Write your name neatly at the top of every page: ________________________________

EEL 4713/5764, Spring 2006 – Computer Architecture
Midterm Exam #2 - SOLUTIONS
Administered Wednesday, March 22
Instructions: Open book/notes/calculators. No talking, texting or IM’ing. You have 50 minutes to complete the exam (12:55-1:45), or about 16 minutes per problem, so pace yourself. Each problem is worth 35 points, for a maximum score of 105, and full credit is 100 points. Raise your hand if you need a clarification on any problem.
Problem 1. [35] Floating-Point Representations (CIO 4 aeo)

Suppose you are looking at a memory dump of a program that works exclusively with floating-point data, and you see that the region of memory that holds a particular numeric program variable contains the two hexadecimal words 0xe4790000 0x00000000. You want to know what actual numeric value (floating-point number) is contained in that program variable.

(a) [10] Identify the engineering problem.

(i) [5] What is the name of the engineering standard that specifies the most common format for floating-point representations?

IEEE 754-1985
 (ii) [5] If the variable represents one real number and it occupies both words, then is it a single-precision or double-precisison floating-point number? How do you know? Explain briefly.

Double-precision because it is two words or eight bytes

(64 bits) long.
(b) [10] Formulate the engineering problem. Show how to break up the binary words into the appropriate constituent bit fields, and write down an algebraic expression giving the value of the floating-point number in terms of the unsigned integer value of each field.

 e
 4
 7
 9
 0
 0
…(8 more 0’s)…
 0
 0
1110
0100
0111
1001
0000
0000

…

0000
0000
|___________/_____________________________________/
s
exp

significand

n = (-1)s (2(exp-1023) ((1 + significand/252)
[image: image1.wmf] /

ALU

Data

cache

Instr

cache

Next addr

Reg

file

op

 jta

fn

inst

 imm

rs

 (rs)

 (rt)

Data

addr

Data

in

0

1

ALUSrc

ALUFunc

DataWrite

DataRead

SE

RegInSrc

rt

rd

RegDst

RegWrite

32

 /

16

Register input

Data

out

Func

ALUOvfl

Ovfl

31

0

1

2

Next PC

Incr PC

 (PC)

Br&Jump

ALU

out

PC

0

1

2

(c) [15] Solve the engineering problem. Calculate the value of the specific floating-point number being represented and write it in ordinary decimal scientific notation.

exp = 1,607 (used calculator for binary->decimal conversion)

significand/252 = 2−1+2−4 = .5 + .0625 = .5625

n = −1.5625 (2584 = −1.5625((6.3317…(10175)

(used calculator for 2584 and round to 4 places)

 = −9.8932…(10175 (rounded to 4 decimal places)
Problem 2. [35] Multipliers and Dividers (CIO 6 ao)

The following MIPS subroutine takes a 4-bit signed (two’s complement) multiplicand and multiplier, sign-extended to 32 bits, in registers $a0 and $a1 respectively, and returns their 8-bit signed product (sign-extended to 32 bits) in $v0.

line#

1 MULT4S:
li
$v0,0

Clear product register
2

andi
$t1,$a1,0x08
bit = multiplier & 0x08; (extract sign bit)
3

beq
$t1,$0,ENDIF1
if (bit != 0)

4

sub
$v0,$v0,$a0
#
product -= multiplicand;

5 ENDIF1:
li
$t0,0x04
mask = Mask for first +ive bit position (bit 2).
6 LOOP:
sll
$v0,$v0,1
prod = prod << 1; (shift product left 1 place).

7

and
$t1,$a1,$t0
bit = multiplier & mask; (extract current bit)
8

beq
$t1,$0,ENDIF
if (bit != 0)

9

add
$v0,$v0,$a0
#
product += multiplicand;
10 ENDIF:
srl
$t0,$t0,1
mask = mask >> 1; (shift mask right 1 place)

11

bne
$t0,$zero,LOOP
if (mask != 0) goto LOOP;
12

jr
$ra

$v0 now contains complete product; return it.

The subu and addu instructions should have been sub and add, but results are the same.
Hand-simulate the execution of this code given the initial values $a0 = 11, $a1 = −3.

a) [10] First, write out the given input numbers as full 32-bit binary register values.

	bit #:
	31
	
	
	MSB
	
	
	24
	23
	
	
	
	
	
	
	16
	15
	
	
	
	
	
	
	8
	7
	
	
	LSB
	
	
	0

	$a0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	1

	$a1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1

b) [25] Next, fill in the table with an execution trace until the JR is reached. Indicate each line of code executed, and each value written back to a register. We have filled in the initial values and the first six lines of the table for you. Also record whether each branch is taken, and its destination label and line number if it is taken.

	Iter.

No.
	Line
No.
	
$a0
	
$a1
	$t0
	$t1
	$v0
	Branch behavior,
taken v. not
	Branch dest (if taken)

	Initially:
	11
	−3
	?
	?
	?
	
	

	0
	1
	
	
	
	
	0
	
	

	0
	2
	
	
	
	8
	
	
	

	0
	3
	
	
	
	
	
	not taken
	

	0
	4
	
	
	
	
	−11
	
	

	0
	5
	
	
	4
	
	
	
	

	1
	6
	
	
	
	
	−22
	
	

	1
	7
	
	
	
	4
	
	
	

	1
	8
	
	
	
	
	
	not taken
	

	1
	9
	
	
	
	
	−11
	
	

	1
	10
	
	
	2
	
	
	
	

	1
	11
	
	
	
	
	
	taken
	LOOP (6)

	2
	6
	
	
	
	
	−22
	
	

	2
	7
	
	
	
	0
	
	
	

	2
	8
	
	
	
	
	
	taken
	ENDIF (10)

	2
	10
	
	
	1
	
	
	
	

	2
	11
	
	
	
	
	
	taken
	LOOP (6)

	3
	6
	
	
	
	
	−44
	
	

	3
	7
	
	
	
	1
	
	
	

	3
	8
	
	
	
	
	
	not taken
	

	3
	9
	
	
	
	
	−33
	
	

	3
	10
	
	
	0
	
	
	
	

	3
	11
	
	
	
	
	
	not taken
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Problem 3. [35] Datapath and Control (CIO 5 aeo)
Below is the single-cycle MicroMIPS datapath from the textbook (fig. 13.3, p. 248). Suppose you are told that the SLTI instruction on a certain test chip is malfunctioning, and your job is to diagnose the problem. You suspect that the problem may be that one of the lines in the below diagram could be broken or disconnected. You would like to determine which of these lines are most likely to explain the problem, and therefore are worth taking the trouble to look at in more detail.

a) [10] Identify the scope of the diagnosis problem. Which data and control lines in the above diagram are required to be unbroken for successful functioning of the SLTI instruction? Highlight all the lines or sections of lines that are required. Assume that all wires in any broken lines will always read as 0s (a “stuck-at-0” fault).
b) [15] Formulate a strategy for solving the diagnosis problem. How would you go about determining which of these lines are most likely to be the broken ones, if you could not get test probes inside the chip? Give a strategy for narrowing down the possibilities. Hint: It should involve performing test executions of other instructions of various types to see if they work correctly. List such a series of tests, and for each one, say what you will learn from it about which of the wires might be broken.

Here is an acceptable partial strategy. (A more complete strategy would methodically test all instructions, or test all possible culprits, or go through a decision tree that uses non-redundant sequences of tests.)
1. Try a normal R-type instruction such as ADD. If it works, this eliminates

NextPC, (PC), inst, rs, rt->RegFile, (rs), ALUFunc, ALU out, Register
input, and RegWrite. (Otherwise, these could still be broken.)
2. If ADD works, try another I-type instruction such as ADDI. If it works,

this eliminates imm, SE output, ALUSrc, the ALUSrc mux output, and the rt->RegDst mux connection. Else, any of these could still be broken.

For your reference, here is a complete (and in fact optimal) decision-tree strategy. This involves executing a sequence of up to 4 test instructions and checking their correctness, and it narrows down the set of possible culprits as far as possible (sans closer examination) in every case. In each sequence, the red underlined instructions fail in some way, while the green ones work correctly. (It is very time-consuming to formulate debugging strategies that are complete & optimal like this one, so I wouldn’t expect you to do this on the exam.)

1st
2nd
3rd
4th
Possible culprits
BEQ
LUI
JAL
AND
Next PC, (PC), (PC)(IC, inst

BEQ
LUI
JAL
AND
op

BEQ
LUI
JAL

(PC)(Next addr

BEQ
LUI
BLTZ

rs, (rs)

BEQ
LUI
BLTZ

rt

BEQ
SW
AND
LUI
ALUSrc out, ALUFunc ctl, ALU out

BEQ
SW
AND
LUI
(rs)(ALU

BEQ
SW
AND

imm, SE out, ALUSrc ctl

BEQ
SW
LW
ADD
RegDst out, Register input, RegWrite ctl

BEQ
SW
LW
ADD
rt(RegDst mux

BEQ
SW
LW
JAL
ALUout(RegInSrc mux
BEQ
SW
LW
JAL
RegInSrc ctl

c) [10] Solve the diagnosis problem. Suppose that, after some investigation, you find that all other instructions work correctly except for ANDI, ORI, XORI, and LUI and LW, SW and ADDI. What now are the remaining possibilities as to where the broken wire may be? Also, for each of these possibilities, what is the SLTI instruction actually doing (as opposed to what it is supposed to be doing)?
The set of instructions that aren’t working is exactly the set of instructions that use the immediate field. Thus, if there is only a single broken line, it must be one of the following:

· the imm line – If it’s broken, slti will always compare the source register with 0, and so will do a “sltz” function (rt = (rs<0)) instead.

· the output of the imm sign extender – likewise.

· the ALUSrc control line – If it’s broken, slti will compare (rs) with (rt), and thus will do an slt variation “slt rt,rs,rt” (rt = (rs<rt))
Additional testing in which we examine the precise mode of failure of the failed instructions could distinguish between the first two cases and the third one, enabling us to narrow the diagnosis further.

Note: Even if your calculator doesn’t handle numbers this big, you could still do it! 584(ln(2)/ln(10) = 	175.801517, thus �2584 = 10175(10.801517 � = 6.3317(10175, and�1.5625(6.3317 = 9.8932, so you can still get the answer�−9.8932(10175 in that way!

Page 3 of 5

