Name: _____________________________ (write neatly at top of every page)

EEL 4713 / Computer Architecture / Fall 2005
Midterm Exam #2 - SOLUTIONS
Administered: Tue., Nov. 8, 2005
The exam is open book, and open notes. There are 3 questions, and each question is worth 35 points; 100 total points is full credit. You will have 75 minutes (from 1:15 to 2:30) to take the exam. Pace yourself; if you find you are spending more than 25 minutes on a problem, come back and finish it later. If a question is ambiguously worded, raise your hand and I will come give you a clarification if appropriate. Important clarifications will be written on the board. Time remaining will be announced periodically.
Answers are in red, extra explanation is in blue.
Question #1 (CIO 4 / POs a,e,o) – Floating-Point Representations
Suppose you are designing an ASIC (Application-Specific Integrated Circuit) and you are trying to decide whether to select a single-precision or double-precision standard FPU cell from your cell library IP vendor. The System Requirements Specification document for your particular application decrees that for sufficient accuracy of calculated results, the hardware must represent all floating-point data values with at least 9 decimal places worth of precision in the significand.

a) How many possible sequences of 9 decimal (base-10) digits are there? (Note this is also the number of possible significand values, if 0 is a valid initial digit.)
Sequences of 9 digits, like 000,000,000 through 999,999,999, correspond to numbers from 0 through 109−1. There are 109 = 1 billion of these.
These sequences would also correspond to significand values ranging from 0.00000000 through 9.99999999 (9 digits including one before radix point), or 0.000000000 through 0.999999999 (9 digits after decimal point), depending on the particular normalization convention that is being used. Either of these ranges would represent 9 decimal places worth of precision.
b) How many bits, at minimum, would therefore be required to encode an arbitrary significand value, given that the number of possible significand values has to be at least as large as your answer to (a) in order for the binary encoding to obtain the required precision? Show your calculation. (Hint: Remember the logarithm!)
Part (a) showed there are at least 109 possible significand values if there are at least 9 decimal places of precision. To represent any of r values takes b=(log2 r(bits (see eq. on p. 162). For r = 109, b = (log2 109(= (ln 109/ln 2(= (29.8973(… (used calculator). So, at least 30 bits in the significand are required to represent any of at least 109 different significand values, and therefore at least 30 significand bits are needed to achieve 9 decimal places of precision.
c) Therefore, can an IEEE single-precision FPU be used in your ASIC? Why or why not? Explain.

No, because single precision format only provides 23 bits in the significand, and we need at least 30. Note that it does not matter that the entire single-precision word is 32 bits (which is greater than 30), because 9 of those bits are in the sign and exponent fields, which do not contribute to the precision of the set of numbers represented – only to its range.
d) Could an IEEE double-precision FPU be used in your ASIC? Why or why not? Explain.

Yes, because double precision has 52 bits in the significand, which is more than 30, so we have at least 9 decimal places of precision (actually we have 52/log210 ≈ 15.6 decimal digits’ worth).
e) Convert the integer 1 billion = 1.0×109 to IEEE single-precision-floating point, writing out the full 32-bit answer in binary, and clearly delineating all fields.

Exponent = (log2 109(= (ln 109/ln 2(= (29.89…(= 29.
Exponent field = 29 + bias(127) = 156 = 1001,11002 (calculator)
Significand = 109 / 229 = 1,000,000,000 / 536,870,912 = 1.86264514923… (it helps if your calculator keeps track of more digits of precision than the 9 that we expect to need to represent 1 billion precisely)
Fractional part of significand = 0.86264514923

Multiply by 223 to put 23 bits before the radix point:

0.86264514923 × 223 = 0.86264514923 × 8,388,608 = 7,236,391.99999

If you see a bunch of trailing 9’s like this, you should be suspicious that the answer is really an integer and that the 9’s are just due to imprecision in the calculator. In fact, we can see this is correct if we simplify our calculation as much as possible by hand algebraically before resorting to the calculator:

(109/229 − 1) × 223
= (109/229)×223 − 1×223
(distributing)

= 109/229−23 − 223

combine powers of 2
= 109/26 − 223

& then factor 10 into…

= (5×2)9/26 - 223

collect powers of 2 again:

= 59×29-6 − 223

and simplify to…

= 59×23 − 223

this is now obviously an integer, and resorting to the calculator we find it’s

= 1,953,125 × 8 − 8,388,608

= 15,625,000 − 8,388,608

= 7,236,392.
But even if we did not suspect that 7,236,392 was the exact result, we would have rounded to get it.
Round to get 7,236,392. Converting this to binary on the calculator gives 110,1110,0110,1011,0010,1000; this is already a full 23 bits so we don’t have to pad it with any 0s on the left.
The entire binary code for 109 in single-precision is thus:

sign
exponent
fractional part of significand
0
1001,1100
110,1110,0110,1011,0010,1000
f) Is the single-precision representation of 109 an exact representation of that number? What if we had wanted to represent (say) the number 109 − 1 = 999,999,99910 instead? Does that number have an exact representation in single precision? Explain how you figured out the answer.
Yes, because when we rounded off 7,236,391.99999 to 7,236,392 in part (e) we were only correcting a small imprecision in our hand-calculator, not introducing any error into the representation.

In this case, we were lucky that even though single-precision doesn’t have enough significand bits to exactly represent all 109 numbers in (say) the range 1-to-a-billion precisely, its representation of the specific number 109 happens to be an exact one. This is because 109 is divisible by 29, and so there are enough trailing 0’s so that when we round off the significand to 23 bits we don’t actually lose any 1’s. To see this, convert 1,000,000,00010 to binary on your calculator; you will get:

11,1011,1001,1010,1100,1010,0000,0000 (exact, 30-bit binary integer)
and shifting the decimal point 29 places to the left gives us

1.1101,1100,1101,0110,0101,0000,0000,0 (exactly) × 229
where we have underlined the 23 bits that will be explicitly coded in the signifcand field. Notice that all 29-23 = 6 of the bits that get truncated away from the right end of the significand when we round it to 23 bits are all zeroes! This is because 109 is divisible by 29, so there are 9 trailing 0’s, which is more than the number of bits getting truncated away.

The next part of the question asks if we can exactly represent 999,999,999. Well no, because in part (a) we already identified that there isn’t enough precision for a 1-in-a-billion (or 9 significant decimal digits) level of precision; thus if the representation for 109 is exact, then the representation of a neighboring integer such as 109−1 cannot be.
In more detail, because the exponent is 29, and 229/223 = 26 = 64, we know that the adjacent exactly-representable numbers (of magnitude around 109) are 64 apart from each other. So, the next-smaller exactly representable number before 109 is 109−64 = 999,999,936; while the next-larger one is 109+64 = 1,000,000,064.
In other words, the gap size is 64 because we’re rounding off the low 6 bits of the significand from the integers in this range, because their significands are 29 bits long (after the radix point) and we’re only keeping the first 23 bits after the radix point.
Question #2 (CIO 5 / POs a,e,o) – Control and dataflow
Below is the single-cycle MicroMIPS datapath from the textbook (fig. 13.3, p. 248). Suppose you are told that the LW instruction on a certain test chip is malfunctioning. You suspect that the problem might be that one of the connections (wires or multi-wire buses) in the below high-level wiring diagram could be broken or disconnected. You want to determine which lines might be broken without opening up the chip package.
[image: image1.wmf] /

ALU

Data

cache

Instr

cache

Next addr

Reg

file

op

 jta

fn

inst

 imm

rs

 (rs)

 (rt)

Data

addr

Data

in

0

1

ALUSrc

ALUFunc

DataWrite

DataRead

SE

RegInSrc

rt

rd

RegDst

RegWrite

32

 /

16

Register input

Data

out

Func

ALUOvfl

Ovfl

31

0

1

2

Next PC

Incr PC

 (PC)

Br&Jump

ALU

out

PC

0

1

2

a) Identify the scope of the diagnostic problem to be solved. Which connections in the above diagram (including both data and control wires/buses) are required for successful functioning of the LW instruction? Using a highlighter pen (if you have one), highlight all the lines, or sections of lines, that are required. (Assume that any broken control wires would behave as all-0 signals.)
Notes: This is just like the highlighting on the sample exam for the SLTI instruction, except that we need to use “Data addr,” “Data out,” and “DataRead” lines to read a word from the data cache, and we don’t need the line that bypasses the data cache. The only other difference is that RegInSrc now defaults to the correct input anyway, so it is not needed; in other respects besides these, LW is very similar to (say) ADDI.
b) Formulate a testing strategy for diagnosing the problem. For each of the wires/buses that you highlighted in part (a), identify at least one other instruction in the MicroMIPS instruction set (table 13.1, p.244) that would also fail to work properly if the indicated connection were entirely broken. (If it’s a multi-wire bus, assume all wires in the bus would be broken.) We have started writing a table of answers for you… you can use a 2nd column and the top of the next page if necessary.
Label of

An instruction that could

Wire or bus
be used to test it

rs

add

RegDst

andi Mistake in exam - this can’t be the culprit anyway
Next PC

any instruction
inst

any inst.

op

any inst. except R-type instructions

(for which it’s 0 anyway)

imm

any immediate instruction

rs

any instruction that has an rs operand

(rs)

any instruction that has an rs operand

rt -> mux

any instruction that uses rt as a destination operand

RegWrite
any instruction that writes a register

ALUSrc

any immediate instruction

ALUFunc

any instruction but LUI (it has ALUFunc=0 anyway)

ALUOut

any instruction that uses the ALU

Data addr
SW is the only other instruction that uses this line

Data out

No other instructions besides LW use this line

DataRead

No other instructions besides LW use this line

Register input
Any instruction that writes to the register file

RegWrite
Any instruction that writes to the register file

c) Solve the diagnostic problem. Suppose that after some experimenting, you discover that SW is also malfunctioning, but that all other instructions are working correctly. Assuming that only a single segment of a given wire or bus in the top-level schematic is broken, which one must it be? How do you know?

It must be “Data addr” because this is the only line that is used only by LW and SW.
d) Assuming your answer to part (c) is correct, if any broken wires (including data wires) manifest themselves as “stuck-at-0” signals, then what are the LW and SW instructions actually doing in the malfunctioning chip (instead of the thing that they are supposed to be doing)?
If the entire “Data addr” bus is in a stuck-at-0 state, then all loads and stores will access memory at address 0. So, all LWs will return the last value that was SW’ed, regardless of what addresses were specified.

Question #3 (CIO 6 / POs a,o) – Multipliers and Dividers
The following MIPS subrotuine takes a 32-bit unsigned dividend and a 32-bit unsigned divisor in registers $a0 and $a1, respectively, and returns their 32-bit unsigned quotient and remainder in registers $v0 and $v1, respectively.
 # Register map:

 #
$ra - return address

 #
$a0 – dividend

original dividend argument, then working remainder

 #
$a1 – divisor

original divisor argument, then shifted version of it

 #
$v0 - quotient
quotient being built up (to return when complete)
 #
$v1 – remainder
final remainder
 #
$t0 – position

bit position to which we have left-shifted the divisor

 #
$t1 – temp

miscellaneous temporary register
line

Pseudocode comments (using C/C++ syntax)...
01 myDivide:
move
$v0, $zero

quotient = 0;

02

move
$t0, $zero

position = 0;

03 leftShift:
andi
$t1, $a1, 0x80000000
while (divisor & (1<<31)
04

bne
$t1, $zero, doTop
!= 0) {

05

addi
$t0, $t0, 1

position++;

06

sll
$a1, $a1, 1

divisor <<= 1;

07

b
leftShift

}

08 doTop:
sll
$v0, $v0, 1

do { quotient <<= 1;

09

sltu
$t1, $a0, $a1

temp = (dividend < divisor);
10

bne
$t1, $zero, endIf
if (temp == 0) { // If d’dend >= d’sor

11

subu
$a0, $a0, $a1

dividend -= divisor;

12

or
$v0, $v0, 1

quotient |= 1; }

13 endIf:
srl
$a1, $a1, 1

divisor >>= 1;

14

addi
$t0, $t0, -1

position--;

15

bgez
$t0, doTop

} while (position >= 0);
16 endFor:
move
$v1, $a0

remainder = dividend;
17

jr
$ra

return quotient($v0) & remainder($v1).
Consider calling this subroutine with input values $a0=99, $a1=9.
a) First, write out the given input values as full 32-bit binary numbers.

	bit #:
	31
	
	
	MSB
	
	
	24
	23
	
	
	
	
	
	
	16
	15
	
	
	
	
	
	
	8
	7
	
	
	LSB
	
	
	0

	$a0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1

	$a1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1

b) After all iterations of the leftShift while loop (lines 03-07) have been completed, and the PC arrives at line 08 for the first time, what will the new contents of $a1 be at that point?

	bit #:
	31
	
	
	MSB
	
	
	24
	23
	
	
	
	
	
	
	16
	15
	
	
	
	
	
	
	8
	7
	
	
	LSB
	
	
	0

	$a1
	1
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

c) When line 08 is first reached, (i) what will be the value of register $t0? So, (ii) how many iterations of the do loop (lines 08-15) will occur? Also, (iii) Throughout how many of these iterations will the quotient register ($v0) continue to just contain 0?
(i) It will be 28, the number of positions that the divisor was shifted left.
(ii) Thus the DO loop will iterate 29 times (from position=28 all the way down to position=0; we do a comparison at each of these 29 positions)
(iii) The quotient register will contain 0 throughout the first 25 iterations, from position=28 all the way down through (and including) position=4.

d) Hand-simulate the execution of lines 08 through 15 for three of the loop iterations, starting from the iteration in which $a1 starts with the value 144 (which is 9<<4 = 9×16). Indicate each line of code executed and each value written back to a register. We have already indicated the values of the registers (at this particular time point) at the top of the table, and filled in the first six lines of the table for you. Also record the branch behavior, as shown.
Note: the initial iteration number was miswritten as 28 on the actual exam, and was misreported to be 24 in an in-class announcement!
	Iter.

No.
	Line
No.
	$v0
	$t0
	$t1
	
$a0
	
$a1
	Branch behavior,
taken v. not
	Branch dest (if taken)

	Initially:
	0
	4
	don’t care
	99
	144
	
	

	25
	08
	0
	
	
	
	
	
	

	25
	09
	
	
	1
	
	
	
	

	25
	10
	
	
	
	
	
	taken
	endIf (13)

	25
	13
	
	
	
	
	72
	
	

	25
	14
	
	3
	
	
	
	
	

	25
	15
	
	
	
	
	
	taken
	doTop (08)

	26
	08
	0
	
	
	
	
	
	

	26
	09
	
	
	0
	
	
	
	

	26
	10
	
	
	
	
	
	not taken
	

	26
	11
	
	
	
	27
	
	
	

	26
	12
	1
	
	
	
	
	
	

	26
	13
	
	
	
	
	36
	
	

	26
	14
	
	2
	
	
	
	
	

	26
	15
	
	
	
	
	
	taken
	doTop (08)

	27
	08
	2
	
	
	
	
	
	

	27
	09
	
	
	1
	
	
	
	

	27
	10
	
	
	
	
	
	taken
	endIf (13)

	27
	13
	
	
	
	
	18
	
	

	27
	14
	
	1
	
	
	
	
	

	27
	15
	
	
	
	
	
	taken
	doTop (08)

	28
	08
	4
	
	
	
	
	
	

	28
	09
	
	
	0
	
	
	
	

	28
	10
	
	
	
	
	
	not taken
	

	28
	11
	
	
	
	9
	
	
	

	28
	12
	5
	
	
	
	
	
	

	28
	13
	
	
	
	
	9
	
	

	28
	14
	
	0
	
	
	
	
	

	28
	15
	
	
	
	
	
	taken
	doTop (08)

	29
	08
	10
	
	
	
	
	
	

	29
	09
	
	
	0
	
	
	
	

	29
	10
	
	
	
	
	
	not taken
	

	29
	11
	
	
	
	0
	
	
	

	29
	12
	11
	
	
	
	
	
	

	29
	13
	
	
	
	
	4
	
	

	29
	14
	
	−1
	
	
	
	
	

	29
	15
	
	
	
	
	
	not taken
	

The first iteration (which is really the 25th) is already given in black, this, together with the next two, (shown in red) form the required three iterations. There are two more iterations after this, shown in blue, but you didn’t have to write these. However it would be a good way to check your technique. Note that the final value of $v0 is 11, which is the correct quotient, and the final value of $a0 (which will be moved to $v1 on line 16) is 0, which is the correct remainder. Since by the end of iteration 29, $t0 is not greater than or equal to 0 any more, the bgez isn’t taken, and we exit the loop at this point, so there are no more iterations after this.

