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EEL 4713/5764, Computer Architecture, Spring 2005
Midterm Exam #2 – Make-Up Version
SAMPLE SOLUTIONS
On this exam, you may ONLY complete those questions such that you got less than a B (80%) on the corresponding question in the original exam #2.  Out of these, please complete ONLY those questions that you wish to have graded and to take the place of the corresponding question from the original exam.  Please mark X’s in the first column below next to the questions on this make-up exam that you would like to have graded:





Grade?
Score

1. C(Assembly:
____

____ / 20


2. Floating point:
____

____ / 20


3. ALU & contol:
____

____ / 20


4. Multip. / divis.:
____

____ / 40


5. Single-cycle DP:
____

____ / 10


    TOTAL:



____ / 100

WARNING:  Since this exam is a second chance, it will be graded even more strictly than the original exam.  Take your time, and check your answers to make they are right!

Remember to always show your work!  
BIG WARNING:  This is an exam, not a homework assignment!  You MUST work by yourself, and you may not give or receive answers to/from anyone!  Any answers that look like they were copied from (or to) someone else’s paper will automatically earn a 0!

1. [20 points] (CIO #4, C(MIPS Assembly) Consider the following C language code fragment.  

p = 1;

for (i=2; i*i <= n; i++) {


if (n%i == 0) { p = 0; break; }

}

a) What does this algorithm do?  That is, given some initial value of n that is greater than 1, under what conditions will the final value of p be 1, as opposed to 0?  Give the simplest description of these conditions, using ordinary, common mathematical terminology.  (Hint: It should only take a few words.)

This algorithm determines whether n is a prime number.  The final value of p will be 1 if and only if n is prime.


To see this, note that if n is composite, then it must have a factor i that is greater than or equal to 2 and where i 2 ≤ n.  We try all i in this range, and set p = 0 if for some i, n mod i = 0, or in other words, if i divides n evenly, which means i is a factor of n and n is composite.  If we find no factors then n must be prime, and p remains at its initial value of 1.
b) Convert the above algorithm into an equivalent MIPS assembly language code fragment.  Assume that variables n, p, and i are all 32-bit signed integer variables that are initially contained in registers $s0, $s1, and $s2 respectively.  You may use any of the temporary registers $tn.  For this problem, you ONLY need to write a code fragment, that is, do not worry about subroutine entry and exit code.  For full credit, please comment your code.



li
$s1, 1

# p := 1;



li
$s2, 2

# i := 2;

while:
mul
$t0, $s2, $s2
# $t0 := i*i;



bgt
$t0, $s0, end
# until $t0>n do body




divu
$s0, $s2

# (lo,hi) := (n/i, n%i)




mfhi $t0


# $t0 := n%i




bnez
$t0, endif
# if $t0!=0 skip body




move
$s1, $zero
# p := 0;




b
end


# break;


endif:
addi
$s2, $s2, 1
# i := i+1;




b
while

# continue while loop


end:



2. [20 points] (CIO #5, Floating Point)  Convert the number 6.022(10−23 to its closest representation in standard IEEE 754 single-precision floating-point format.  Show your work.  Express your result by showing the full 32-bit binary value of the word, with the sign, exponent, and fraction fields clearly delineated and labeled.  For full credit, all bits of the result must be correct.
The easiest way to find the correct exponent is to take the floor of the logarithm base 2 of the number.  On the calculator, log2 6.022×10−23 = −73.8, which we round down to −74.

Now, 2−74 = 5.2940…×10−23; if we divide our number by this (while keeping all significant figures on the calculator) we find that 




6.022×10−23 = 1.13752363839×2−74.

So our desired mantissa is 1.13752363839 (or however much of it will fit into 24 bits) and our desired exponent is −74.

Let’s start with the exponent.  We have that the (true exponent) = (exponent field value) − (bias), and bias=127 for single precision.  So, the exponent field value is the true exponent (−74) plus 127, or 53.  Converting this to an 8-bit unsigned binary number, we get 5310 = 001101012.

Next, the mantissa.  The leading 1 is implicit, so we only have to worry about the fractional part, .13752363839.  Multiplying this by 223 (8,388,608), we get 1,153,631.89319.  We round this up to 1,153,632, and then convert to a 23-bit binary number:


fraction×223 = 1,153,63210 = 001000110011010011000002

fraction = .001000110011010011000002.

Finally, we can put all the parts together:


sgn   exponent    fraction
0 | 00110101 | 00100011001101001100000
or, regrouping as hex digits:


0001  1010  1001  0001  1001  1010  0110  0000


   1        a       9        1       9       a       6        0
thus the word representing 6.022×10−23 is, in hex,

1a919a6016.
(A short C program confirms this is correct.)
P.S. The number in question was supposed to be Avogadro’s number, but I typed the exponent (23) with the wrong sign!

3. [20 points] (CIO#6, ALU & control)  Below are two copies of the 1-bit ALU cell from fig. B.5.9 in the textbook  Assume the upper cell handles bit #0 of the operands, and the lower copy handles bit #1.  (For a 32-bit ALU, thirty additional cells below these are implied but not shown.)
a) How would you modify these cells to also support the srl (shift right logical) instruction, without impairing the ALU’s existing functionality?  Sketch any needed modifications directly on top of the below diagram.  Your modifications can extend outside the box if you need the space.  Then, write a short textual explanation of your modifications in the space below the diagram.
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Here is one way.  Each cell’s mux gets a new input (labeled 3=112) which is the shift result.  This can be provided by another 32-input mux whose inputs come from the B inputs of all the higher-numbered cells (or 0 if there are no more), and whose control comes from the low 5 bits of operand A, to which we can route the shamt field (instruction bits 6-10).  

b) In order to tell your new ALU that the srl function should be performed, you will either need to define either a new control signal (which you should name), or define a new possible value for an existing control signal.  Explain how the control is handled in your design.  What should the values of ALL of the control signals (including the CarryIn to bit 0) be set to in order to select your new srl function?  (Even if some of the control signals don’t matter, you should indicate the don’t-cares.)
We’ll just use the same Operation control signal and assign a new value 3=112 to select SRL.  Anegate and Bnegate should be 0 and Carry is a don’t care.  Outside the ALU, a new control input Asrc is needed to select whether the ALU’s input A comes from rs (for this, set Asrc=0) or from the shamt field (instruction bits 6-10) (for this, set Asrc=1).  This solution allows the same hardware to also execute srlv (shift right logical variable).
4. [40 points] (CIO #6, Designing Multiplication Algorithms)  Suppose we want to multiply two numbers A and B that are each N bits long, where N is some power of 2, that is, N = 2n for some n>1.  There is an efficient algorithm for doing this that requires only three multiplications of numbers that are each only half as long as A and B, that is, M = 2n−1 = N/2 bits long.

To see how this algorithm works, first note that the inputs A and B can be represented in base 2M as follows:   A = a12M + a0, where a1 denotes the most sig​nif​icant half of A, and a0 denotes the least significant half of A.  Similarly, we have B = b12M + b0.

Now, note that we can compute the product AB as follows:


AB = (a12M + a0)(b12M + b0)


      = a1b122M + a1b02M + a0b12M + a0b0
(use FOIL)

      = a1b12N + (a1b0 + a0b1)2M + a0b0.
(N=2M, group terms)
Now, normally, computing the four sub-terms a1b1, a1b0, a0b1, and a0b0 would require four multiplications of M-bit numbers, and the resulting algorithm would end up being no more efficient (in terms of the number of 1-bit adder operations required) than our normal grade-school multiplication algorithm.  But, there is a clever trick that allows us to compute AB using only three, rather than four, M-bit multiplications!  It works as follows.  Note that we can start by performing the following single multiplication:



(a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0,

and then, by computing and subtracting off a1b1 and a0b0 (which we will need anyway) from the result, we are left with



(a1 + a0)(b1 + b0) − a1b1 − a0b0 = a1b0 + a0b1,

which (notice) is the second coefficient that we needed in the expression for AB (the coefficient of the 2M term).  Thus, by doing the three M-bit multiplications (a1 + a0)(b1 + b0), a1b1, and a0b0, along with some appropriate shifting, AND’ing, ad​di​tion and subtraction, we can compute the 2N-bit product AB.  
(Applying this technique recursively leads to a multiplication algorithm that, for very large numbers, is very much more efficient than the algorithms that we have previously discussed in this class.)

For this problem, you are to implement the above-described algorithm as a C or C++ function or a MIPS assembly subroutine that works for the case N=16 (i.e., that multiplies 16-bit numbers), assuming that you are already given a C function or assembly subroutine that you will use to multiply numbers of size M=8.  (I.e., you do NOT have to implement a full recursive algorithm, just imple​ment a single level of the algorithm that works for numbers of size N=16.)

Option #1.  If you choose to write your program in C or C++, assume that you are given a function with the following declaration, which you must use to multiply two 8-bit unsigned numbers to get an unsigned 16-bit result.

unsigned short mult8(unsigned char multiplicand, 
                     unsigned char multiplier);


Meanwhile, the new 16-bit multiplication function that you write should be a complete, working function with the following declaration:

unsigned int mult16(unsigned short multiplicand, 
                    unsigned short multiplier);


Assume that an int is 32 bits and a short is 16 bits.

Option #2.  If you write your program in MIPS assembly, assume you are given a subroutine at label mult8 that takes an unsigned 8-bit multiplicand located in the LSB of register $a0, and an unsigned 8-bit multiplier located in the LSB of register $a1, and returns an unsigned 16-bit product located in the lower half of register $v0.  You may assume this subroutine preserves the $s registers. 

Meanwhile, your subroutine should begin at the label mult16, and should take an unsigned 16-bit multiplicand in the lower half of register $a0, and an unsigned 16-bit multiplier in the lower half of register $a1, and should return the unsigned 32-bit product in register $v0.  Your subroutine must observe all of the standard MIPS subroutine calling conventions. 

Please note: You may NOT use any built-in multiplication in​struc​tions (whether C’s *, or MIPS’s mul, mult, etc.) anywhere in your program!  You must, however, use the mult8 routine described above.
Write out your program (in either C or assembly, or both) neatly on the next page.  (You should probably write out a draft on scratch paper first.)  You must COMMENT YOUR CODE to get full credit.

Answer to question #4:
Option #1:
unsigned int mult16(unsigned short multiplicand, 
                    unsigned short multiplier){


/* Upper and lower halves of operands. */


unsigned char 



a1 = multiplicand >> 8,



a0 = multiplicand & 0xff,



b1 = multiplier >> 8,



b0 = multiplier & 0xff;


/* Coefficients of terms in the sum. */


unsigned short


c2 = mult8(a1,b1),



c0 = mult8(a0,b0),



c1 = mult8(a1+a0, b1+b0) – c2 – c0;


/* Put together the result. */


unsigned int product =



(c2 << 16) + (c1 << 8) + c0;


return product;

}

Option #2:

The following assembly implements the above C code.  $s registers must be used for our local variables, since we can’t depend on mult8 preserving the $t registers.  Thus we must preserve the caller’s values for the $s registers we use.  Also, $ra gets trashed when we jal to mult8, so we have to preserve it also.  Our local variables (from the C program above) are allocated to registers as follows:  


Local variables 
a1,a0: 

$s1,$s0 




    
b1,b0:

$s3,$s2


                       
c2,c1,c0:
$s6,$s5,$s4

The assembly code follows.

# Entry point of subroutine.

mult16:
# Preserve registers that we’ll trash.
addi
$sp, $sp, -32
# Make room for 8.



sw
$ra, 0($sp)
# Save our ret.adr.



sw
$s0, 4($sp)
# Save $s regs 



sw
$s1, 8($sp)
#   that we use...



sw
$s2, 12($sp)




sw
$s3, 16($sp)




sw
$s4, 20($sp)




sw
$s5, 24($sp)




sw
$s6, 28($sp)




# Extract MSB & LSB of operands.



srl
$s1, $a0, 8
# a1 = M’and MSB



andi
$s0, $a0, 255
# a0 = M’and LSB



srl
$s3, $a1, 8
# a1 = M’er MSB



andi
$s2, $a1, 255
# a0 = M’er LSB



# Compute first coefficient c2 = a1*b1.




move
$a0, $s1

# mand = a1



move
$a1, $s3

# mer = b1



jal
mult8

# $v0 = mand*mer



move $s6, $v0

# c2 = $v0



# Compute last coefficient, c0 = a0*b0.




move
$a0, $s0

# mand = a0



move $a1, $s2

# mer = b0



jal
mult8

# $v0 = mand*mer



move $s4, $v0

# c0 = $v0



# Compute middle coefficient,
# c1 = (a1+a0)*(b1+b0) – c2 – c0.



add
$a0, $s1, $s0
# mand = a1 + a0



add
$a1, $s3, $s2
# mer = b1 + b0



jal
mult8

# $v0 = mand*mer



sub
$s5, $v0, $s6
# c0 = $v0 – c2



sub
$s5, $v0, $s4
# c0 = c0 – c1



# Compute final answer,

# product = c2<<16 + c1<<8 + c0.



sll
$s6, $s6, 16
# c2 <<= 16



sll
$s5, $s5, 8
# c1 <<= 8



add
$v0, $s6, $s5
# $v0 = c2 + c1



add
$v0, $v0, $s4
# $v0 += c0



# Restore registers.



lw
$ra, 0($sp) 
# Our return addr.



lw
$s0, 4($sp)
# $s regs we used.



lw
$s1, 8($sp)




lw
$s2, 12($sp)




lw
$s3, 16($sp)




lw
$s4, 20($sp)




lw
$s5, 24($sp)




lw
$s6, 28($sp)




addi
$sp, $sp, 32
# Restore stk.ptr.



jr
$ra


# Return to caller
Actually, there was a bug in the original problem description, which is that when computing the product of (a1+a0)(b1+b0), the operands are ideally supposed to be N-bit numbers (8 bits in our case) but they may actually be (N+1) bits long (9 in our case) since adding two N-bit numbers in general can produce an (N+1)-bit number.  So, the mult8 routine actually needs to check to see if this extra bit is present, and adjust its results accordingly.  Similarly, if our mult16 routine is being used in the context of a similar mult32 algorithm, then it too needs to check to see if there is an extra bit at position 16 in the input operands.  Basically, to correct the final result we just need to add ij 2M + (ib + ja)2N, where i and j are the extra bits of A and B, and a and b are A and B with the extra bits stripped off.  Since i and j are just 0 and 1, this expression can be computed using just shifts and adds.

5.  [10 points] (Extra credit.) Single-cycle datapath.  Below is the MIPS single-cycle datapath from figure 5.24, with control lines shown.  
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a.)  Assuming the ALU already supports it, how would this datapath need to be modified to support the srl instruction, without disabling any existing instructions?  Sketch your modifications clearly on top of the above diagram.



Basically just need to route instruction bits 10-6 (shamt field) to the ALU, either as an extra control input, or in place of operand B, which would require a third input to the mux feeding the lower input to the ALU. 
b)  What data lines in your modified datapath are required in order to execute the srl instruction?   Use a highlighter pen to emphasize all of the lines that are required (except for control lines), including in the PC update path.



Like any other R-type instruction, except that the shamt field bits are used (instead of rs) to provide the A input to the ALU.
c)  What are the values of all the main control signals?  (If you need to add any new control signals, or add bits to any existing signals, please include them.)




RegDst =
1
ALUOp =
10 (R-type)




Jump =

0
MemWrite =
0




Branch =
0
ALUSrc = 
0 (B=rt)




MemRead =
0
RegWrite =
1




MemtoReg = 
0
ALUSrcA = 
1 (select A=shamt)
0
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