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Abstract

It is well known that the superposition (sum) of any bemof pure sinusoidal
waveforms of equal frequency but arbitrary relative amgdéis and phases is in general
another pure sinusoid of the same frequency whose ampénaiphase depends on the
specific amplitudes and phases of the components. Jtheireason why, for example,
when a chorus of singers together sing the same n@ezan hear that note clearly
regardless of the arbitrary mismatches in amplitude &adgthat may exist between the
individual voices. The different voices generally t¢émdeinforce each other, rather than
canceling each other out; complete cancellation wouldirooaly in a measure-zero
subset of the possible cases. In this note, we derora first principles the basic
trigonometric identities that form the quantitativeidations of this useful fact.

1. Sine Plus Cosine

First, we will derive a trigonometric identity for tisemple case

a cosx + sinx =b sinx + 6) (1)
where all variables are real, and wherandd are expressed explicitly as closed-form
functions ofa. This corresponds to the special case where the awpanent sinusoids
are exactly 90 degrees out of phase. We will solve tlubl@m by solving the more
general complex equation

a4 =t (2)
of which eq. (1) is merely the real part. We startaayoring the exponentials:

agd”? + & =p &’ (3)
Now, & divides out, giving us

ia+1=bé’. (4)

This equation already makes it obvious that

g = ?t?nai,)m )
=@ + 1)"2



Thus, the desired identity is

a cosx + sinx = (a® + 1)? sin(x + atana). (6)
We can thus see that the superposition of the sine asithecis a new sinusoidal
waveform of the same frequency and amplitude greater @lthar component alone.

The phase shift relative to the single girvoice is given by the arctangent af the
relative amplitude of the cosine and sine components.

2. Sine Plus Phase-Shifted Sine

In this section, we generalize the above to the manergécase
asinfx +¢) + sinx =b sinfx + 0), (7)

where nowy may be any arbitrary phase difference (not necessdg)ybetween the
component voices. Eq. 2 generalizes to

adl*9) 4 @ =pd*? (8)
and eq. 4 becomes

ad’ +1=bée (9)
To solve forb andé requires transforming the left-hand side into phasenmade form.
Expanding the exponential using Euler's relation ancheyatg the reals and then
transforming back to phase-magnitude gives

a(cosp +ising) +1

= (acosp + 1) +i(sing)

= [(acosg + 1F + sirf plexpli-atan2é cosg + 1, sing)], (10)

where atan?2 is the four-quadrant extension of atan whereesult may be an angle in
any of the four quadrants, that is, anywhere m#d): So,

b= (acosp + 1¥ + sirf ¢,
0 = atan2é cosg + 1, sing) (11)

and so the general formula that we seek is
a sin( + ¢) + sinx = [(a cosy + 1F + sirf ¢] sin[x + atan2é cosg + 1, sinp)]. (12)

Note that the two voices can only cancel out entifely+ 0. Since both terms imare
guadratic and thus nonnegative, we can only lhav® when both

sinp =0 (13)
and acosp+1=0. (14)



These two equations can be seen to imply aBé4t= -1, so that the second wavefoam
sin(x+¢p) is always exactly the negative of the first, asirdds Note that this only
happens when = nz, with n being exactly an integer, and wher —cosgp; thus, only in
a vanishingly small fraction of possible cases. In génemaltiple sinusoidal voices of
the same frequency do not cancel, but instead produce ansmndinusoidal voice of
that same frequency, with an amplitude and phase thahdlepethe relative amplitude
and phase of the components as according to eq. 12.

3. Summary
In the above, we derived the following general trigonmimédentity:

a sin( + ¢) + sinx = [(acosy + 1Y + sirf ¢] sin[x + atan2& cosy + 1, sing)].
in the special case whepe= 7/2, this can be simplified to:

a cosx + sinx = (a® + 1)"2 sin(x + atana).



