EEL 4713/5764, Computer Architecture, Spring ‘05
Practice Questions for Final Exam
SAMPLE SOLUTIONS
This document contains some problems for you to practice for the final exam. We will go over the answers on Friday.
What I am Required to Test You On
First, to give you an idea of the constraints that I am working under when I design your exams, according to our department’s existing materials for ABET accreditation, every one of the seven outcomes of the EE/CE program listed below is required to be assessed in this course through an exam problem requiring individual effort by the student.
Program outcomes (POs):

(a) Apply knowledge in math/sci/eng

-
All CIOs
(c) Design system/comp./proc. to meet needs

-
CIOs 4, 7, 9 (assembly, mult+div, cache)
(e) Ident./formulate/solve eng. problems

-
CIOs 2, 7, 9 (metrics, mult+div, cache)
(k) Use techs./skills/tools for eng. practice

-
CIO 3 (machine language)
(m) Know math & sci. necc. to analy./design complex systems

-
CIOs 2, 7, 9 (metrics, mult+div, cache)
(n) Know advanced math incl. discrete math

-
CIOs 5 and 7 (FP, mult+div)
(o) Kn. EE apps incl. digital systems, / CSCE topics incl. adv. prog., algs., arch.

-
CIOs 5 & 7 (FP, mult+div)

Furthermore, these program outcomes are supposed to be assessed in the context of the following specific course instructional objectives or CIOs (from the syllabus):

Course Instructional Objectives (CIOs):

1. Identify important parts of a computer system and classify them according to the five components of a computer.
-
PO (a) – Apply knowledge (?)

2. Calculate and interpret different performance and cost metrics of computer systems.
-
POs (a), (e), (m) – App. kn., problem-solve, math/sci. for analy/des.

3. Derive binary MIPS RISC processor code from assembler coding and verify with software simulation tools.

-
POs (a), (k) – App. kn., techs.

4. Derive assembler code from an equivalent C-code representation.

-
POs (a), (c) – App.kn., design

5. Calculate floating point and two’s complement number conversion and solve arithmetic equations in two’s complement.

-
POs (a), (n), (o) – App. kn., adv.math, EE/CSCE topics

6. Analyze the datapath and control of an arithmetic logic unit.

-
POs (a) – Apply knowledge

7. Design and implement multiplication and division algorithms.

-
POs (a), (c), (e), (m), (n), (o) – App. kn., design, prob-solve, math, adv.math, EE/CSEE topics.

8. Analyze a multicycle datapath of a MIPS microprocessor.

-
POs (a) – Apply knowledge.

9. Identify, analyze and design optimal cache architectures for a given need.
-
POs (a), (c), (e), (m) – App.kn., design, prob.-solve, math.
The practice questions will attempt to follow these requirements religiously. In the real exam, I will follow them as closely as possible given the time constraints for the exam.

Practice Problems

1. For each of the following classic “components of a computer,” name two more specific examples of computer components that can be classified as playing that role:

a. Control:

b. Datapath:

c. Input systems:

d. Memory:

e. Output systems:

There is a wide range of acceptable answers. A few examples:

(a) single-cycle CPU control FSM, multicycle CPU control FSM, PC update path, DMA controller.

(b) PC update datapath, MIPS datapath, pipelined datapath,

(c) keyboard, mouse, microphone, hard drive controller, network interface card,

(d) register file, ROM, RAM, DRAM, SRAM, cache, main memory

(e) graphics card, sound card, speakers, disk drive, Ethernet port
2. Suppose that computer A has a clock frequency of 2 GHz and a CPI of 1, while computer B has a clock frequency of 3 GHz and a CPI of 2.

a. What is the performance rating of each computer if measured in MIPS (millions of instructions per second)? Show your calculations.

Computer A:

The MIPS rating is _____ MIPS

Computer B:

The MIPS rating is _____ MIPS

Computer A:
 (2x109 cycles/sec) ÷ (1 cycle/inst.) = 2x109 inst/sec = 2000 MIPS

Computer B:

 (3x109 cycles/sec) ÷ (2 cyc./inst.) = 1.5x109 inst/sec = 1500 MIPS
b. Which computer would you guess is faster, if you were to judge from the MIPS rating alone, assuming that both computers execute the same instruction set?

You would think that computer A is faster because it has a higher MIPS rating (can execute more instructions per second).
c. Now, suppose I tell you that actually computer A and computer B have different instruction sets, and when a certain application is compiled for computer A, the resulting code requires the dynamic execution of 10 trillion instructions, whereas when it is compiled for computer B, the code requires only 2 trillion instructions. What is the execution time of my application on each computer, in minutes? (Again, show your work.)

Computer A:
The execution time is _____ minutes.

Computer B:
The execution time is _____ minutes.

Comp. A: (10x1012 inst.) ÷ (2x109 inst/sec.) = 5000 sec. = 83.33 min.

Comp. B: (2x1012 inst.) ÷ (1.5x109 inst/sec.) = 1333 1/3 sec. = 22.22 min.
d. Interpret the results of part (b) and part (c). Based on all the information available, which computer truly has better performance on this application?

How many times faster is it?

Computer ___ is ____ times faster than computer ___ .

Computer B has better performance on this application.

It is (83.33/22.22) = 3.75x faster than computer A.
3. What is the binary code for the MIPS assembly language instruction
sw $s3, 30($t2)?

(a) Show the full binary format with all fields clearly delineated and important bit positions numbered.

Checking appendix A, we find SW on p. A-69.

The opcode = 2b16 = 1010112.

rs = base register = $t2 = 1010 (green card) = 010102.

rt = reg. to save = $s3 = 1910 = 100112.

offset = 3010 = 00000000000111102.
Thus the answer is (writing the bits in the usual left(right MSB(LSB order):

1 0 1 0 1 1 | 0 1 0 1 0 | 1 0 0 1 1 | 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

31 26 25 21 20 16 15 0 (bit #’s

 opcode rs rt offset
 (field names
(b) Describe in detail how you would go about checking your answer using either the PCSpim or Xspim tool.

You would put the instruction in a text file on a line by itself (after some whitespace). The filename should end in the extension “.s”. Then you would start PCSpim and click the “Open” icon and browse to the file. Then you would look in the text segment pane and find the instruction, and read off the hexadecimal code to its left. If we do this, we will see the hex digits are ad53001e. Then we convert the hex to binary, getting the sequence of
binary nibbles 1010, 1101, 0101, 0011, 0000, 0000, 0001, 1110. Knowing that SW has an I-type instruction format, we regroup the bits into 6-bit opcode field, 5-bit rs & rt fields, and 16-bit offset, getting:

opcode = 101011, rs = 01010, rt = 10011, and

offset = 0000000000011110,

we see this matches what we obtained by hand earlier.
4. Design and code a MIPS assembly-language implementation of the following C language source code fragment. You may use any legal registers for your variables.

int s = 0, i = 0;

while (i <= 100) {

s = s + i;

}

We’ll put s in $s0 and i in $t0. We’ll use $t1 to contain the constant value 100.
move

$s0, $zero

; s := 0

move

$t0, $zero

; i := 0

li

$t1, 100

; Use $t1 to store 100.

while:

bgt

$t0, $t1, end
; if (i > 100) goto end

add

$s0, $s0, $t0
; Add i into s

b

while

; Repeat.

You can feel free to use pseudo-instructions (as we did here) unless the problem says otherwise. This makes the code easier to read. Notice we also made our code more efficient by loading 100 only once, before the loop. Otherwise we follow the control flow of the original C code very closely. You should also be able to do FOR loops!

5. Convert the number −4,000,00010 to binary form using

(a) standard 32-bit two’s complement integer format,

(b) standard IEEE 754 single-precision floating-point format.

 You should show your work, clearly delineate all fields, and number all bits.

+4,000,000 would be: (subtracting out powers of 2 starting from 221):

0000,0000,0011,1101,0000,1001,0000,00002

 31 28 24 20 16 12 8 4 0
The easiest way to get the 2’s complement from this is to flip all the bits to the left of the rightmost 1:

1111, 1111, 1100, 0010, 1111, 0111, 0000, 00002
This should be the same as the unsigned representation of
232 − 4,000,000 = 4,290,967,296, which you can check if you want.

6. Consider the ALU design in figure B.5.12 in the textbook (appendix B). If we wanted this ALU to perform an SLT (set if less than) operation, how would we need to set the control bits? Give the appropriate values of all the control bits:

Ainvert = ___

0
Bnegate = ___

1
Operation = _____
11

Also, if we were to change the b0 input to this ALU, exactly how many single-bit ALU blocks would the change need to propagate through before the final result of the SLT would be completely valid? (Be careful…)

_____ blocks

Explain.

The answer is 33 blocks, because in the worst case, a carry could go through all 32 blocks, change the sign bit of the subtraction result, and then this would flow back through bit 0 cell again to change the low bit of the SLT output.
7. Suppose you are asked to design a multiplication algorithm for 64-bit unsigned integer operands. You are required to prototype your algorithm by implementing it as a assembly language subroutine for the 32-bit MIPS instruction set. Your subroutine is allowed to use the built-in MIPS instruction multu, which multiplies two unsigned source registers and puts the result in the (hi, lo) registers. You are not allowed to use any other built-in multiplication instructions. Your subroutine takes arguments $a0 and $a1, where each is a pointer to a word-aligned sequence of 8 bytes (in big-endian format) in memory containing the multiplicand and multiplier respectively. Your subroutine should return the full 128-bit result in a word-aligned 16-byte buffer located in memory at an address labeled product, whose address is returned in register $v0.
a.) Start by imagining breaking down each of the 64-bit source operands (call them X, Y) into a pair of 32-bit components X1,X0, and Y1, Y0 (the MSW, most significant word, and LSW, or least significant word). Write a correct mathematical expression for the value of X as a function of X1 and X0, and for Y as a function of Y1 and Y0.

X = X1·232 + X0

Y = Y1·232 + Y0
b) Now, let Z = XY be the 128-bit product. Note that Z can be broken down into a sequence of four 32-bit words, Z3,Z2,Z1,Z0, where Z3 is the MSW of Z and Z0 is the LSW. Write a correct mathematical expression for the value of Z as a function of the values of Z3, Z2, Z1, and Z0.

Z = Z3·296 + Z2·264 + Z1·232 + Z0
c) For any pair of 32-bit words Xi, Yj, let the notation MSW(Xi,Yj) denote the most significant word of the 64-bit product XiYj, and let LSW(Xi,Yj) denote the least significant word of the product. Also, let the notation C(X+Y) denote the carry bit out of the high-order (bit 31) position in the sum of the 32-bit values X and Y. Using these notations, compose a mathematical expression for the values of Z0, Z1, Z2, and Z3, in terms of the values of X​1, X0, Y1, and Y0.

First, we note that

Z = XY = (X1·232 + X0)(Y1·232 + Y0)

 = X1Y1·264 + (X1Y0 + X0Y1)·232 + X0Y0

In other words, the 128-bit product can be expressed as a sum of three appropriately-shifted 64-bit values, as follows:

[X0Y0]

[X1Y0 + X0Y1]

[X1Y1]

[XY]

We can figure out the correct expressions for the words

of Z from this diagram:

Z0 = LSW(X0Y0)

Z1 = [MSW(X0Y0) + LSW(X1Y0) + LSW(X0Y1)] mod 232

Z2 = [LSW(X1Y1) + MSW(X1Y0) + MSW(X0Y1) +

C(MSW(X0Y0) + LSW(X1Y0)) +

C((MSW(X0Y0) + LSW(X1Y0)) + LSW(X0Y1))] mod 232.

Z3 = MSW(X1Y1) +

C(LSW(X1Y1) + MSW(X1Y0)) +

C((LSW(X1Y1) + MSW(X1Y0)) + MSW(X0Y1)) +

C((LSW(X1Y1) + MSW(X1Y0) + MSW(X0Y1)) +

 C(MSW(X0Y0) + LSW(X1Y0)) +

 C((MSW(X0Y0) + LSW(X1Y0)) + LSW(X0Y1)))

The expressions ended up being more complex than I originally intended when I wrote the problem.
d) Based on your mathematical expressions in parts (a), (b), and (c), you should now be able to compose an algorithm for solving the problem. First, write it in pseudocode.

Here is the pseudocode for the algorithm:

Use local variables X0, X1, Y0, Y1, Z0, Z1, Z2, Z3 stored in

registers.

Also use local variable C12 for the carries from Z1 to Z2.

Load X1 and X0 from high and low words of X.

Load Y1 and Y0 from high and low words of Y.

Multiply X0·Y0, put LSW into Z0, MSW into Z1.

Multiply X1·Y0, put MSW into Z2, add LSW into Z1.

If the add overflows, add 1 into C12.

Multiply X0·Y1…

add the LSW into Z1,

if the add overflows, add 1 into C12.

add the MSW into Z2,

if the add overflows, add 1 into C23.

Add C12 into Z2,

if the add overflows, add 1 into Z3.

Multiply X1·Y1,

add the LSW into Z2,

if the add overflows, add 1 into Z3.

add the MSW into Z3.
e) Next, write out the complete algorithm in assembly language. Use $t registers for temporary variables, so you don’t have to worry about saving and restoring the $s registers. (Hint: To detect a carry out of bit 31, use addu and then use slt to check whether the result is less than one of the source operands (either one will do). If it is, then there was an unsigned overflow, and the carry bit is 1.)
Register map:

$a0 = pointer to X

$a1 = pointer to Y

$v0 = pointer to Z (product)

$t0 = X0 (low word of multiplicand X)

$t1 = X1 (high word of X)

$t2 = Y0 (low word of multiplier Y)

$t3 = Y1 (high word of Y)

$t4 = Z0 (low word of product Z)

$t5 = Z1

$t6 = Z2

$t7 = Z3 (high word of product)

$t8 = C12 (total carries from Z1 to Z2)

$t9 = temporary for misc. purposes

mult64:
lw
$t1, 0($a0)

; Load X1 = MSW(X)

lw
$t0, 4($a0)

; Load X0 = LSW(X)

lw
$t3, 0($a1)

; Load Y1 = MSW(Y)

lw
$t2, 4($a0)

; Load Y0 = LSW(Y)

multu
$t0, $t2

; (hi,lo) = X0·Y0

mflo
$t4

; Z0 = LSW(X0·Y0)

mfhi
$t5

; Z1 = MSW(X0·Y0)

multu
$t1, $t2

; (hi,lo) = X1·Y0

mfhi
$t6

; Z2 = MSW(X1·Y0)

mflo
$t9

; temp = LSW(X1·Y0)

addu
$t5, $t5, $t9
; Z1 = Z1 + LSW(X1,Y0)

sltu
$t8, $t5, $t9
; C12 = (Z1 < LSW(X1,Y0)

multu
$t0, $t3

; (hi,lo) = X0·Y1

mflo
$t9

; temp = LSW(X0·Y1)

addu
$t5, $t5, $t9
; Z1 = Z1 + LSW(X0​·Y1)

sltu
$t9, $t5, $t9
; temp = (Z1 < LSW(X0,Y1))

add
$t8, $t8, $t9
; C12 = C12 + temp

mfhi
$t9

; temp = MSW(X0·Y1)

add
$t6, $t6, $t9
; Z2 = Z2 + MSW(X0·Y1)

sltu
$t7, $t6, $t9
; Z3 = (Z2 < MSW(X0·Y1))

multu
$t1,$t3

; (hi,lo) = X1·Y1

mflo
$t9

; temp = LSW(X1·Y1)

add
$t6, $t6, $t9
; Z2 = Z2 + LSW(X1·Y1)

sltu
$t9, $t6, $t9
; temp = (Z2 < LSW(X1·Y1))

add
$t7, $t7, $t9
; Z3 = Z3 + temp

mfhi
$t9

; temp = MSW(X1·Y1)

add
$t7, $t7, $t9
; Z3 = Z3 + MSW(X1·Y1)

la
$v0, product

; $v0 = &product

sw
$t7, 0($v0)

; Store MSW of product...

sw
$t6, 4($v0)

; Store word 2 of product

sw
$t5, 8($v0)

; Store word 3 of product.

sw
$t4, 12($v0)

; Store LSW of product.

jr
$ra

; Return from subroutine.
OK, it ended up being kind of long (30 instructions). I probably wouldn’t give you a problem quite this long on the real exam. Please make sure you understand the algorithm though, in case I give a problem that’s related.
8. For the multicycle datapath discussed in chapter 5, write out a table showing the complete sequence of control bits during the execution of the instruction
sw $s3, 30($t2).

	Cycle #
	0
	1
	2
	3
	4

	Control signal:
	
	
	
	
	

	PCSource
	00
	X
	X
	X
	

	PCWriteCond
	0
	X
	X
	X
	

	PCWrite
	1
	0
	0
	0
	

	IorD
	0
	X
	X
	1
	

	MemRead
	1
	0
	0
	0
	

	MemWrite
	0
	0
	0
	1
	

	MemtoReg
	X
	X
	X
	0
	

	IRWrite
	1
	0
	0
	0
	

	PCSource
	00
	X
	X
	X
	

	ALUOp
	00
	00
	00
	X
	

	ALUSrcB
	01
	11
	10
	X
	

	ALUSrcA
	0
	0
	1
	X
	

	RegWrite
	0
	0
	0
	0
	

	RegDst
	X
	X
	X
	X
	

This is easy; just a matter of going through figure 5.38, filling in the values given, and appropriate defaults and don’t cares for other signals. The store word instruction goes through states 0, 1, 2, and then 5. There is no cycle 4 for a store, so just leave this column blank.
9. Suppose that you have a 1 MB direct-mapped cache with 32-byte blocks.

a) How many blocks (exactly) are there in the cache?

(220 bytes/cache) ÷ (25 bytes/block) = 215 blocks/cache

The cache contains 32,768 blocks.

b) Which memory address bits are used for the byte offset within the block?

 (Give the bit numbers.)

Bits ____ through ____.

0 4 (or 4 through 0)

c) Which memory address bits are used for the index or block number within the

cache?

Bits ____ through ____.
Next 15, or bits 5 through 19

d) Which memory address bits are used for the tag?

Bits ____ through ____.
Bits 20 through 31 (12 bits)

e) What is the total size of the cache in bits, including space for the tag bits and a

valid bit for each block?

(220 × 8 bits) + (215 × (12 bit tag + 1 valid bit))

= 223 + 13×215

= 8,388,608 + 425,984

= 8,814,592

f) Suppose the hit time of the cache is 1 ns and the miss penalty is 50 ns. If the

miss rate on a given benchmark is 5%, what is the cache’s AMAT
(average memory access time) for this benchmark?

AMAT = (hit time) + (miss rate)×(miss penalty)

= (1 ns) + 0.05×(50 ns)

= 1 ns + 2.5 ns

= 3.5 ns
g) Now, suppose that if I double the cache size to 2 MB, while keeping the block size the same, the hit time increases to 1.5 ns, but the miss rate on my benchmark goes down to 1%. Now what is the cache’s AMAT? Assuming that the CPUs clock cycle time is not affected by the change, which cache design will yield better overall performance on the benchmark, the new one or the old one?

New AMAT = (1.5 ns) + 0.01×(50 ns)

= 1.5 ns + 0.5 ns

= 2 ns.

The new cache design yields better performance, because it only takes an average of 2 ns per access, rather than 3.5 ns in the old design.
