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Pareto-Efficient and Goal-Driven Power Control in
Wireless Networks: A Game-Theoretic Approach
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Abstract—A Pareto-efficient, goal-driven, and distributed power
control scheme for wireless networks is presented. We use a non-
cooperative game-theoretic approach to propose a novel pricing
scheme that is linearly proportional to the signal-to-interference
ratio (SIR) and analytically show that with a proper choice of
prices (proportionality constants), the outcome of the noncoop-
erative power control game is a unique and Pareto-efficient Nash
equilibrium (NE). This can be utilized for constrained-power con-
trol to satisfy specific goals (such as fairness, aggregate throughput
optimization, or trading off between these two goals). For each
one of the above goals, the dynamic price for each user is also
analytically obtained. In a centralized (base station) price setting,
users should inform the base station of their path gains and their
maximum transmit-powers. In a distributed price setting, for each
goal, an algorithm for users to update their transmit-powers is
also presented that converges to a unique fixed-point in which the
corresponding goal is satisfied. Simulation results confirm our
analytical developments.

Index Terms—Distributed and goal-driven power control, game
theory, Pareto efficiency, wireless networks.

I. INTRODUCTION

A LLOCATION of radio resources is an important and
challenging issue as the demand for wireless services

increases. A fundamental component of radio resources is the
transmit power. Two major objectives of power control in a
wireless network are to extend users’ battery life and to main-
tain an acceptable QoS in terms of the signal-to-interference
ratio (SIR) for all users by minimizing interferences to users.
Data services require a higher SIR as compared to the voice
service because the latter is more tolerant to bit errors. In
contrast to the voice service for which the QoS is measured by
a step function of the SIR [1], the commonly used QoS measure
for the data service is, in general, an increasing function of the
SIR [2]–[7].

Power control in a single-service network is expected to pro-
vide each user with equal QoS in an optimum and Pareto-effi-
cient manner. In situations where some users with very low path
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gains may impede the QoS provisioning to some other users, or
when the number of users is high, it may be required to remove
some users from the network in order to improve the QoS to
the remaining users. Such removals may also be used to opti-
mize the aggregate throughput (in terms of the aggregate SIR).
A proper power control scheme should work well with such dif-
ferent goals.

Noncooperative game-theoretic schemes have been recently
proposed for power control in [2]–[6], where each user chooses
its own transmit power level and attempts to maximize its utility
function. The game settles at a stable and predictable state called
the Nash equilibrium (NE) (if one exists), at which no user has
any incentive to unilaterally change its power level. Most of
the existing game-theoretic approaches to power control are for
single-service wireless networks.

In [2] and [3], a utility function is defined that depends on the
bit error rate (BER) per unit of transmit power. A drawback of
this is that the utility goes to infinity when the user transmits at
zero power. To obtain zero utility at zero power, they modified
the utility so that a unique but Pareto-inefficient NE exists. To
improve the Pareto efficiency at the NE, a pricing-based utility
function was introduced in [2] and [3] as a function of the BER
per expended power unit minus a price that is a linear function of
the transmit power. Then in [3], the strategy space of each user
was modified so that the modified game became supermodular,
confining all the NE to a set, and the smallest NE power vector
represented a Pareto-dominant NE that is not yet Pareto-effi-
cient.

In [4]–[6], an information theoretic approach is used to de-
fine the QoS. In [4] and [5], a logarithmic function of the SIR
(proportional to the Gaussian channel capacity), and in [6] the
Shannon capacity of a binary symmetric channel (BSC), are
used as the QoS measures, both of which we will consider (in
Section II) by adopting a general QoS function applicable to any
channel model with average power constraint. In [5], a nonco-
operative power control game (NPCG) without power constraint
was considered in which the utility was defined as the QoS
minus a price that is a linear function of the transmit power. It
was shown that at NE, some users are dropped from the system.

For a multirate code-division multiple-access (CDMA) net-
work, a new pricing scheme was defined in [6] as a linear func-
tion of the ratio of received power to the total received power
plus noise at the base station. It leads to the aggregate QoS op-
timization under fixed total transmit power constraint at NE,
which may be a local (and not global) maxima over the whole
users’ transmit power space [6]. Besides, fairness to active users
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is not considered in [5] and [6]. In [7], a distributed power con-
trol without power constraint is formulated in which the utility
is a sigmoid-like function, and a pricing function of the transmit
power is used to improve system convergence by automatically
decreasing the target SIR and even switching off some users at
high traffic loads. In addition, a so called near-far fairness in [7]
is provided by setting a lower price to farther users. In [8], a
utility function is used that depends on the value of a parameter
assigned by the base station to each user. Although the proposed
NPCG converges to the near-optimal solution for the aggregate
throughput, no method was proposed to obtain the value of the
said parameter. Besides, multiple NE (which are not the global
optimum) exist.

In [9], to optimize the sum of utilities of all users, a dis-
tributed power allocation algorithm in the downlink was pre-
sented, which consists of the mobile user selection stage and the
power allocation stage. It was shown that it provides an asymp-
totically (in the number of mobile users) optimal power alloca-
tion. However, this needs iterative communication between the
base station and users for the algorithm to converge, requiring
the base station to broadcast at each iteration a dynamic price
calculated using the difference of the sum of requested powers
by users and the total available power and users to request their
power levels based on the broadcast price.

Here, we focus on the uplink power allocation in a distributed
manner to dynamically set the price. Besides optimizing the ag-
gregate throughput, we also address fairness and trading off be-
tween fairness and the aggregate throughput, which were not
discussed in [9]. In contrast to [9], we require the base station
only to broadcast the number of active users, and the base sta-
tion’s dynamic adjustment of the price by solving an optimiza-
tion problem is not needed.

The existing game-theoretic approach to power control has
no flexibility to work well in a Pareto-efficient manner for
attaining different goals such as fairness, optimized aggregate
throughput, and trading off between fairness and aggregate
throughput. Furthermore, to the best of our knowledge, no
distributed price setting (or equivalently distributed power con-
trol) algorithm exists that converges to the optimum fairness,
the optimum aggregate throughput, or the trading off between
fairness and aggregate throughput.

In this paper, we use a game-theoretic and distributed (user-
based) approach to address the problem of constrained power
control in a Pareto-efficient manner for attaining a given goal.
Our main contributions in this paper are as follows. We pro-
pose a novel pricing scheme that is linearly proportional to the
SIR and show that, with a proper choice of the price, the pro-
posed pricing scheme can satisfy the fairness requirement in an
optimum manner, can lead to the aggregate throughput (SIR)
optimization, or is capable of trading off between fairness and
aggregate throughput, while providing the Pareto efficiency at
the NE. For each one of the above goals, we analytically obtain
the optimal price for each user to be calculated at the base sta-
tion (centralized setting). Furthermore, we present an algorithm
for updating the transmit power as well as price setting in an it-
erative and distributed (decentralized) manner that converges to
the Pareto-efficient NE in the centralized setting of the optimal
prices.

The rest of this paper is organized as follows. We set up
the system model in Section II. The problem is formulated in
Section III. In Section IV, the regular (i.e., without pricing)
power control game is introduced, and the NE and its proper-
ties are derived. The pricing scheme is proposed and discussed
in Section V. In Section VI, we present distributed goal-driven
power control algorithms. Section VII contains numerical re-
sults that confirm our analysis. The conclusions are presented
in Section VIII.

II. SYSTEM MODEL

We consider a single-cell wireless CDMA data network with
active users denoted by . Let be the

transmit power of user . We assume the transmit power of each
user is bounded, i.e., for all , where is
the upper limit of the transmit power for user . The received
power at the base station is , where is the path gain
from user to the base station. The transmit power constraint
imposes the received power to be bounded, i.e., for
all , where is the upper bound on the received
power. Without loss of generality, suppose that users are indexed
such that . Each user has the same chip
rate (assumed to be equal to the spreading bandwidth, i.e.,

) and the same transmit data rate . The processing
gain is defined by . Noise is assumed to be additive
white Gaussian whose power is at the base station. The re-
ceiver is assumed to be a conventional matched filter. Thus, at
the base station, the SIR of user , denoted by , is ,
where is the interference at the base station
for user . The transmit power and the SIR vectors are denoted
by and , respec-
tively, where denotes the transpose. Let denote the upper
bound of the transmit power vector, whose components are all
equal to the maximum possible value for all users. The transmit
power vector for all users except user is denoted by . A
transmit power vector is .

There is a one-to-one relation between a transmit power
vector and the achieved SIR vector ([6], [10]), which is

for all (1)

A SIR vector is feasible if a power vector that
corresponds to that SIR vector exists. The power constraint

for all can be stated by

for all . Thus, a SIR vector is feasible if

(2)

Similar to [4]–[6], we use an information theoretic approach
to define the QoS function by the channel capacity as the
highest rate at which user ’s information can be sent through
the channel with an arbitrary low probability of error [11]. We
do not restrict ourselves to a specific channel model, modula-
tion, and coding scheme. Generally, is an increasing and
concave function of for every channel model with the average
power constraint [12]; thus, the following two properties hold:
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Property I: for all ;
Property II: for all ;

where and are the first and the second derivatives
of with respect to , respectively. We rely only on these
two general properties, and all of our results hold for any other
QoS function that satisfies Properties I–II. Let

(3)

Since is a strictly decreasing function of the SIR, and as
, we conclude that for all and

.
As two examples for the QoS function, consider a logarithmic

function of the SIR, defined in [4] and [5], denoted by ,
and the channel capacity for a binary symmetric channel (BSC)
as in [6], denoted by , and write

(4)

where is a constant, and

(5)

where is the cross error probability defined in [11].
Note that these two examples for the QoS function satisfy

Properties I-II, and in both cases, we have [5], [6]. The
logarithmic function (4) is the capacity of a Gaussian channel
( for the discrete-time channel, and for the
continuous-time channel [11]), provided that the noise plus in-
terference for each user is Gaussian [5].

III. PROBLEM FORMULATION

A. Definitions

A NPCG has three elements: a finite
set of mobile users as players, the strategy
space for each mobile user is the interval that
contains the transmit power choices, and a utility function
for each strategy profile . We assume
that each user knows the number of players, the other users’
utility functions, and the maximum received power of all users.
In Section VI, we will introduce an algorithm that converges to
the NE requiring none of above a priori information (except the
number of users). A NPCG can be formally expressed [3] by

for all .
The commonly used concept in solving game-theoretic prob-

lems is the NE at which no user can improve its utility by uni-
laterally changing its transmit power.

Definition 1: A transmit power vector
is the NE point for the NPCG

if, for every user ,
, for all .

The NE exists in game if, for all , is a nonempty,
convex, and compact subset of a Euclidean space , and

is continuous in and quasi-concave in [13].

Another commonly used concept in game theory is the best
response function for each player. Formally, the user ’s best
response function , where is the Cartesian
product of for (i.e., ), is a set-valued
function that assigns the set of the best power level in the utility
sense to each interference power vector , that is

for all
. This alternative formulation can be used to find the NE by

first calculating for all and then finding the for which
for all . In other words, the NE is the

fixed point of the best response function set, that is
where . Note that and

are equivalent. If are singleton-valued functions, we
have equations with unknown .

To compare the efficiency of two NE, the concept of Pareto
dominance as defined below is used.

Definition 2: A transmit power vector Pareto dominates
another vector if, for all , , and
for some , . A power vector is Pareto
efficient if there is no power vector that Pareto dominates .

B. Fairness (max-min SIR)

Fairness is an important notion in allocating resources in
single-service wireless data networks. The criterion for fairness
is highly application-dependent [14] and cannot be uniquely
defined [15]. We consider two formulations of the fair power
control problem, namely, the max-equal QoS and the max-min
QoS. The max-equal QoS problem is to find the maximum
achievable QoS that is the same for all users, and the max-min
QoS problem is to find a transmit power vector so that the
minimum achievable QoS is maximized. They are

- for all (6)

- (7)

where means for all .
In [16], it is assumed that all users operate with the same

SIR. A similar notion called the near-far fairness is informally
defined in [7]. A common formulation of the power control in
[17]–[21] is the max-min SIR problem, i.e., ,
which is equivalent to (7) due to the fact that is an in-
creasing function of . In Theorem 1, we introduce a unique
and optimal solution to problems (6) and (7). The max-min is a
well-known criterion for rate (congestion) control [22], which
in this application is not equivalent to the max-equal criterion
[23]. However, as the following will show, these two criteria are
equivalent for power control.

Theorem 1 (Equivalence of the Max-Min QoS and the
Max-Equal QoS for Power Control): For power control, the
max-min QoS problem and the max-equal QoS problem have
the same and unique optimal solution for all

.
Proof: See Appendix I.

Definition 3: We call the received power, the SIR, and the
QoS achieved by the optimal solution to the two equivalent
problems (6) and (7), in which they are optimally the same for all
users in the set , as the optimum-fair received power (OF-RP)
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denoted by , the optimum-fair SIR (OF-SIR) denoted by ,
and the optimum-fair QoS (OF-QoS) denoted by for all users
in the set , respectively. Thus

(8)

(9)

(10)

C. Optimization of the Aggregate Throughput

From a system point of view, the power control goal is to
optimize the aggregate throughput subject to the peak transmit
power constraint (O-AT), as defined in [24] by

- (11)

In [25], the aggregate throughput is defined as the aggregate of
the variable transmission rates for a given SIR, which is equiva-
lent to O-AT (11) [24]. The following theorem is proved in [26]
(Propositions 2–3).

Theorem 2: If , then the optimal solution to the O-AT
problem is and for .

Note that is usually satisfied, which we assume here
as well. Thus for O-AT, only the user with the highest max-
imum-received-power transmits at its maximum power while
the remaining users do not transmit at all. Although this strategy
maximizes the aggregate throughput, it may be extremely unfair
to users with low maximum-received-power who may never get
a satisfactory SIR (QoS). Thus, in general, the O-AT (11) and
the max-min QoS (7) do not have the same solution. Usually, a
higher aggregate throughput is achieved at the expense of fair-
ness and vice versa.

D. Limited Fairness ( -max-min SIR)

The OF-SIR (9) depends on the min-max received power (8)
and the number of users for a given spreading gain and noise
power. Thus, the OF-SIR (and consequently the OF-QoS (10)) is
very low in the presence of a high number of users and/or when
some users encounter strong fading or are located at very far dis-
tances from the base station. In these cases, it is not reasonable
to limit the SIR (QoS) to a low level for all users for the sake of
fairness, as it would force all users to experience a low QoS (i.e.,
all users are punished). It also heavily degrades the aggregate
throughput. In such cases, it is useful to drop those users whose
channels are very bad and the strict fairness constraint to be re-
laxed in order to improve the QoS for the remaining active users.
This motivates us to define the -max-min SIR as follows. If
the OF-SIR for all users is lower than a threshold , those
users with the lowest path gains are switched off one-by-one
until the OF-SIR for the remaining users becomes equal to or
higher than . The threshold value may also be chosen for
trading off between fairness and aggregate throughput. Using
Theorem 1, we immediately have the following theorem.

Theorem 3: Define

(12)

Note that is the SIR achieved by each user to when
users 1 to switch off and users to transmit at a level
so that their received power at the base station is . We have

for all . If , then the -max-min SIR
has no solution, and if then -max-min SIR and
max-min SIR are equivalent, i.e., -max-min SIR is equal to

. If then the -max-min SIR is where
for which .

E. Pareto-Efficient and Goal-Driven Power Control

As stated in Sections B–D above, a power control scheme
may serve different goals such as fairness, limited fairness, or
aggregate throughput optimization. Sometimes it is required to
trade off between fairness and aggregate throughput. In sum-
mary, we wish to devise a Pareto-efficient and distributed power
control for satisfying any one of the following goals:

— max-min SIR,
—
— optimizing the aggregate throughput, or
— trading off between fairness and aggregate throughput op-

timization.
In what follows, we show that satisfying any one of the above

goals results in Pareto efficiency.
Theorem 4: The solutions to the max-min SIR, the
-max-min SIR, or the O-AT problems are Pareto effi-

cient.
Proof: This theorem is easily proved by contradiction. If

the optimal transmit power vector , corresponding to each
goal is not Pareto efficient, then there exists a different transmit
power vector such that for all , and

for some , thus resulting in a higher value for
that goal’s criterion (i.e., higher values for the max-min SIR, the

-max-min SIR, or the O-AT problems, respectively) which
contradicts the fact that is the optimal solution.

IV. REGULAR NONCOOPERATIVE POWER CONTROL GAME:
THE GAME WITHOUT PRICING

In a regular noncooperative power control game (R-NPCG),
no pricing is applied and each user maximizes its own QoS in a
distributed manner by choosing an appropriate transmit power.
Indeed, users compete for the QoS. Thus, the utility function of
user in a R-NPCG is

(13)

Note that is a function of and .
Theorem 5: There exists a unique NE in a R-NPCG

at which the power of each user is set to its
maximum value. In addition, the NE is Pareto efficient.

Proof: It is evident that is a nonempty, convex, and
compact subset of a Euclidean space . One can easily see
that is continuous in . From Property II (defined in

Section II), we note that , and thus
the utility function is quasi-concave in . One can use these
conditions and easily prove that the NE exists [13]. Since
is a strictly increasing function of for any given (see
Fig. 1), each user transmits at its maximum power, independent
of others, i.e., for all . Thus, there is a
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Fig. 1. The QoS, the pricing, and the price-based utility functions vs. SIR.

unique NE at which the transmit powers of all users are set
to their maximum values. If is not Pareto efficient, then
there exists another transmit power vector that Pareto domi-
nates , i.e., for all , and
for some , where and are the corresponding SIRs
achieved by user for the transmit power vectors and ,
respectively. As the QoS is an increasing function of SIR, the
actual SIR is either increased or is kept fixed, i.e., for
some users and for others. This is not possible unless
the transmit power by each user is increasing (see (1) and note
that as is an increasing function of , a fixed or
an increasing results in increasing the transmit power for all
users), which contradicts the fact that users are transmitting at
their maximum power.

For a R-NPCG, the NE is Pareto efficient, but results in the
maximum transmit power, which means that attaining any of the
goals stated in Section III-E is not possible. However, in what
follows, we present a novel pricing scheme to achieve any of the
given goals in a Pareto-efficient manner.

V. PROPOSED PRICING SCHEME

A. Pricing Based Noncooperative Power Control Game
(P-NPCG)

When a user transmits in a shared medium, that user should
pay a price (cost) for receiving the service and for causing un-
desirable interferences to others. It is well established that the
pricing scheme could affect the individual user’s decision in
such a way that Pareto efficiency [3], aggregate QoS [6], or
fairness [7] is improved. To the best of our knowledge, none of
the existing pricing schemes is adequate for a goal-driven and
Pareto-efficient power control.

Unlike the existing pricing schemes, our proposed pricing
scheme is an increasing function of the SIR. In its simplest form,

it could be a linear function of the SIR. Let be the pricing
function of user for at the base station, and the pricing-based
utility function for user be

(14)

whose simplest form is

(15)

where is the price per unit of the actual SIR at the base
station for user . The price is declared to user by the base
station. We will use (15) as the price-based utility function of
the P-NPCG, but the results can be extended to the general case
of . In this case, the cost to each user is proportional to
its SIR. We will show that this pricing scheme enables us to ad-
equately influence the best response function of each user so
that all users reach a unique NE, at which the Pareto efficiency
and any one of the goals (enumerated in Section III-E) can be
satisfied simultaneously, each by a proper choice of the price.
This is different from [1], [3], [6], and [7], in which a pricing
mechanism is employed either for just improving the Pareto ef-
ficiency, optimizing the aggregate QoS for a fixed total transmit
power, optimizing the aggregate utility, for fairness, or for im-
proving the system convergence under no peak transmit power
constraint.

We begin by using the single-pricing scheme, in which the
price is the same for all users, and obtain the corresponding NE.
We also dynamically obtain the optimal single price so that its
corresponding NE leads to the OF-QoS. Then, we extend it to
the binary-pricing scheme in which the prices for users are either
of the two different values. The binary-pricing scheme can be
used for satisfying -max-min SIR or O-AT goals at the NE.
The dynamic values of binary-prices for attaining each of these
goals are also obtained.

B. Single-Pricing Noncooperative Power Control Game
(SP-NPCG)

Define the SP-NPCG , where
for all and . We

show that for the SP-NPCG a unique and Pareto-efficient NE
exists for any . We also show that there is a unique
in a SP-NPCG that results in fairness (OF-QoS) and Pareto
efficiency at the same time.

Theorem 6: In the SP-NPCG, the best response of user
to a given interference power vector is (16) at the

bottom of the page, where is the inverse function of the
first derivative of the QoS function and is defined in (3).

if

if

if

(16)
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Proof: To obtain , we use the first and the second
derivatives of the price-based utility with respect to

(17)

(18)

We know that is a strictly decreasing function of
and . Hence, for , we have

, and thus is an increasing function of . In
this case, similar to the R-NPCG, the best response for user
is to transmit at its maximum power, i.e., for ,

for all . For , the equation
, or equivalently , has the same unique

solution for all . Note that as is a
strictly decreasing function, its inverse exists, and that is a
decreasing function of . As for all , and hence

, the roots of (17) maximize for a given
interference , for (see
Fig. 1). For a fixed interference , a one-to-one relation exists
between the SIR and the transmit power, and thus the best
transmit power in response to that maximizes is also
unique and is equal to for all . If ,
user cannot transmit at power . In this case, since is the
unique maximizer of , then is an increasing function of

in for a fixed interference. Therefore, the
best response to is the maximum value of the transmit
power, i.e., . This implies that for ,

for all

. For , we have , thus is a
decreasing function of . In this case, the best response for
user is no transmission, i.e., for , for
all .

Note that the best response function here is a continuous and
onto function of . As we will show, this enables us to adjust
each user’s transmit power by dynamically setting the price for
attaining the given goal.

Theorem 7: The NE of SP-NPCG exists and is unique.
Proof: The proposed pricing scheme forces the utility (the

QoS minus the cost) function to be quasi-concave [see (18)].
Similar to Theorem 5 for the R-NPCG, one can show that the
NE exists for the SP-NPCG. By definition, the NE is the fixed

point in the best response function set that satisfies .
For the two cases where and , the fixed
point of the best response function set is unique and corresponds
to the maximum transmit power and to no transmission by all
users, respectively. For the case where , we use
the concept of standard functions to prove the uniqueness of the
NE. A function is standard if for all , the
following properties hold [27]:

• Positivity:
• Monotonicity: if then , and
• Scalability: for all , .

It has been shown in [27] that the fixed point (if it exists) in a
standard function is unique. Similar to [3], it can easily be shown
that for obtained in (16) is a standard
function, and thus the unique NE exists.

Theorem 7 guarantees the uniqueness of the NE for the
SP-NPCG, and Theorem 8 obtains this unique value. Let

denote the transmit power vector at
the NE for the SP-NPCG . Define

(19)

Note that is the SIR achieved by user when users 1 to
transmit at their maximum power, and users to transmit at
a level so that their received power at the base station is . We
have and, for all .

Theorem 8: In the SP-NPCG, there is the unique NE at which
for various values of , the transmit power is given by (20) at
the bottom of the page.

Proof: See Appendix II.
In the following corollary, we derive some interesting prop-

erties of the NE for the SP-NPCG, which we later use.
Corollary 1 (Some Properties of the Ne in the SP-NPCG): At

the NE for the SP-NPCG with the price
a) if , each user transmits at its maximum

power;
b) if , then at the NE, OF-QoS (OF-RP and OF

SIR) is satisfied, i.e., the NE satisfies max-equal QoS (6)
and max-min QoS (7), and so it is Pareto efficient; and

c) if , all users are switched off.
Proof: The statements a) and c) are immediate from (20).

If , then from (19) and (20) we know that
, and thus

for all if
for

for

if , where

for all if

for all if

(20)
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Fig. 2. The received power and the SIR achieved for individual users vs. the
price at the NE of SP-NPCG. Note that � � � and � � � for all � � �

for any given �, where � and � are the received power and the SIR of user �
at the NE, respectively. For � � � �� �, the received power as well as the SIR
achieved by all users at the NE are the same (region of equality). If� � � �� �,
then the NE satisfies max-min QoS (OF-RP and OF-SIR). For � � � ���, all
users are switched off, and for � � � � � �� �, every user transmits at its
maximum power at the NE. The QoS achieved by any user at the NE also has a
similar shape as equilibrium SIR.

for all . Thus, from Theorems 1 and 3, we conclude
statement b) above.

Fig. 2 shows the received power and the SIR for each user
at the NE with respect to price, in which we note that the SIR,
and thus the QoS, for a given user at the NE of SP-NPCG

is maximized when . This can be proved by
using (20). Corollary 1-b obtains the dynamic prices for satis-
fying Pareto efficiency and fairness simultaneously. Note that

is time varying, whose values should be dynamically ob-
tained from (19) for .

C. Binary-Pricing Noncooperative Power Control Game
(BP-NPCG)

Although the proposed pricing scheme with single-price
provides each user with equal QoS in an optimum and

Pareto-efficient manner at the NE, it cannot be used for satis-
fying -max-min SIR, or for aggregate throughput optimiza-
tion. In what follows, we extend the proposed pricing scheme to
the binary-pricing scheme to attain any one of the above goals
in a Pareto-efficient manner.

Let the set denote the group of users to be dropped (not
to transmit), and denote the remaining users. Power control
and switch-off mechanisms can be jointly applied by using the
proposed pricing scheme with binary-pricing for members of
and in a complementary manner, as will be shown by the
following theorem.

Theorem 9: Define the BP-NPCG ,
where in which is equal to either
of the two different values. In BP-NPCG, if for all

and where for all , then the
game has a unique NE at which the transmit power for all

is zero and, for all , the transmit power is
the one calculated in Theorem 8 by replacing with (and
thus with , where is the number of members in ).

Proof: Choosing for all imposes that
be the unique maximizer of , i.e., . Similarly,

for all , the unique maximizer of is ,

i.e., for all

. Now, , for all implies that for
all , meaning that users in cause no interference to users
in . Thus, the problem is reduced to finding the fixed point for

for all , which is equivalent to the fixed point of
a SP-NPCG with ,
which can be calculated by using Theorem 8 and replacing
with (thus replacing with ) and assuming (without
loss of generality) that members of are indexed from 1 to

in an increasing order of their maximum received power.
In other words, the fixed point of the best response function set
for all together with for all constitute the
fixed point of the best response function set (i.e.,
for all ).

Theorem 9 states that the binary-price enables us to divide the
users into two groups so that at the NE, one group is dropped and
the other is controlled by tuning their prices. In the following
two corollaries, two specific cases that may be more interesting
are stated (their proofs are immediate from Theorems 2–4 and
9).

Corollary 2: In the BP-NPCG defined in Theorem 9, as-
sume for , and
for , for a given . The index is chosen
so that if , then , and if , then

for which . Now, at the NE,
the -max-min SIR goal (and consequently the Pareto effi-
ciency) is satisfied.

Corollary 3: In the BP-NPCG defined in Theorem 9, if
and if for all , then at

the NE, the user transmits at its maximum power and other
users are switched off. Therefore, at the NE, the O-AT goal (and
consequently the Pareto efficiency) is satisfied.

Corollaries 2 and 3 dynamically obtain the prices for sat-
isfying the -max-min SIR and for achieving the optimum
aggregate throughput, respectively. Note that we can also
use Corollary 2 to trade off between fairness and aggregate
throughput optimization by setting the value of such that a
given threshold for aggregate throughput is achieved.

VI. DISTRIBUTED GOAL-DRIVEN POWER CONTROL

ALGORITHMS

In any distributed power control algorithm that converges to
the NE of either the SP-NPCG or the BP-NPCG, or equivalently
attains the max-min SIR or the -max-min SIR or optimizes
the aggregate SIR, each user needs to get its optimal price. Op-
timal prices for each goal can be obtained at the base station if

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:51:05 EDT from IEEE Xplore.  Restrictions apply. 



RASTI et al.: PARETO-EFFICIENT AND GOAL-DRIVEN POWER CONTROL IN WIRELESS NETWORKS 563

each user informs the base station of its path gain and its max-
imum transmit power. In this way, the base station should find
the solutions to the OF-SIR, -max-min SIR, or the O-AT; and
then announce them back to each user (in terms of the pricing, or
equivalently the target SIR). This centralized decision-making
can be replaced by a distributed one if each user can set its
price (or equivalently its target SIR) in a distributed and op-
timal manner. In what follows, we first assume that the optimal
prices for a given goal are given to each user by the base station
and subsequently propose a distributed scheme for obtaining the
prices by users.

A. Centralized (Base Station) Price Setting

The work presented in [27] provides a framework for
understanding the convergence of the existing power con-
trol algorithms, where it is shown that for a standard
function , if there is a unique fixed point so that

, then
for any initial power vector, the power control algorithm

converges to , where is the time step
number. As we proved in Theorems 7 and 9 for the SP-NPCG
and the BP-NPCG, respectively, there is a unique fixed point
for their corresponding best response function set (i.e., the NE).
Thus, if every user updates its transmit power along with its
own best response function, the NE is attained. The following
theorem can be proved taking similar steps as in [27].

Theorem 10: The distributed goal-driven power control
(DGD-PC) algorithm is defined by , where

is the best response function set, or equivalently

(21)

for all , where is the total received power plus noise at
the base station, i.e., , and
is the price introduced in the SP-NPCG or in the BP-NPCG,
which is given to user by the base station. The algorithm (21)
converges to the NE for the corresponding game.

Note that for , the best response function
of each game (the SP-NPCG or the BP-NPCG) is (21). Hence,
the NE of the game with the proposed pricing scheme can be
reached in a distributed manner by each user knowing only its
own uplink gain, the total received power at the base station, and
its own price given by the base station. No user is required to
know the path gains, the (peak) transmit powers, and the prices
of others. However, as stated earlier, all users should inform the
base station of their path gains and maximum transmit powers.
In the sequel, three distributed power control algorithms are pre-
sented, requiring neither the knowledge of users’ path gains and
maximum transmit powers by the base station nor the provision
of the optimum values of prices by the base station to users. In-
stead, they only require the base station to broadcast the total
number of active users.

B. Distributed Price Setting

In what follows, we propose three distributed algorithms,
each converging to the optimal solution of max-min SIR, O-AT,

or -max-min SIR, respectively, in which each user sets its
transmit power (or equivalently its price or its target SIR) in
a distributed manner requiring only to know its own uplink
gain, the total received power plus noise at the base station, the
number of active (transmitting) users, and the additive white
Gaussian noise (AWGN) power at the receiver. The number of
active (transmitting) users can be broadcast by the base station
to users, which we assume would be the case. Furthermore,
there are well-known algorithms by which each user can obtain
the number of active users by only knowing the total received
power at the base station (for details, see [28]–[31]).

Theorem 11: Define the distributed optimum-fairness goal-
driven power control (DOFGD-PC) algorithm as

for all (22)

where is the total received power plus noise at the base sta-
tion. The algorithm (22) converges to the optimal solution of
the max-min SIR if users start transmitting at their maximum
power, i.e., for all .

Proof: The fixed point of (22) is ,

where , in which . Equiva-
lently

for all (23)

Thus we have

for all (24)

or equivalently for all . This means that at
the fixed point, the received power at the base station for each
user is the same as that of other users. One can easily show that

if for all , we have and

consequently for all . Thus,

in this case we have

for all for all (25)

It is evident that for all and for all

, , and thus

, or

equivalently , which implies that is
decreasing in time. Since from (25), is lower-bounded
by for all , and any fixed point of the algorithm
has the property that for all , we
have for all . Thus, under the
DOFGD-PC algorithm, if users start transmitting at their
maximum powers, the max-min SIR would be satisfied at the
steady state.
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Theorem 12: Define the distributed O-AT goal-driven power
control (DOATGD-PC) algorithm as

if
for all

(26)
where is the set of active users at time , i.e.,

and is the number of its members.
The distributed power-update function (26) has a unique fixed
point, which is the unique solution of O-AT as well. Further-
more, for any initial power vector, the algorithm converges to
its fixed point.

Proof: One can easily show that the unique solution of
O-AT is a fixed point of (26) (i.e., and for
all . Thus, the algorithm has a fixed point. Now, we
show that this fixed point is unique. It is evident that at the fixed
point we have because if , then we must have

, which is a contradiction. It can also be observed that
at the fixed point we must have because if ,
then must hold for all users in the set , which
contradicts the fact that we have at least for

. Now, we show that the set at the fixed
point only includes user . This is observed by noting that
when , the inequality always holds for
user , and when user is the only member of , we have

for each user . In what follows, we show
that starting from any initial power vector, the algorithm (26)
converges to its unique fixed point.

1 For a given , we have for all and
for all , implying that at each time step,

a given user either transmits at its maximum power or is
switched off.

2 For user , (i.e., ), we have for all ,
since always holds for user .

3 For any (i.e., in addition to user , at least
one more user also belongs to ), there is at least one
user that and
because we have at least for user

.
4 If , then we have . To validate this,

we first show that . Since for
each user , we have ,
and since for each user , we have

, then if , they
contradict each other at least for users
and . If , then from statement
1 above and , we conclude
that , which implies that .

The above statements 3 and 4 say that is decreasing in
time. Thus, using the above statements 1 and 2, we conclude
that in at most time steps, the algorithm converges to its
unique fixed point, i.e., for all .

We now propose a distributed power control algorithm under
which if the OF-SIR for all users is lower than a threshold, those
users with the lowest maximum received power switch off one
by one until the OF-SIR for the remaining users becomes equal
to or higher than the threshold. It can also be used for trading

off between fairness and aggregate SIR optimization. The dis-
tributed optimum limited-fairness goal-driven power control al-
gorithm (DOLFGD-PC) is defined below.

DOLFGD-PC Algorithm: Assume is a small positive
constant, is the threshold value for OF-SIR (assuming that
it is feasible, i.e., ), and the number of active
users is broadcast by the base station.

1—Let and increment .

2—Let .

If and then

if , increment and go to step 3,

else increment and go to step 1,

else increment and repeat step 2.

3—Let , increment , and if , go
to step 1, else repeat step 3.

Theorem 13: Under the DOLFGD-PC algorithm, the least
number of users are dropped one by one in decreasing order of
their max-received power, until the remaining users optimally
attain the same SIR that is equal to or higher than , i.e., it
converges to the solution of -max-min SIR.

Proof: One can easily see that if , then all
users operate in Step 2 for , and from Theorem 11 we con-
clude that all users attain the same SIR equal to the max-min
SIR (i.e., ), which is higher than . If
and (i.e., when the distributed algorithm
momentarily converges), then only user 1 is transmitting at its
maximum power (as Theorem 11 implies). Thus, user 1 goes
to Step 3 and remains there while others go to Step 1 and then
proceed to Step 2. If , then similarly we
conclude that all active users operate in Step 2, attaining the
same SIR equal to or higher than . Otherwise, user 2 is
dropped and the same process is repeated. In fact, the algorithm
DOLFGD-PC drops users one by one in decreasing order of
their max-received power until the remaining users attain the
same SIR that is equal to or higher than .

Remark: The proposed DOLFGD-PC algorithm can also be
used to trade off between fairness and the aggregate throughput.
Suppose that the tradeoff is defined by the maximum possible
number of users attaining the same SIR in an optimal manner
that is higher than a threshold denoted by , while the ag-
gregate SIR is also higher than a threshold denoted by th.
This tradeoff is achieved by replacing the fixed threshold in
the DOLFGD-PC algorithm by a dynamic threshold

.
The distributed target-SIR assignment algorithms corre-

sponding to the DOFGD-PC, or the DOFGD-PC, or the
DOATGD-PC are

for all (27)

where is the transmit power for user obtained in a
distributed manner by using the corresponding algorithm. These

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:51:05 EDT from IEEE Xplore.  Restrictions apply. 



RASTI et al.: PARETO-EFFICIENT AND GOAL-DRIVEN POWER CONTROL IN WIRELESS NETWORKS 565

TABLE I
LIST OF PARAMETERS/FUNCTIONS AND THEIR RESPECTIVE

VALUE/ASSIGNMENTS IN CASE STUDIES

three distributed target SIR assignment algorithms converge to
the solution of the max-min SIR, the O-AT, or the -max-min
SIR, respectively, and enable users in the NPCG to set their
prices iteratively in a distributed manner by

(28)

so that the resulting NE (at the steady state) satisfies the corre-
sponding goal.

VII. NUMERICAL RESULTS

Now, we provide numerical results of applying our proposed
schemes. Assume that six users are located in the area covered
by a given base station and the upper bound on the transmit
power for all users are the same and equal to 2 W. We adopt a
simple and well-known model [32] for the path gain as

, where is the distance between the user and the
base station and is the attenuation factor that represents the
power variation due to the shadowing effect. We take

. The system parameters are listed in Table I.
In our case studies, we use the logarithmic function of the
SIR given by (4) with as the QoS function.
This QoS function as well as its first derivative and its
inverse function used in this section are also shown in
Table I. The distance vector is .
Now, we consider two different distance vectors

m, and
m,

(their only difference being the locations of user 1).
The path gains due to and are

and
,

respectively. For each distance vector , the
maximum transmit power for each user denoted by and

[defined in (19)] for , where is the index
for the respective distance vector, are easily calculated by
using and the parameters’ values in Table I.

If no pricing is applied, at the NE, selfish users would
transmit at their maximum power to maximize their utility
function, and none of the goals mentioned in Section III-E is
attained. We apply the proposed schemes in three scenarios
(S1–S3) in Table II, each with a given distance vector. In each

scenario, to attain a specific goal, we calculate the optimal
values of prices as described in Section V. The goals, the
distance vectors, the optimal prices, the corresponding NE
transmit powers, and the NE SIRs for each scenario are given
in Table II. We also simulate each scenario where all users
update their transmit powers using our proposed distributed
power control algorithm corresponding to the goals stated in
Table II (i.e., for S1, DOFGD-PC; for S2, DOLFGD-PC; and
for S3, DOATGD-PC).

Scenario 1: We begin by considering six users at from
the base station whose goal is to provide fairness in an op-
timum and Pareto-efficient manner (S1). The OF-RP (OF-SIR)
is achieved from (8) when the received power at the base station
for each user is equal to W. The OF-SIR
(9) and the OF-QoS (10) are equal to 19.83864 and 21906 bps,
respectively. If we apply our proposed pricing scheme by cen-
trally setting the price to (as shown
in Corollary 1-b), at the NE, each user (with complete informa-
tion) transmits at a power level required for attaining the OF-SIR
(as well as the OF-QoS) point [see Table II (S1)]. We simu-
late the case where each user updates its transmit power using
our proposed distributed DOFGD-PC algorithm (21). The initial
transmit power vector is set at its maximum value. The transmit
power, and the SIR versus each iteration are shown in Fig. 3.
Note that the algorithm rapidly converges to the NE, where at
its steady state, each user transmits at a power level required for
attaining the OF-SIR.

Scenario 2: Now assume that the goal is to optimize the ag-
gregate throughput (S2). From Theorem 2, we know that the
aggregate throughput is optimized if users 1–5 do not transmit,
and user 6 transmits at its maximum power. We use the cen-
tralized scheme to obtain for users 1–5

and for user 6 [see Table II
(S2)]. Simulation results for updating the transmit power by
each user according to our proposed DOATGD-PC algorithm
(26) are shown in Fig. 4. Note that by using our proposed dis-
tributed algorithm, at the steady state, user 6 transmits at its
maximum power while users 1–5 are dropped (no transmission),
and thus the aggregate throughput is optimized.

Scenario 3: Now assume that user 1 moves to a far-
ther point m from the base station, and hence

. The system could be made optimum-fair again
if the centralized scheme is applied and the base station an-
nounces to all users or if the
distributed DOFGD-PC scheme is employed by all users. Due
to the very low OF-RP (i.e., W),
all users experience an unsatisfactory OF-SIR (9), namely

, meaning that
all users are punished. Now, it is better to drop user 1 from
the network and let the remaining five users get an equal
QoS in an optimum manner. By dropping user 1, the OF-RP
and the OF-SIR for users 2–6 is W

and . Note
that dropping user 1 triples the OF-SIR for the remaining
users. In other words, for Scenario 3 the goal is -max-min
SIR for a given . This can be
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TABLE II
OPTIMAL PRICES FOR THREE DIFFERENT SCENARIOS/GOALS AND THE NE (THE TRANSMIT POWER AND THE SIR) FOR THE CORRESPONDING NPCG

Fig. 3. The transmit power and the SIR of each user vs. the iteration number
for the DOFGD-PC algorithm (S1). Note that at the steady state, all users get
their OF-SIR (equal to 19.83864 bps).

Fig. 4. The transmit power and the SIR of each user vs. the iteration number for
the DOATGD-PC algorithm (S2). Note that the at steady state, user 6 transmits
at its maximum power while users 1–5 are dropped (no transmission), and thus
the aggregate throughput is optimized.

achieved by using the centralized scheme for determining
the optimal price (Corollary 2) and declaring a binary
price for users 2–6 and

for user 1 by the base station [see
Table II (S3)]. Fig. 5 shows simulation results of employing
our proposed distributed DOLFGD-PC algorithm for obtaining

Fig. 5. The transmit power and the SIR of each user vs. the iteration number for
the DOLFGD-PC algorithm (S3). Note that at the steady state, user 1 is turned
off and other users get their OF-SIR (equal to 24.8963 bps).

optimal prices. Note that as Fig. 5 illustrates, by using our
proposed distributed algorithm, at the steady state, user 1 is
turned off and other users get their OF-SIR .

VIII. CONCLUSION

We proposed a novel pricing scheme for a noncooperative
power control game and showed that tuning the price (either
single-pricing or binary-pricing) for each user in the proposed
scheme enables us to satisfy different goals (such as Pareto ef-
ficiency, max-min SIR (OF-SIR), -max-min SIR, O-AT, or
trading off between fairness and aggregate throughput) in a con-
trolled manner at the NE. We also showed that for the pro-
posed pricing scheme, the NE is unique and Pareto efficient.
Specifically we showed that the proposed pricing scheme with a
single-price is adequate for a single service network, as it forces
the NE to be fair in an optimal manner. Furthermore, the pro-
posed pricing scheme with a binary-price enables us to apply
limited fairness or to optimize the aggregate throughput.

We analytically obtained the optimal prices for each goal. In
a centralized scheme, we require the base station to dynamically
announce the optimal prices to users so that the preassigned goal
will be satisfied at the NE. In this scheme, each user must in-
form the base station of its path gain and its maximum transmit
power. To avoid such communication between the base station
and users, for each goal we presented a distributed scheme for
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updating users’ transmit power or equivalently for setting their
optimal price (target SIR setting), which converges to the corre-
sponding goal without requiring the base station to know users’
path gains and their (peak) transmit powers or to provide the op-
timal prices to users. It instead requires each user to know the
number of active users, which can be broadcast by the base sta-
tion.

APPENDIX I
PROOF OF THEOREM 1

First, we show that for all is an optimal
solution to the max-equal QoS problem (6). As the QoS objec-
tive is a strictly increasing function of SIR for all users, the same
QoS constraint imposes that the SIR at the base station be the
same for all users. Substituting the same SIR for all users in
(2) gives

(29)

This implies that the max-equal QoS is achieved when the
received power of all users is equal to the min-max received
power, i.e., . The optimal solution to (6) is

for all . It was shown in [21] that the
optimal solution to the max-min SIR problem is unique and
results in the equality in the SIR sense, i.e.,
for all ; conversely, any equal SIR with at least one
user transmitting at its maximum power is a solution to the
max-min SIR problem. We know that the max-equal QoS is
achieved when at least one user (the one with the smallest
maximum received power) transmits at its maximum power.
Thus, in power control, the max-equal QoS and the max-min
QoS problems have the same solution.

APPENDIX II
PROOF OF THEOREM 8

It is easy to see that and
. The fixed point of the best

response function is

for all (30)

where is given by (16).
From Theorem 7, we know that the fixed point of the best

response function set (16) is unique. Thus, we only need to show
that (20) satisfies (30) for any . From (16), we know that
for , we have for all whose
fixed point is for all . For , is
maximized at . If , then .
In this case, for all is the fixed point of the best
response function set (30) because from , for all
we have

Thus

for all

Therefore, for (and consequently for
), we have for all . For

, there is a unique so
that or equivalently

, which implies

and

The latter two inequalities can be stated by

(31)

This suggests that transmitting at the maximum power by users 1
to , i.e., for , and setting the
transmit power to for , satisfies
(30) for , i.e., for

(32)
and for

(33)

which we will show in the sequel. Since for
we have

Authorized licensed use limited to: Florida State University. Downloaded on March 30,2010 at 00:51:05 EDT from IEEE Xplore.  Restrictions apply. 



568 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 2, APRIL 2009

because , and for , ,
and . Therefore, (32) holds. Similarly,
since for , we have

because , and for . Thus,
for

It is easily observed from (31) that
; there-

fore, (33) holds. If , then
, and

consequently for all , then all users can achieve the
same SIR (which maximizes their utility) in such a way
that the received power for all users are the same and is equal
to or less than . In this case, substituting the same SIR

for all users in (1) results in the feasible transmit power
for all , which satisfies (30). For

, from (16) we know that for all
whose fixed point is for all .
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