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Abstract—In recent years, both sophistication and damage po-
tential of Internet worms have increased tremendously. To under-
stand their threat, we need to look into their payload for signa-
tures as well as propagation pattern for Internet-scale behavior.
An accurate analytical propagation model allows us to compre-
hensively study how a worm propagates under various conditions,
which is often computationally too intensive for simulations. More
importantly, it gives us an insight into the impact of each worm/
network parameter on the propagation of the worm. Tradition-
ally, most modeling work in this area concentrates on the relatively
simple random-scanning worms. However, modeling the permuta-
tion-scanning worms, a class of worms that are fast yet stealthy,
has been a challenge to date. This paper proposes a mathematical
model that precisely characterizes the propagation patterns of the
general permutation-scanning worms. The analytical framework
captures the interactions among all infected hosts by a series of in-
terdependent differential equations, which are then integrated into
closed-form solutions that together present the overall worm be-
havior. We use the model to study how each worm/network param-
eter affects the worm propagation. We also investigate the impact
of dynamic network conditions on the correctness of the model.

Index Terms—Network security, worm modeling.

I. INTRODUCTION

C OMPUTER worms interest security analysts immensely
due to their ability to infect millions of computers in a

very short period of time [1]. In recent years, both sophistication
and damage potential of worms have increased tremendously
[2]–[4]. Symantec stated in their 2008 global Internet security
threat report [5], “Of the top 10 new malicious code families
detected in the last six months of 2007, five were Trojans, two
were worms, two were worms with a back door component, and
one was a worm with a virus component.”

In order to counter the threat, we need to look into their con-
tent (for signatures) as well as propagation pattern (for Internet-
scale behavior) [6]–[11]. The propagation characteristics of a
worm shows what kind of network traffic will be generated by
that worm and how fast the response time must be for coun-
termeasures. Therefore, in order to understand (and possibly
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counter) the damage potential of worms, it is very important to
characterize their overall propagation properties.

Although modeling worm propagation has been an active re-
search area [12]–[16], one might question the practical impor-
tance of such work if it is possible to obtain fairly good approx-
imation of the worm’s propagation characteristics by running
a simulator for a sufficient number of times and taking the av-
erage. However, there are reasons why simulations may not al-
ways be able to produce the intended results. First, it often takes
a long time—16 h in our case on a Intel Xeon 2.80-GHz pro-
cessor for 400 M hosts that are estimated to be in today’s IPv4
space—to simulate a single run of worm propagation for one
set of worm/network parameters. To learn the average behavior,
many such runs need to be performed, and the whole simula-
tion process has to be redone for any parameter change, e.g.,
for a different population size of vulnerable hosts or a different
scanning speed of infected hosts. Second, the simulation over-
head can be prohibitively high in some cases. Suppose we want
to simulate a worm that exploits a commonly used Windows
service on today’s Internet. It means that the vulnerable pop-
ulation size could be in the order of several hundred millions
as Windows machines predominate in the Internet. If there are
300 M such computers, they will entail 300 M records in the
simulation, one for each vulnerable host. Even if each record is
one integer (keeping its address alone), it will require a memory
of 1.2 GB. Now, if we want to study the impact of migration
from IPv4 to IPv6 on worm propagation, a full-scale simulation
of scanning the address space of size will be computation-
ally infeasible. In comparison, numerical computation based on
a mathematical model takes little time to produce the accurate
propagation curves. Third, simulation results themselves do not
always give the mathematical insight that a formal model pro-
vides. One may guess upon the impact of various parameters on
worm propagation based on extensive simulations (which may
take enormous time), but such guesses can never be as precise
and comprehensive as an analytical model, which tells exactly
why and by how much a parameter change will affect the out-
come.

Traditionally, most modeling work [12]–[15] concentrates on
the relatively simple random-scanning worms, which scan the
Internet either randomly or with bias toward local addresses in
order to reach all vulnerable hosts. This strategy leaves a large
footprint on the Internet (which reveals the worm’s presence),
and different infected hosts may end up scanning the same ad-
dress repeatedly. In recent years, worm technologies have ad-
vanced rapidly to address these problems. By enabling close co-
ordination among all infected hosts, the permutation-scanning
worms (introduced in the seminal paper [12] by Staniford et
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al.) minimize the overall traffic volume for scanning the Internet
through a divide-and-conquer approach. There, each active in-
fected host is responsible for scanning a subset of all addresses,
and this subset may vary over time. Such a cooperation strategy
empowers the worm with the ability to propagate either much
faster—or, alternatively, much stealthier (if the infected hosts
scan at lower rates). Warhol worms, which are similar to per-
mutation-scanning worms with larger hitlists, have been shown
using simulations to be able to infect the whole Internet in a
matter of minutes [12]. However, understanding these potent
worms through mathematical modeling has remained a chal-
lenge to date.

In this paper, we propose a mathematical model that precisely
characterizes the propagation patterns of the permutation-scan-
ning worms. The analytical framework captures the interactions
among all infected hosts by a series of interdependent differ-
ential equations, which together describe the overall behavior
of the worm. We then integrate these differential equations to
obtain the closed-form solution for worm propagation. We use
simulations to verify the numerical results from the model and
show how the model can be used to assess the impact of var-
ious worm/network parameters on the propagation of permuta-
tion-scanning worms. We also investigate the impact of dynamic
network conditions on the correctness of the model, considering
network congestion, bandwidth variability, Internet delay, host
crash, and patch.

The rest of this paper is organized as follows. Section II
describes the permutation-scanning worms. Section III intro-
duces several important concepts underlying our mathematical
model. Sections IV and V present the exact propagation models
for the basic permutation-scanning worm and its general exten-
sion, respectively. Section VI derives the closed-form solution.
Sections VII and VIII discuss how different worm/network pa-
rameters and real-life network constraints will affect the worm
propagation, respectively. Section IX draws the conclusion.

II. ANATOMY OF PERMUTATION-SCANNING WORMS

We first describe the divide-and-conquer nature of the permu-
tation-scanning worms. We then explain the reason for address
permutation and discuss the stealthy potential of such worms.

A. Divide-and-Conquer

To avoid repeatedly scanning the same addresses, the in-
fected hosts may collaborate by dividing the IPv4 address ring
into disjoint sections, each of which will be scanned by one
host. Each initially infected host starts “walking” along the
address ring clockwise from its own location and sequentially
scans the traversed addresses. Whenever it infects a host, it
continues walking and scanning the addresses after that host,
while the newly infected host performs a jump, i.e., chooses a
random location on the ring and starts to walk and sequentially
scan addresses clockwise after that location. The reason for
this jumping action is that if the newly infected host instead
started scanning sequentially after its own address, then those
addresses would get scanned by both this host and its in-
fector—a needless duplication of the same work. Now, if the
scan performed by a host hits an already-infected host
knows that addresses after must have already been scanned

by another infected host that infected , or by itself in
case was one of the initially infected hosts to begin with.
In either case, it is unproductive for to continue scanning
addresses after . Therefore, jumps to a random location
on the ring and starts to scan addresses clockwise after that
location. An infected host retires (stops scanning) after hitting
a certain number of already-infected hosts.

An alternative to the above random-jump approach is to as-
sign each infected host an exclusive section of the address ring
for scanning. As a host sequentially scans its section, when it
infects another host, it assigns half of the remaining unscanned
addresses to the latter and adjusts its section boundary accord-
ingly. When a host reaches the end of its section, it retires. The
problem with this approach is that it is not fault-tolerant. If one
infected host is blocked out or somehow crashes, it may leave
many addresses in its section unscanned. Random jumps by in-
fected hosts before they retire (as described previously) help
solving this problem by providing redundancy, and this paper
will focus on such worms only.

B. Permutation

While the above divide-and-conquer method reduces the
chance of scanning the same address again and again, it has
a serious weakness. Since the IP addresses scanned by an
infected host are contiguous, it is susceptible to be identified by
address-scan detectors or other IDSs that look for worms per-
forming local subnet scanning. To counter this, Staniford et al.
[12] show that a worm can permute the IP address space into
a virtual one (called the permutation ring) through encryption
with a key. The divide-and-conquer method is then applied
on this permutation ring. While each infected host logically
goes through contiguous addresses on the permutation ring, it
actually scans the IP addresses that the permuted addresses are
decrypted to, which cannot be easily picked up by address-scan
detectors because those IP addresses are pseudo-random and
distributed all over the Internet.

C. Stealth

Fast propagation and stealth are two conflicting goals that the
worm designers strive to balance. To spread fast, infected hosts
should scan at high rates, which however makes them easier
to be detected [1], [7], [8]. To be stealthy, they have to act as
normal as possible by scanning the Internet at a controlled low
rate, which is a parameter that can be set before worm release.
A stealthy worm can be more harmful. A fast worm generates
headline news, such as Slammer [1], which caused widespread
network congestion across Asia, Europe, and the Americas.
However, such a worm is more likely to be detected quickly
and attract defense resources for its elimination. A stealthy
worm propagates slower, but may stay undetected for a long
time, potentially doing more harm.

Permutation-scanning worms are particularly suited for
stealth due to their divide-and-conquer nature. If all infected
hosts scan at a low rate (such as one address every few seconds)
in order to achieve stealth, then the impact of the network
conditions on the worm propagation can become negligible
because most hosts on the modern Internet are likely to have the
bandwidth for delivering one scan packet every few seconds.
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In this case, our mathematical modeling can largely ignore
the impact of dynamic network conditions. However, when
the infected hosts scan at higher rates, such impact should be
considered, as we will do in Section VIII.

D. Hitlist

The initial part of worm propagation is most time-consuming,
as only a few infected hosts perform scanning in a vast address
space. Once the number of infected reaches a critical mass, the
rate of new infections goes up drastically. To improve the ini-
tial scanning speed of a stealthy worm, one can use a hitlist
as proposed in [12], which is a precompiled list of target ad-
dresses that are very likely to be vulnerable, e.g., a list of hosts
with port 80 open for a worm targeting at a certain type of Web
servers. During the hitlist-infection phase, the very first infected
host scans the IP addresses in the hitlist, and whenever it infects
one, it gives away half of the remaining hitlist to the newly in-
fected host so that together they can infect all hosts in the orig-
inal hitlist quicker. This process repeats, and as a result, if out
of the addresses in the hitlist turn out to be vulnerable hosts,
all those hosts will get infected in time, where
is the scanning rate. Even for a modestly big hitlist, this time
is miniscule compared to the time it will take to infect the rest
of the vulnerable hosts outside the hitlist. To illustrate with an
example, suppose there are about 1 M vulnerable hosts in IPv4
and a worm starts with a hitlist of K hosts, with ap-
proximately K of them actually being vulnerable. If the
scanning rate is 1000 addresses/s, then the time taken to infect
the initial 5 K hosts in the hitlist will be approximately 0.025 s,
which can arguably be ignored compared to the time the worm
will take to infect the rest of the vulnerable hosts in the Internet.
Thus, to keep the model simple, if the hitlist contains vulner-
able hosts, we assume that all of them are infected at time

.

III. SCANZONE AND CLASSIFICATION OF VULNERABLE HOSTS

We introduce the concept of scanzone and classify vulnerable
hosts into different categories, which lays the foundation for our
analysis in the next section.

A. Terminology and Notations

We classify infected hosts into two categories: 1) active in-
fected hosts, which are actively scanning for vulnerable hosts;
and 2) retired infected hosts, which have stopped scanning.
When the context makes it clear, we omit “infected” from the
above terms. Other terms are defined as follows:

Jump: When an infected host chooses a random location
on the permutation ring to perform its sequential scan along
the ring, we say that the host jumps (to that location).
Old Infection: When an active host hits a vulnerable host
that was infected previously, we denote the event (as well
as host ) as an old infection.
New Infection: When an active host hits a vulnerable
host that was not previously infected, we denote the
event (as well as host ) as a new infection.

-Jump Worm: A permutation-scanning worm is called a
-jump worm if an active host, upon hitting an old infec-

tion, jumps to a new location on the permutation ring to re-
sume scanning, but it will retire when hitting its -th
old infection. When a vulnerable host not in the hitlist be-
comes a new infection, it jumps to a random location on
the ring to begin its scan. Subsequently this host can make

other jumps after hitting old infections on the ring. For
a vulnerable host in the hitlist, it begins scanning from its
own location, and then it can make jumps. To summa-
rize, irrespective of whether it was in the hitlist or not, a
host in a -jump worm is allowed to jump for its first old
infections, but when it hits its -th old infection, it
retires.
0-Jump Worm: A permutation-scanning worm is called a
0-jump worm if an active host retires upon hitting its very
first old infection. It is a special case of -jump worm with

. A vulnerable host not in the hitlist can make one
jump when it becomes a new infection itself, but subse-
quently when it hits an old infection, it will retire immedi-
ately.

B. Scanzone of an Active Infected Host

As an active infected host scans the addresses along
the permutation ring, it leaves behind a contiguous segment
of scanned addresses. This contiguous segment, called the
scanzone of host , contains the addresses that has scanned
since its last jump, or time 0 if has not jumped yet; it may
contain more addresses if scanzone merge happens, which will
be discussed shortly. The scanzones of all active hosts cover
all addresses scanned so far. The address of each infected
host belongs to a scanzone because it is a scanned address.
The front end of a scanzone is the address that is currently
scanning; the back end refers to the address at the other end of
the scanzone, which is the first address that scans after its last
jump. Evidently, all vulnerable hosts in a scanzone must have
been infected. Among all infected hosts in a scanzone, the one
that is closest to the back end is called the tail of the scanzone,
and the one that is closest to the front end is called the head of
the scanzone. The portion of a scanzone between the tail and
the head is referred to as the covered area (portrayed as
in Fig. 1) of the scanzone. A scanzone may not have a tail (or
head) if the active infected host has not hit any vulnerable host
since its last jump, and it may not have any covered area if it
does not have at least two infected hosts in it.

As scans more and more addresses, the front end advances
to expand the scanzone. However, when hits an old infection

(which must belong to the scanzone of some active infected
host ), surrenders its scanzone by merging it to ’s scan-
zone. Then, jumps to a random location to create its new scan-
zone afresh, or retires if is the -th old infection that
it hits. Therefore, the back end of a scanzone may also change if
the front end of another scanzone catches up its tail and causes
a merge. Merges create larger scanzones. Eventually, all scan-
zones will be merged into one when all active hosts retire. Only
active hosts have scanzones (uninfected or retired hosts do not).
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Fig. 1. Depiction of scanzones for a 0-jump worm over time. Scanzones of active hosts are depicted as arcs on the permutation ring. Uninfected and infected
vulnerable hosts are depicted as white and dark dots on the permutation ring, respectively.

Fig. 2. Classification of vulnerable hosts for a permutation-scanning worm.

We stress that an infected host does not need to know its scan-
zone; it is an abstract concept used in our mathematical mod-
eling only. The scanzones are shown as arcs on the permutation
ring in Fig. 1, which also illustrates other concepts to be defined
in this section.

C. Classification of Vulnerable Hosts

In our model, we define classes for vulner-
able hosts that are uninfected, infected, active, retired, effective,
ineffective, and nascent, respectively, and we deliberately make
the class notations the same as the corresponding variables in
our later propagation model for the sizes of these classes. Fig. 2
shows the containment relationship among different classes.

While other classes are self-explaining, we focus on classi-
fying the active hosts, class , into subcategories, class and
class , based on whether an active node’s scanning is effective
or not, i.e., whether it has the potential to generate new infection
before hitting an old one (note that since the size of the ring is
finite, every active host will eventually hit an old infection).

• Ineffective hosts (class ): An active infected host is con-
sidered ineffective if it is impossible for the host to generate
any new infection in the future before hitting an old infec-
tion. An active host that jumps into a covered area to begin
its scanning is evidently ineffective since its first hit will
always be an old infection.

• Effective hosts (class ): An active infected host is consid-
ered effective if it can potentially generate a new infection
in the future before it hits an old one. When an infected
host jumps to a point outside of any covered area and starts
scanning from that point on, it can potentially generate new
infections and is thus called effective. The effective hosts
are branded as class . This class is further subdivided as
follows:
— Nascent hosts (class ): The effective hosts that are yet

to infect any vulnerable host in their current scanzones
(which, obviously, have no head or tails) are termed as
nascent (class ). An active host becomes nascent after
it takes a jump and lands outside any covered area. Note
that the host starts with a fresh scanzone after the jump.

— Non-nascent hosts: Once a nascent host hits a new in-
fection, it becomes a non-nascent effective host; the host
it just infected becomes the tail of its scanzone. Also,
each of the initially infected hosts starts as a non-nascent
effective host because its scanzone has a tail from the
very beginning (the active host itself).

We observe that every infected host in the address space be-
longs to the scanzone of a non-nascent effective host. This is
true at the beginning as each of the initially infected hosts be-
longs to its own scanzone. When a non- effective host in-
fects another host , the address becomes part of ’s
scanzone. When retires by hitting (tail of a non- effec-
tive host ’s scanzone), ’s scanzone merges with ’s scan-
zone, and the infections made in ’s scanzone now become part
of ’s scanzone. Continuing this way, every infected host re-
mains part of the scanzone of a non-nascent effective host until
the last active host retires. It should be noted that the scanzones
of nascent or ineffective hosts do not contain any infected hosts.

Fig. 3 gives the class transition diagram for a 0-jump worm.
A vulnerable host becomes infected when it is scanned by an-
other infected host. When it jumps, it may be either effective or
ineffective, depending on whether it jumps into a covered area
or not. An effective host begins as a nascent one and becomes
non-nascent once it infects another host. An active host retires
upon hitting an old infection. Fig. 1 also provides illustration for
transitions among different classes.
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Fig. 3. Class transition diagram of a 0-jump worm. Here, “new” or “old” indi-
cates the event of a new or old infection. Similarly, “ineffective” or “effective”
indicates whether the newly infected host, after the random jump, lands in a
covered area or not.

IV. MODELING THE PROPAGATION OF 0-JUMP WORMS

In this section, we derive a series of differential equations
that together form the propagation model of 0-jump worms. We
extend it for -jump worms in the next section.

A. Important Quantities in Modeling

The propagation model of a worm reflects the fractions of
vulnerable hosts that are infected, active, and retired over time.
A scan message that does not hit any vulnerable host does not
change these numbers. Thus, modeling should only be based
on the event of a scan message hitting a vulnerable host. When
that event happens, all aforesaid numbers change. We derive the
model by analyzing the precise amounts by which they change.
To model a 0-jump worm mathematically, we have to compute
the following quantities:

Q1: Between time and (for an infinitesimally small
), how many vulnerable hosts will an active host hit with

its scan messages?
Q2: When an effective host hits a vulnerable host , what
is the probability that is an old infection, and what is the
probability that is a new infection? Note that an ineffec-
tive host, by definition, never hits a new infection.
Q3: After a newly infected host jumps, what is the proba-
bility for it to be ineffective, and what is the probability for
it to be effective?

B. Determining the Quantities Using Probabilistic Approach

Let be the size of the address space, the total number of
the vulnerable hosts, the scanning rate, and the number of
the vulnerable hosts in the hitlist of a permutation worm.

We use , and to denote the
fractions of vulnerable host population that are uninfected, in-
fected, active, retired, effective, ineffective, and nascent at time
, respectively. From Fig. 2, it is easy to see that

, and .
Answer for Q1: Let be the number of vulnerable hosts

that an active host is expected to hit during a period of after
time . Since vulnerable hosts are uniformly distributed on the
permuted address space due to randomization of the permuta-
tion process, every address on the permutation ring has a prob-
ability of to be a vulnerable host. An active host scans
addresses during period. Hence, we have .

Note that the vulnerable hosts that are hit may include both new
and old infections.

Answer for Q2: When an effective host hits a vulnerable
host, let denote the probability for the vulner-
able host to be a new (old) infection. We observe that an effec-
tive host can hit only two types of vulnerable hosts: 1) those
that are uninfected; and 2) infected ones that are the tails of
scanzones for non- effective hosts. Recall that scanzones of
nascent or ineffective hosts do not have tails. At time , there
are uninfected vulnerable hosts (possible new in-
fections) and tails (possible old infections).
Hence, the chance for hitting a new infection is

, and

.
Answer for Q3: After a newly infected host jumps to a

random location to begin its scanning, let be
the probability for the host to be ineffective (effective). Since
a host becomes ineffective when it jumps into a covered area,

must be equal to the fraction of the permutation ring
that all covered areas together represent. Because vulnerable
hosts are distributed randomly on the ring, it must also be equal
to the fraction of vulnerable hosts that are located in the covered
areas, excluding tails because, if we use the number of vulner-
able hosts in a covered area to represent its length (in a statistical
sense), we cannot count both head and tail that delimits the
two ends of the area.1 All infected hosts, of them, are
located in the covered areas, and there are tails
because every non-nascent effective host has a scanzone with
a tail by definition. Therefore, ,
and .

C. Propagation Model

We now derive how , and
change over time . Below, we compute the amounts

, and , by which they
change respectively over an infinitesimally small after time
. This will give us a set of differential equations that together

characterize the propagation of 0-jump worms.
• : This, when multiplied by , represents the total

number of new infections generated during . Only effec-
tive (class ) hosts can hit new infections. The number of
vulnerable hosts hit by effective hosts over is ,
and each of them has a probability of to be a new
infection. Hence, .

• : Each of the new infections
has a probability of to be effective. This
adds new effective hosts
after . On the other hand, effective hosts together
hit old infections during , each
causing an effective host (that hits the old infec-
tion) to retire. Combining the above two numbers and
representing the gross change in fraction, we have

.
• : Each nascent host (which is effective by defini-

tion) is no longer nascent once it hits any vulnerable host.

1A scanzone with a single infection can be thought of as having a covered
area of length 0.
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Each of its scan messages has a probability
of hitting a vulnerable host. Hence, the probability for a
nascent host to become non-nascent over is

because, as approaches to zero, the joint
probabilities for two or more hits are negligible. This re-
duces the number of nascent hosts by . On the
other hand, since all new effective hosts created during

start as nascent, we have new
nascent hosts. Combining these two numbers and repre-
senting the gross change in fraction, we have

.
• : Recall that whenever a host jumps into a covered

area, it becomes ineffective. For a 0-jump worm, only the
newly infected hosts make a jump and thus only they may
increase . There are new infections,
and each has a probability of to become ineffec-
tive. On the other hand, when an existing ineffective host
hits a vulnerable host, it retires since ineffective hosts can
hit old infections only. Combining these two factors and
representing the gross change in fraction, we have

.
• : Whenever an effective host hits an old infection, or

an ineffective host hits any vulnerable host (which must
be an old infection), it retires. Within time , there are

newly retired hosts, and thus
.

From the above analysis, we have

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

The boundary conditions to this set of equations are:
, and , where is

the number of vulnerable hosts in the hitlist.

D. Verification of Our Model

We developed a simulator for permutation-scanning worms
whose propagation strategy can be found in Section II-A and B.
The simulator is implemented in C++ with proper encapsula-
tion, i.e., a host object inside the simulator is not aware of the
large picture of the network, and instead it can only see its own
private variables, including its IP address, the state of its local
random-number generator, the last address scanned, and the re-
sponse to a scan message, i.e., new infection or not. Each host

object performs the following operations: If it is not infected,
it does nothing. If it is infected, it uses a random number gener-
ator to produce a random location on the permutation ring and
begins to sequentially scan the addresses along the ring after that
location at a certain rate r. For each address to be scanned, host

first decrypts it through a decryption key that is shared by all
infected hosts. The result is treated as an IP address, and sends
a message to the host object that owns the address. If that host is
vulnerable but not yet infected, it becomes infected. However,
if that host is already infected before receiving the message, it
will inform to retire. The controller object of the simulator
performs the initial infection. At each time tick, it schedules the
hosts in turn for their operations. The action of all hosts collec-
tively simulates the propagation process of a permutation-scan-
ning worm. The controller object records the numbers of in-
fected, active, and retired hosts at the end of each time tick,
from which we plot the worm propagation curves. Each vulner-
able-host object uses the same decryption key, but has a different
seed for the random number generator used for calculating the
random location from which the host, after being infected, will
begin its scanning. The simulation stops when all infected hosts
retire.

Fig. 4 compares the propagation curves produced by the sim-
ulator to those generated by the analytical model for a 0-jump
worm; the two sets of curves are nearly indistinguishable. The
simulation parameters are given as follows. The size of the vul-
nerable population is . The hitlist contains
vulnerable hosts. The size of the address space is ; it
will take a prohibitively long time if is chosen to be . To
produce propagation curves in any of the figures in the paper,
we simulate worm propagation for 1000 times under different
random seeds, and then take the average. We normalize the time
tick to be . Namely, an infected host sends one scan mes-
sage per tick. This allows the same propagation curves to be
used for characterizing worm propagation under any scanning
rate. Hosts with variable scanning rates will be investigated in
Section VIII.

Worm propagation happens among end-hosts. It is not nec-
essary to explicitly simulate the network topology. Because we
are particularly interested in stealthy worms that scan at a low
rate (e.g., one scan message every few seconds), we assume that
the time tick—which is the inverse of scan rate—is larger than
the Internet end-to-end delay (typically in tens or hundreds of
milliseconds). In this case, infection will be completed within
the current time tick, and the impact of the propagation delay
of scan messages will be very small on the infection curve,
which describes the percentage of vulnerable hosts that are in-
fected over time. As we will further discuss in Section VIII, even
when the Internet end-to-end delay is larger than the time tick,
its impact on worm propagation is still small and quantifiable.
We will also address other practical considerations, such as host
patch and crash, network congestion, and bandwidth variability,
in Section VIII.

E. Stealthiness of Permutation-Scanning Worms

The propagation curves in Fig. 4, which are computed from
the model (1)–(11) or collected from the simulations, demon-
strate the stealthiness of the permutation-scanning worms. The
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Fig. 4. The “Model” curves show the percentages of vulnerable hosts that are
infected, active, and retired over time, respectively. These curves for ����� ����,
and ���� are numerically computed from the analytical model in (1)–(11). The
“Simulation” curves are plotted using the averaged data collected from the sim-
ulator; the 99% confidence intervals are also plotted for selected data points. As
expected, the curves from the model and the curves from the simulator com-
pletely overlap, which verifies the correctness of the model.

number of infected hosts, , grows over time and eventu-
ally becomes . In the classical random-scanning worms, all
infected hosts scan the Internet. The aggregate scan traffic peaks
when all vulnerable hosts are infected. In the permutation-scan-
ning worms, only the active hosts scan. The number of active
hosts, , can be much smaller than , which is evident
from Fig. 4, where the active curve is below the infected curve.
When the infected curve peaks at 100%, the active curve

approaches to zero. That is, when all vulnerable hosts are
infected, a random-scanning worm will reach the height of its
scanning activity, whereas a permutation-scanning worm will
entirely conceal its presence and stay stealthy. The total volume
of scan traffic by a permutation-scanning worm, which corre-
sponds to the area under the active curve, is bounded. The total
scan volume by a random-scanning worm, which corresponds
to the area under its infected curve, will be much larger because
the area is open-ended (unless the infected hosts are scheduled
to go dormant at certain times as Code Red does).

V. EXTENDING THE MODEL TO -JUMP WORMS

In this section, we demonstrate the flexibility of our analyt-
ical model by extending it for the -jump worms. Modeling the
propagation of -jump worms is important as it will lead to a
better understanding of the Warhol worm, which can infect the
whole of Internet in a matter of minutes [12]. Warhol worms and
permutation-scanning -jump worms with large hitlists share
similar propagation characteristics.

A. Further Classification of Active Hosts for -Jump Worms

For a 0-jump worm, at any time , none of the active hosts
has hit any old infection. However, for a -jump worm, any ac-
tive host (class or ) could have hit anywhere between 0 to

old infections. While the terms , and continue
to denote the fractions of all vulnerable hosts that are effective

Fig. 5. State diagram of a �-jump worm with � � �. In the diagram, we assign
each active host a layer number, which indicates the number of old infections hit
by the host. Once the host hits its �����-th old infections, it retires immediately.

(class ), nascent (class ), and ineffective (class ), respec-
tively, at time for a -jump worm, each of those classes is fur-
ther subdivided into subclasses depending on how many
old infections they have already hit (between 0 and ). For ex-
ample, class is subdivided into classes
such that , and similar notations are used for
class and . For example, the total number of nascent hosts
that have hit two old infections till time are denoted by .

Fig. 5 shows the state diagram that depicts how an active host
moves from one subclass to another until it is retired. Each active
host is assigned a layer number, which indicates the number of
old infections hit by the host. Active hosts having already hit
old infections are referred to as -layer hosts. When a -layer
host hits another old infection, it moves to layer , or to the
retired class if .

We observe that the quantities, , and
(defined in Section IV-B) stay the same for both 0-jump

worms and -jump worms. The analysis that produces the for-
mulas for their calculation can be applied to both 0-jump worms
and -jump worms.

B. Interaction Among Scanning Hosts at Different Layers

The state transitions in Fig. 5 between subclasses at different
layers are explained below.

• An active infected host never changes its layer by hitting
a new infection. This is because the layer of a host indi-
cates how many old infections the active host has hit till
that time, and hitting a new infection does not change that.
However, when it hits an old infection, it takes a jump,
moves to the next layer, and becomes either ineffective or
nascent depending on whether it jumps into a covered area
or not. However, if it was already at the -layer, then it re-
tires after hitting its -th old infection.
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• Active hosts at any layer can hit a new infection. There-
fore, when calculating change in and ,
we must consider the new infections caused by effective
hosts at all layers.

• The number of active hosts at any layer, except for layer 0,
will be changed only by the activity of the hosts at the
same or previous layer. The number of hosts at a layer
increases when hosts in the previous layer hit old infections
and consequently move to this layer. Similarly, it decreases
when hosts in this layer hit old infections and move to
the next layer. Therefore, the derivative of the number of
-layer hosts, for , depends only on the numbers

of hosts in the subclasses at layer and layer .

C. Propagation Model for -Jump Worms

Below, we give the equations that model the propagation of
-jump worms. For the purpose of brevity, all symbols used

in the formulas are function of time , except for , and
, which are independent of time. For example, denotes

denotes , and so on. We omit the equations
for , and since they are the
same as (1)–(5). The differential equations for -jump worms
are

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

The boundary conditions at time are
. All the other quantities

are zeros at .

D. Verification of the Correctness of the Model

For different values of , we compare the result numerically
computed from the model with the result collected from the sim-
ulator in Fig. 6, using the same experimental setup as described
in Section IV-D. In all cases, the model and the simulation pro-
duce the same propagation curves.

VI. CLOSED-FORM SOLUTION FOR THE 0-JUMP WORM

In this section, we transform the set of equations in (1)–(11) to
three simple differential equations that can be further integrated
into the closed-form formulas for the numbers of infected, ac-
tive, and retired hosts over time.

First, we establish a functional relation between and .
Recall that is the fraction of the vulnerable host population
that is infected at time , and is the fraction of the vulner-
able host population that is actively scanning and can potentially
generate new infections—more precisely, these so-called effec-
tive hosts are currently scanning addresses outside of any cov-
ered area. By definition, . The infected
hosts include effective hosts, ineffective hosts, and retired hosts.

We define a current position for each infected host. For an ef-
fective or ineffective host, its current position is the address it is
scanning. For a retired host, its current position is the address it
has scanned last before retirement. Interestingly, the current po-
sitions of all infected hosts are distributed along the permutation
ring uniformly at random. That is because, right after infection,
a host jumps to a location that is independently and randomly
selected. As long as all infected hosts begin their scanning at
independently random locations, their current positions will al-
ways be uncorrelated and statistically distributed along the ring
uniformly at random.

By definition, the current position of an effective host will
be outside of any covered area, and the current position of an
ineffective or retired host will be in a covered area. Due to
the random distribution of the current positions of all infected
hosts, the fraction of infected hosts being effective is equal to
the fraction of the permutation ring that is outside of the cov-
ered areas, which is simply . From Section IV-D, we know
that and equals the fraction of
the ring that all covered areas together represent. Summarizing
the above analysis, we have

(21)

By plugging the above equation into (1)–(9), it can be easily
verified that this equation is consistent with others in the model.

Applying (1), (3), (5), and (21) to (6), we have the following
differential equation:

(22)

Applying (7) and (9) to (11), we have

Because by definition and
, we have

Applying (1), (3),(5) , and (21), we have

(23)
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Fig. 6. The “Model” curves show the percentages of vulnerable hosts that are infected, active, and retired over time, respectively. These curves for ����� ����, and
���� are numerically computed from the analytical model in (12)–(20). The “Simulation” curves are plotted using the averaged data collected from the simulator.
As expected, for � � �����, and 8, the curves from the model and the curves from the simulator completely overlap, which verifies the correctness of our model
for �-jump worms.

Because by definition, .
From (22) and (23), we have

(24)

Let , which is the fraction of the vulnerable host
population that is initially infected at time . Integrating
(22)–(24), we have the following close-form solution:

(25)

(26)

(27)

VII. USAGE OF THE ANALYTICAL MODEL

In this section, we first describe the benefits of having an an-
alytical model when comparing with a simulator. We then ana-
lyze our model to see what impact each worm/network param-
eter (such as network size, vulnerable population size, hitlist
size, and scanning rate) will have on the worm propagation.

A. Analytical Modeling or Simulation?

Properly simulating the worm propagation on the Internet at
the packet level is very difficult due to its sheer scale. Even for
a rather simplified version of the Internet, without an analytical
model, one will need to take the average of multiple runs of a
simulator in order to get acceptably reliable propagation curves.
Since each run could potentially take a long time for realistic
values of and , the whole process could take an enormous
amount of time. For an imagined attack targeting at the Win-
dows system, it took 16 h on an Intel Xeon 2.8-GHz processor
with 4 GB RAM to run a single round of a simulation involving
around 400 M potentially vulnerable windows hosts on IPv4 for
one set of worm/network parameters. In order to run the same
simulation for IPv6 , it is easy to see that the runtime
will be astronomical. On the contrary, a single run of the nu-
merical simulation based on the analytical model takes just sec-
onds and gives us the provably correct results. Moreover, it can
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TABLE I
TIME (IN SECONDS) IT TAKES TO INFECT 50% OF ALL VULNERABLE HOSTS,

WHERE � � ��%� � � � � � � � ��� ���� � � � PER SECOND,
AND � VARIES FROM 0.00001 TO 0.05

handle extremely large address spaces and vulnerable host pop-
ulations. For any worm/network parameter change, new propa-
gation curves can be recomputed in little time for comparison.

While arguments can be made for doing a scaled-down simu-
lation and then scaling up the results, such simulations are often
not fully accurate and suffer from stochastic fluctuations and
other problems [15]. Moreover, such simulations cannot predict
with confidence what precise effect each worm/network param-
eter will have on the overall outcome and for what reason. In
comparison, an analytical model can tell exactly why and by
how much a parameter will affect the outcome.

B. How Will the Worm/Network Parameters Affect a Worm’s
Propagation?

Below, we analyze the exact effect of each worm/network
parameter on the worm propagation.

• Effect of Address Space Size : For either 0-jump
worms or -jump worms, the only term in the model that
is directly affected by is in (1).
Since all the incremental terms [such as , and

] are direct multiples of , the first derivatives of
the propagation curves for infected, active, and retired
hosts are inversely proportional to . The first derivative
characterizes the rate of change over time. Therefore, as
the size of the address space increases, a worm propa-
gates inverse-proportionally slower. If the address space
is doubled, it will take the worm double the amount of
time to infect all vulnerable hosts. This gives a reason for
transition to IPv6.

• Effect of Vulnerable Host Population Size : For ei-
ther 0-jump worms or -jump worms, the only term in the
model that is affected by is . Again,
because the incremental terms [such as , and

] are direct multiples of , the first derivatives of the
propagation curves for infected, active, and retired hosts
are proportional to . As increases, a worm propagates
proportionally faster. If is doubled, it takes the worm
half the amount of time to infect all vulnerable hosts.

• Effect of Hitlist Size : The size of the hitlist is con-
trolled by the worm designer. As per our observations from
the analytical model, a higher simply shifts the infection
curve, , to the left on the time axis with . From
the infection curve in Fig. 4, we see that there is a slow start
phase where increases slowly before it transitions into
a rapid growth phase. A larger hitlist will shorten the initial
slow start phase and reduce the overall propagation time.
More specifically, from (25), the time it takes to infect a
percentage of all vulnerable hosts is

(28)

TABLE II
TIME (IN SECONDS) IT TAKES TO INFECT 50% OF ALL VULNERABLE HOSTS,

WHERE � � ��%� � � �������� � � � � � � ��� ���,
AND � VARIES FROM 100 TO 0.01 PER SECOND

which is a decreasing function with respect to .
Table I shows the numerical results computed from (28).
It demonstrates that the worm’s propagation time can be
significantly reduced by increasing the hitlist size.

• Effect of Scanning Rate : Again, for either 0-jump
worms or -jump worms, the only term in the model that
is affected by is . Since the incre-
mental terms [such as , and ] are direct
multiples of , the first derivatives of the propagation
curves for infected, active, and retired hosts are inversely
proportional to . Thus, if the scanning rate is doubled, the
time it takes a worm to infect the vulnerable host popula-
tion will be halved.
There exists a tradeoff between a worm’s stealthiness and
its infection speed. When is smaller, the stealthiness of
the worm is improved; it is certainly easier to identify an
aggressive infected host that scans 100 different addresses
per second than a host that scans one address per minute,
making itself look like a normal one. However, when is
smaller, it will take longer for the worm to infect a certain
percentage of all vulnerable hosts. In (28), if we treat as
a constant and as a variable, then becomes a function
of . Table II shows the numerical results computed from
(28), which demonstrates the tradeoff: As decreases,
increases inversely proportionally.

• Effect of Varying for a -jump Worm: We make an im-
portant observation from Fig. 7, where the infection speed
and the scanning volume of a -jump worm are presented
for different values. The scanning volume is defined as
the total scanning traffic generated by all active hosts since
time . We see that by increasing , the slope of the
infection curve in the left plot is somewhat steeper, but for

, the incremental gain becomes negligible. On the
other hand, with a higher , the onset of retirement for
active hosts happens at an increasingly later time, which
means larger scanning volume, as shown in the right plot.
We observe that, for , almost all infected hosts are
active at the time when all vulnerable hosts have been in-
fected, producing a big network footprint for worm detec-
tion. Therefore, it makes little sense to deploy a -jump
worm with a high value of .

VIII. PRACTICAL CONSIDERATION

In this section, we consider our model under real-world
considerations, including congestion and bandwidth variability,
patching and host crash, as well as delay of scan messages.

A. Congestion and Bandwidth Variability

If for stealth reasons the worm sets a small scanning rate
such as 100 per minute, most infected hosts are likely to have the
bandwidth of delivering 100 SYN packets per minute, and our
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Fig. 7. The left plot shows the infection curves, ����, for a �-jump worm under different � values. The right plot shows the active curves, ����, for a �-jump worm
under different � values. Recall that ���� is the percentage of vulnerable hosts that are actively scanning at time �. The total amount of scanning traffic, called the
scanning volume, is defined as the area under the active curve. From the left plot, we see that the infection speed improves when � increases. However, the rate of
improvement diminishes quickly when � is greater than 1. On the other hand, from the right plot, the scanning volume increases significantly when � increases.

model will be accurate if the deviation caused by Internet delay
is negligible. However, if the worm sets its scanning rate to
be 10 000 per second, then the actual scanning rates of infected
hosts may vary due to network congestion. We believe a worm
that causes network congestion is not a good worm because it
loses stealth (unless its sole purpose is to create headlines by
service disruption, which is rarely the case nowadays [17]).

Congestion also happens naturally in the network without
worm activity due to the bandwidth limitation and the demand
on the routers. As long as the Internet is able to deliver the
low scanning rate of most infected hosts, our model can pre-
dict the propagation behavior of low-rate stealthy worms. How-
ever, we realize that whatever be the reason—processing power
of infected host, available bandwidth for the user, congestion of
the network—the final result is that on the Internet scale, dif-
ferent hosts are in effect scanning at different rates. Therefore,
if we can somehow extend our model to accommodate vari-
able scanning rates from different hosts, we are effectively cap-
turing the real network situation arising out of the reasons men-
tioned above. Since our model can handle only a fixed scanning
rate, we posited that by using average scanning rate, our model
should be able to still approximate the variable scanning rate
scenario. With that goal in mind, we simulated two worms, one
having a fixed rate, per time tick for all infected hosts,
and the other having variable rates with the Gaussian distribu-
tion and a mean value of 5 per time tick. Fig. 8 shows that the
infection curves of the two worms are very close. Similar re-
sults are observed for other variable rate distributions. Thus, the
model is able to approximate the propagation of worms by using
average scanning rate. Therefore, we argue that our model is in-
deed able to approximate the propagation of worms in real-life
scenarios by using the average scanning rate.

B. Patching and Host Crash

Once a vulnerable host is infected and starts scanning, it may
be removed from the vulnerable host population due to mul-
tiple reasons. First, upon infection the host may simply crash.
Second, the host may be patched by the system administrator

Fig. 8. Comparison of propagation curves for worms with variable- and fixed-
rate of scanning. The simulation parameters used are � � � � � � � ,
and � � ���. The value of 	 is a constant five scans per time tick for the
fixed-rate scanning worm, and the other having variable rates with the Gaussian
distribution and a mean value of 5 per time tick.

after some time. Third, due to scanning activity, an infected host
may come under suspicion of the network administrator and re-
sultingly taken off the network or quarantined. We show that
our model can be extended to handle the removal of vulnerable
hosts.

We introduce a few additional terms in our model to account
for the removal of hosts. Let denote the probability of a host
being removed each time it scans, and denote the number
of vulnerable hosts that are removed from the system by time .
As hosts are removed, the vulnerable population also changes;
we use for the number of vulnerable hosts at time . It is
evident that for all . However, under this
“removal” scheme the meaning of becomes unclear as some
hosts that were infected can later be disinfected. To clear this
confusion, we introduce a third new term called to de-
note the fraction of original vulnerable host population
that were ever infected during the whole propagation, while

Authorized licensed use limited to: Florida State University. Downloaded on March 29,2010 at 23:44:03 EDT from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

denotes the fraction of that are currently infected. Since
is not a constant, we rather plot .

With these new terms, we rewrite the propagation equations
of a 0-jump worm by considering host removal

The boundary conditions to this set of equations are
, and .

C. Internet Delay

When deriving the propagation model, we implicitly assume
that each scan message instantaneously reaches the address
being scanned. In reality, the worm will propagate slower due
to end-to-end delay of the Internet. Hence, the model in (25)
gives an upper bound on the worm’s propagation speed.

In case of a new infection using TCP, it takes one round trip to
exchange SYN (which is the scan message) and SYN/ACK, and
then it takes a number of round trips to transmit ACK and attack
packets. For example, if the worm code is 3 kB long and each
TCP segment is 512 bytes, then under TCP’s slow start, it takes
three round trips to complete the infection. Internet’s round-
trip delay rarely exceeds 1 s [18]. Let be a time period that
upper-bounds the delay of most infections. Since worm code is
typically short (in order to fit in the call stack without causing
the program to crash when buffer-overflow attack is used), is
expected to be no more than several seconds.

The larger the infection delay is, the slower the worm propa-
gates. Hence, if we artificially set the delay of all infections to
the upper bound (ignoring the rare cases whose delay exceeds

), we have a lower bound on the worm propagation speed. It
can be shown that this lower bound is simply the infection curve
(25) shifted to the left by . Combining both the lower bound

and the upper bound, we have the following inequality for the
actual value of after Internet delay is considered. For

(29)

If a worm wants to stay undetected, it will choose a low
scanning rate for better stealthiness (smaller footprint on the
Internet) even when that means lower propagation speed and
longer propagation time. Many known worms take hours or tens
of minutes to infect the Internet. For these worms, a maximum
deviation of several seconds by the model from the reality is
relatively small with respect to the much longer overall propa-
gation time. Note that our goal here is not to determine the ac-
tual value of . Instead, we argue that the predictive power of
our model is relevant in reality when the Internet delay is small
comparing with the worm propagation time.

IX. CONCLUSION

In this paper, we have successfully modeled the propagation
characteristics of different varieties of permutation-scanning
worms. We first derive the precise propagation model for
0-jump worms, and then extend it for the general -jump
worms. We are also able to derive the closed-form solution for
the 0-jump worms. To verify the correctness of the model, we
compare the results from our model with those obtained from
actual worm simulations and show that they perfectly match.
We analyze the model to demonstrate how each worm/network
parameter will affect the worm’s propagation behavior. Finally,
although our analytical model was originally conceived by
assuming ideal network conditions, we show that it can very
well be extended to real-life scenarios with the consideration
of variable host bandwidth, network congestion, Internet delay,
host crash, and patching. In our future work, we will continue
refining our model by considering other practical extensions.
One interesting direction is to study how local subnet scanning
that has been employed in some existing worms may be incor-
porated into the permutation-scanning worms and how that will
affect the propagation model. Another direction is to directly
include variable scanning rates into the model’s equations,
instead of using the average scanning rate as approximation
when variable rates exist (Section VIII-A).
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