
each SD pair, the path with the smallest accumulated weight is
selected. Note that the “shortest” heuristic enforces that only
the shortest paths between two nodes are selected, and the
“widest” heuristic spreads traffic from the same source among
all links in the fat-tree. A recently proposed scheme [10] yields
exactly the same routes as WSR.

Table I shows the oblivious performance ratios for different
routing algorithms. The worst case oblivious performance ratios
for MLID and WSR are obtained by analyzing the paths com-
puted by the algorithms. This table shows that 1) our optimal
single-path oblivious routing algorithms provide better perfor-
mance guarantees than other existing single-path routing algo-
rithms and 2) multipath routing (OMRMN) is significantly better
than single-path routing.

We design experiments to investigate the performance of
single-path routing algorithms with practical traffic patterns. In
particular, our optimal oblivious routing algorithms (OSRM2
and OSRM3) group SD pairs in a particular way so as to
guarantee the best performance in the worst-case condition.
This, however, might yield lower performance on typical
uniform traffic demands (average-case performance). In fact,
both MLID and WSR fully spread traffic among all links in the
fat-tree topology and should perform well (among single-path
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Fig. 11. Random uniform traffic on ������ ��.

routing schemes) for typical traffic demands. In this section, we
will use the average case performance in the comparison and
show that the proposed optimal oblivious algorithms not only
provide the optimal worst case performance guarantees but also
often perform better in average cases. We will report results for

, , and that support 512, 128, and
1024 processing nodes, respectively.

We will show the results for four types of traffic patterns:
random uniform traffic, regular traffic, clustered traffic, and
hot-spot traffic. In a random uniform traffic demand, each
entry in the traffic matrix has an equal probability to send
one unit of traffic (or not send any traffic). The regular traffic
consists of five different patterns on all nodes in the system:
ring, 2-dimensional mesh, 3-dimensional mesh, hypercube,
and binary tree. These communication patterns are frequently
used in high-performance applications. In a clustered traffic
demand, the processing nodes are partitioned into groups of
the same size (size 2, 4, 8, 16, 32, 64, 128 nodes). Each
processing node in the system is in one group. The members in
each group are randomly selected from all processing nodes.
One unit of data is communicated between each pair of nodes
in one group (all-to-all communication pattern within each
group). This pattern represents the cases when the nodes in the
system are allocated to different jobs, with each job having the
all-to-all communication. The hot-spot traffic pattern is created
as follows. The system contains a number of hot-spots, which
are a group of processing nodes performing the all-to-all com-
munication (one unit of data between each pair in a hot-spot).
The rest of the system is quiet. The number of hot-spots and the
size of the hot-spots are parameters of this traffic pattern. For
each data point, we produce 32 random instances and report
the average performance ratio for the 32 instances. For regular
traffic patterns, the node assignment is randomly generated for
each instance. For example, in different ring patterns, the nodes
can be in different positions of the ring.

The results for the random uniform traffic on are
depicted in Fig. 11. The results on and are
very similar. For the random traffic with different probability
values, all of the single-path routing algorithms achieve a sim-
ilar performance, and their performance ratios are very close to
1. This indicates that single-path routing is effective in dealing

TABLE II
AVERAGE PERFORMANCE RATIO FOR REGULAR TRAFFIC ON THE WHOLE

������ ��

TABLE III
AVERAGE PERFORMANCE RATIO FOR REGULAR TRAFFIC ON THE WHOLE

���	� �� AND ��������

with such demands. All of the routing schemes considered are
able to evenly distribute the load when all pairs are communi-
cating. When the load is high (the probability of the commu-
nication between two nodes is larger than 0.75), all schemes
have a performance ratio of 1. When the communication is more
sparse, since MLID, OSRM3, and WSR are deterministic and de-
mand-oblivious, they may not perform as good as the optimal
routing scheme, which is typically demand-dependent. Hence,
their performance ratios are slightly higher (when the network
load is lower). Note again that the performance ratio is relative
and is not directly related to the absolute network performance.

Tables II and III show the performance of different routing al-
gorithms for regular traffic patterns. The regular traffic patterns
are imposed on all the nodes in the system. The MLID and WSR
always have exactly the same performance ratio for symmetrical
traffics on the fat-tree topology even though paths between a
pair of nodes are different under the two routing schemes. They
give different performance ratios only when the traffic matrix
is asymmetrical, like the random traffic in Fig. 11. Thus, for
all results presented in the rest of this section where the traffic
matrices are symmetrical, the results for MLID and WSR will
be given together. As can be seen from Table II, OSRM2 of-
fers a fairly large performance improvement over MLID/WSR
for the regular traffic on , ranging from 6.8% for the
hypercube pattern to 16.8% for the ring pattern. For
and , OSRM3 has slightly better performance, but the
difference is statistically insignificant. This shows that the pro-
posed optimal oblivious routing schemes do not sacrifice the av-
erage case performance for these traffic patterns.

Fig. 12 shows the results for clustered traffic on ,
and Fig. 13 shows the results for . Results for

are similar to those in . As can be seen from
the figures, the single-path routing algorithms are not effective
in dealing with such traffic demands: The average performance
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Fig. 12. Clustered traffic on ������ ��.

Fig. 13. Clustered traffic on ����� ��.

ratios for all single-path routing schemes are much larger than 1,
especially when the group size is small. This indicates that with
single-path routing, the network contention can be a problem
with such traffic demands. The advantage of our optimal obliv-
ious routing scheme is manifested in this experiment. OSRM2
performs noticeably better than MLID/WSR. Notice that when
the group size is equal to 2, the average performance ratio for
MLID/WSR is larger than 4 on . OSRM2 guarantees
that the performance ratio for any traffic pattern is no more than

. Our schemes improve the performance noticeably
on but only slightly on and .

Figs. 14 and 15 show the results for hot-spot traffic. In the ex-
periments, there are four hot-spots in the system, with the size
of the hot-spots varying. The performance ratios of all schemes
are close to 1, which indicates that all schemes can handle this
traffic pattern effectively. The performance of OSRM3 is sim-
ilar to other single-path routing schemes in , while
OSRM2 is slightly (about 3% on average among all cases in
the experiment) worse than WSR/DLID in . This is
the only case in all of our experiments that OSRM2 performs
worse on average. There exist traffic patterns that our proposed
algorithms cannot handle as well as other algorithms. This is a
common limitation of all deterministic routing schemes.

Fig. 14. Results for four hot-spots with different hot-spot sizes on ��������.

Fig. 15. Results for four hot-spots with different hot-spot sizes on ����	� ��.

We have performed many other experiments with different
traffic demands, including clustered traffic with random group
sizes, clustered traffic with a random regular pattern in each
group, and clustered traffic with random traffic in each group.
We have also carried out experiments on other ’s and

’s. All of these experiments have similar results: Our
optimal oblivious routing algorithms are either comparable to
or better than MLID and WSR on average. Moreover, the im-
provement on is quite noticeable in most cases, as
we showed in the figures and tables, while the improvement
on is small. This is because OSRM2 improves the
worst-case performance ratio over MLID/WSR on by
a factor of , while OSRM3 improves the worst-case

performance ratio over MLID/WSR on by a factor of
. The hot-spot traffic is the only case in all of our exper-

iments that the proposed schemes perform slightly worse than
other schemes on average. These results indicate that our op-
timal single-path oblivious routing algorithms can provide per-
formance guarantees without sacrificing the average-case per-
formance, and they often provide better performance in average
cases.

VII. RELATED WORK

The research most related to this work falls into three areas:
the development of system area networks, routing on fat-trees,
and oblivious routing. System area networks with off-the-shelf
networking technology such as InfiniBand [16] and Myrinet
[22] have become more common recently. The load balancing
problems in such networks motivated this research. Most
routing research for system area networks (see, for example,
[5], [6], [19], [24], and [25]) has focused on developing tech-
niques for computing and establishing routes. In [9] and [15],
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routing algorithms were developed for fat-tree-based Infini-
Band networks. We show that algorithms in [9] and [15] are
not optimal oblivious routing schemes. Routing performance
with various routing algorithms, such as randomized routing
and adaptive routing, and various performance metrics on the
fat-tree topology has also been studied [8], [17], [18]. However,
we are unaware of any work studying the routing performance
on fat-trees with deterministic routing when the traffic demand
is uncertain and changing.

Oblivious routing has recently attracted much attention due
to its effectiveness in guaranteeing routing performance under
uncertain and changing traffic demands in the Internet envi-
ronment [1], [2], [28]. The bounds of the competitive ratios of
oblivious routing on the general directed and undirected topolo-
gies have been analyzed [3], [10]–[12], [23]. In [23], it was
shown that for any undirected network, there exists an obliv-
ious randomized routing algorithm that can achieve a polyloga-
rithmic competitive ratio. The results in [3] show that for a di-
rected network, the optimal competitive ratio of an oblivious
routing algorithm is at least , where is the number
of nodes in the network. Works such as [10] and [11] con-
sidered the cases when demands are randomly chosen from a
known distribution and showed that routing algorithms with
polylogarithmic competitive ratios can be obtained for directed
networks and that the competitive ratio cannot be significantly
improved. These lower bounds for general networks are much
higher than the lower bound for fat-trees. Various polynomial
time algorithms for computing the optimal oblivious routing
were also developed [1]–[4], [13]. These algorithms are still
too computational-intensive to be applied to find the optimal
oblivious routing scheme for large fat-trees. Moreover, these
methods can only be used to compute optimal oblivious routing
for unrestricted multipath routing and cannot be used to com-
pute optimal deterministic oblivious single-path routing. In this
paper, we consider deterministic oblivious routing in fat-trees.
We show that in fat-trees, the competitive ratio for multipath
oblivious routing is 1, which is much smaller than what lower
bounds obtained for general networks. Moreover, optimal obliv-
ious routing for fat-trees with unrestricted multipath routing
is given (OMRMN) without running the high-complexity algo-
rithms. We further give the bounds for the competitive ratios of
single-path oblivious routing and develop optimal single-path
oblivious routing schemes for and . Obliv-
ious routing on specific topologies has also been studied [7],
[14], [27]. However, the fat-tree topology has not been investi-
gated.

VIII. CONCLUSION

We study oblivious routing in fat-tree-based system area
networks with deterministic routing under the assumption
that the traffic demand is uncertain and changing. We show
that single-path routing cannot provide good performance
guarantees, while unrestricted multipath routing is effective
in balancing network loads in fat-trees. We develop optimal
single-path oblivious routing schemes for and

and demonstrate that these optimal oblivious routing
schemes can not only provide the optimal worst-case per-
formance guarantees but also offer better performance than

existing single-path routing schemes in average cases. These
results may directly influence the design of systems with
large-scale fat-tree-based networks such as large HPC clusters.

APPENDIX

Lemma 5: Let be a set of SD pairs. .
Proof: We will prove this lemma by induction on .

Base case: when , . Let
be one largest node disjoint subset of .

If only contains , the case is proven. Otherwise, there
exists another SD pair in . Since , either

or . We will show that if , .
Similar logic can be used to show that if , . In
both case, .

Let us now prove that if , . Assume that when
, there exists a SD pair such that . In this

case, if , then is a node disjoint subset
of ; and is a node disjoint subset of

, otherwise. Hence, (contradiction).
Induction case: Assume that when

(induction hypothesis). We will prove that
when .

Let be a largest
node disjoint subset of . If ,

(since each source node can at most
have SD pairs in and there are source nodes)
and the theorem is proven.

If , there must exist a source
node such that , .
Let . We have (Otherwise,

is node disjoint and is not a largest node
disjoint subset). Without loss generality, let . We
have . Obviously ,

, and .
Next, we will show that . From Lemma 2,

. Since
, to show that ,

we only need to show that . We prove
this by contradiction. Assume that . Let

be a largest node
disjoint subset of . We have (other-
wise, is a node disjoint subset of and

). Similarly, . Let us assume that
and . must be in (otherwise,

is node disjoint and is not the largest node dis-
joint subset). Similarly, must be in . Let

and . We have (Otherwise,
is a node disjoint subset of

and ). This process (finding that a source node
in belongs to and then finding that destination

node such that belongs to ) can be re-
peated. Once the process cannot continue, one can construct a
node disjoint subset of whose size is . Since there are
a finite number of elements in and , this process will stop
at some point (In the worst case, one of or runs out of ele-
ments). Thus, , which contradicts the assumption
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that . Hence, . By the induction
hypothesis

Hence, .
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