HW4 part D. [20] Sample exam problem – Floating-Point Representations (CIO 4 aeo)

Suppose you are looking at a memory dump of a program that works exclusively with floating-point data, and you see that a word of memory representing a particular program variable contains the hexadecimal value 0x3e256fd4. You want to know what actual numeric value (floating-point number) is contained in that program variable.

(a) Identify the engineering problem.

(i) What is the name of the engineering standard that specifies the most common format for floating-point representations?

IEEE 754-1985

(ii) Does this particular hex value represent a single-precision or a double-precisison number? How do you know? Explain briefly.

Single-precision, because 8 hex digits = 4 bytes = 32 bits.

(b) Formulate the engineering problem. Show how to break up the binary word into the appropriate constituent bit fields, and write an algebraic expression giving the value of the floating-point number in terms of the integer value of each field.

0x
 3
 e
 2
 5
 6
 f
 d
4

0011
1110
0010
0101
0110

[Just translate the hex value to binary and mark off the

1-bit sign field, 8-bit exponent, and 23-bit significand…]

value = (-1)sign × 2(exponent − 127) × (1 + significand×2-23)
(c) Solve the engineering problem. Calculate and write in ordinary decimal scientific notation the value of the specific floating-point number being represented.

[Simply plug the integer values of the bit fields into the formula.]

HW5 Part C (CIO 6 / POs a,o) – Multipliers and Dividers

The following MIPS subroutine takes a 4-bit unsigned multiplicand and multiplier in registers $a0 and $a1 respectively, and returns their 8-bit unsigned product in $v0.

line#

1 MULT4:
li
$v0,0

Clear product register
2

li
$t0,0x08
mask = Mask for initial bit position (bit 3).
3 LOOP:
sll
$v0,$v0,1
prod = prod << 1; (shift product left 1 place).

4

and
$t1,$a1,$t0
bit = multiplier & mask;
5

beq
$t1,$0,ENDIF
if (bit != 0)

6

addu
$v0,$v0,$a0
#
product += multiplicand;
7 ENDIF:
srl
$t0,$t0,1
mask = mask >> 1; (shift mask right 1 place)

8

bne
$t0,$zero,LOOP
if (mask != 0) goto LOOP;
9

jr
$ra

$v0 now contains complete product; return it.

Hand-simulate the execution of this code given the initial values $a0=11, $a1=5.

a) [10] First, write out the given input numbers as full 32-bit binary register values.

	bit #:
	31
	
	
	MSB
	
	
	24
	23
	
	
	
	
	
	
	16
	15
	
	
	
	
	
	
	8
	7
	
	
	LSB
	
	
	0

	$a0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	1

	$a1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1

b) [25] Next, fill in the table through all four iterations of the loop. Indicate each line of code executed, and each value written back to a register. We have filled in the initial values and the first six lines of the table for you. Also record the branch behavior.

	Iter.

No.
	Line
No.
	
$a0
	
$a1
	$t0
	$t1
	$v0
	Branch behavior,
taken v. not
	Branch dest (if taken)

	Initially:
	11
	5
	?
	?
	?
	
	

	1
	1
	
	
	
	
	0
	
	

	1
	2
	
	
	8
	
	
	
	

	1
	3
	
	
	
	
	0
	
	

	1
	4
	
	
	
	0
	
	
	

	1
	5
	
	
	
	
	
	taken
	ENDIF (7)

	1
	7
	
	
	4
	
	
	
	

	1
	8
	
	
	
	
	
	taken
	LOOP (3)

	2
	3
	
	
	
	
	0
	
	

	2
	4
	
	
	
	4
	
	
	

	2
	5
	
	
	
	
	
	not taken
	

	2
	6
	
	
	
	
	11
	
	

	2
	7
	
	
	2
	
	
	
	

	2
	8
	
	
	
	
	
	taken
	LOOP (3)

	3
	3
	
	
	
	
	22
	
	

	3
	4
	
	
	
	0
	
	
	

	3
	5
	
	
	
	
	
	taken
	ENDIF (7)

	3
	7
	
	
	1
	
	
	
	

	3
	8
	
	
	
	
	
	taken
	LOOP (3)

	4
	3
	
	
	
	
	44
	
	

	4
	4
	
	
	
	1
	
	
	

	4
	5
	
	
	
	
	
	not taken
	

	4
	6
	
	
	
	
	55
	
	

	4
	7
	
	
	0
	
	
	
	

	4
	8
	
	
	
	
	
	not taken
	

Similar problem to HW6 part C (CIO 5 / POs a,e,o) – Control and dataflow

Below is the single-cycle MicroMIPS datapath from the textbook (fig. 13.3, p. 248). Suppose you are told that the LW instruction on a certain test chip is malfunctioning. You suspect that the problem might be that one of the connections (wires or multi-wire buses) in the below high-level wiring diagram could be broken or disconnected. You want to determine which lines might be broken without opening up the chip package.
[image: image1.wmf] /

ALU

Data

cache

Instr

cache

Next addr

Reg

file

op

 jta

fn

inst

 imm

rs

 (rs)

 (rt)

Data

addr

Data

in

0

1

ALUSrc

ALUFunc

DataWrite

DataRead

SE

RegInSrc

rt

rd

RegDst

RegWrite

32

 /

16

Register input

Data

out

Func

ALUOvfl

Ovfl

31

0

1

2

Next PC

Incr PC

 (PC)

Br&Jump

ALU

out

PC

0

1

2

a) [10] Identify the scope of the diagnostic problem to be solved. Which connections in the above diagram (including both data and control wires/buses) are required for successful functioning of the LW instruction? Using a highlighter pen (if you have one), highlight all the lines, or sections of lines, that are required. (Assume that any broken control wires would behave as all-0 signals.)

b) [10] Formulate a testing strategy for diagnosing the problem. For each of the wires/buses that you highlighted in part (a), identify at least one other instruction in the MicroMIPS instruction set (table 13.1, p.244) that would also fail to work properly if the indicated connection were entirely broken. (If it’s a multi-wire bus, assume all wires in the bus would be broken.) We have started writing a table of answers for you… you can use a 2nd column and the top of the next page if necessary.

Label of

An instruction that could

Wire or bus
be used to test it

rs

add
Next PC,
(PC)->Next A, (PC)->IC, inst

Any instruction will use these signals.

op

any inst. except R-type instructions

(for which it’s 0 anyway)

imm, SE out
any instruction that uses the imm field

(lui, addi, slti, andi, ori, xori, sw, bltz, beq, & bne)

rs, (rs)

any instruction that has an rs operand

(any except lui, j, jal, and syscall)

rt -> mux

any instruction that uses rt as a destination operand

(lui, addi, slti, andi, ori, xori)

RegWrite,

Register input

any instruction that writes a register

(any except j, jr, bltz, beq, bne, & sw)

ALUSrc

any immediate instruction that uses the ALU

(lui, addi, slti, andi, ori, xori, & sw)

ALUFunc

any instruction but LUI (it has ALUFunc=0 anyway)

ALUOut

any instruction that uses the ALU

Data addr
SW is the only other instruction that uses this line

Data out

None; no other instructions besides LW use this line

DataRead

None; no other instructions besides LW use this line

(18 connections, -1/2 point per missing or incorrect one)

c) [10] Solve the diagnostic problem. Suppose that after some experimenting, you discover that SW is also malfunctioning, but that all other instructions are working correctly. Assuming that only a single segment of a given wire or bus in the top-level schematic is broken, which one must it be? How do you know?

It must be “Data addr” because this is the only line that is used only by LW and SW.

d) [5] Assuming your answer to part (c) is correct, if any broken wires (including data wires) manifest themselves as “stuck-at-0” signals, then what are the LW and SW instructions actually doing in the malfunctioning chip (instead of the thing that they are supposed to be doing)?
If the entire “Data addr” bus is in a stuck-at-0 state, then all loads and stores will access memory at address 0. So, all LWs will return the last value that was SW’ed, regardless of what addresses were specified.

