	
	Table showing which instructions use which lines in figure 13.3.
	:Line Category
	and,or,xor,nor,slt
	add,sub
	addi
	slti,andi,
ori,xori
	lui
	lw
	sw
	beq,bne
	bltz
	j
	jal
	jr
	syscall

	
	Instruction category:
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	IF
	Next PC, (PC), (PC)(IC, inst
	a
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x

	RF
	rs, (rs)
	b
	x
	x
	x
	x
	
	x
	x
	x
	x
	
	
	x
	

	
	rt
	c
	x
	x
	x
	x
	
	x
	x
	x
	
	
	
	
	

	
	(rs)(ALU
	d
	x
	x
	x
	x
	
	x
	x
	
	
	
	
	
	

	Rtype
	fn
	e
	x
	x
	
	
	
	
	
	
	
	
	
	x
	x

	
	rd
	f
	x
	x
	
	
	
	
	
	
	
	
	
	
	

	
	rt(Reg file, (rt)(ALUSrc mux
	g
	x
	x
	
	
	
	
	x
	
	
	
	
	
	

	
	(rt)
	h
	x
	x
	
	
	
	
	x
	x
	
	
	
	
	

	IJType
	op
	i
	
	
	x
	x
	x
	x
	x
	x
	x
	x
	x
	
	

	
	imm, SE out, ALUSrc ctl
	j
	
	
	x
	x
	x
	x
	x
	
	
	
	
	
	

	
	rt(RegDst mux
	k
	
	
	x
	x
	x
	x
	
	
	
	
	
	
	

	ALU
	ALUSrc out, ALUFunc ctl, ALU out
	l
	x
	x
	x
	x
	x
	x
	x
	
	
	
	
	
	

	
	ALUout(RegInSrc
	m
	x
	x
	x
	x
	x
	
	
	
	
	 
	
	
	

	
	ALUOvfl
	n
	
	x
	x
	
	
	
	
	
	
	
	
	
	

	Ld/St
	Data in, DataWrite ctl
	o
	
	
	
	
	
	
	x
	
	
	
	
	
	

	
	Data addr
	p
	
	
	
	
	
	x
	x
	
	
	
	
	
	

	
	DataRead ctl, Data out
	q
	
	
	
	
	
	x
	
	
	
	
	
	
	

	Next PC calc
	jta
	r
	
	
	
	
	
	
	
	x
	x
	x
	x
	
	

	
	Br&Jump ctl
	s
	
	
	
	
	
	
	
	x
	x
	x
	x
	x
	x

	
	(rs)(Next addr
	t
	
	
	
	
	
	
	
	x
	x
	
	
	x
	

	
	(rt)(Next addr
	u
	
	
	
	
	
	
	
	x
	
	
	
	
	

	
	(PC)(Next addr
	v
	x
	x
	x
	x
	x
	x
	x
	x
	x
	
	
	
	x

	
	31, IncrPC
	w
	
	
	
	
	
	
	
	
	
	
	x
	
	

	WB
	RegDst ctl
	x
	x
	x
	
	
	
	
	
	
	
	
	x
	
	

	
	RegDst out, Register input, RegWrite ctl
	y
	x
	x
	x
	x
	x
	x
	
	
	
	
	x
	
	

	
	RegInSrc ctl
	z
	x
	x
	x
	x
	x
	
	
	
	
	
	x
	
	


An optimal strategy for debugging a broken SLTI instruction, assuming that only one line (wire or bus) is broken:
Any of the following line categories might be broken (SLTI uses all these):


a. Next PC, (PC), (PC)(IC, inst


b. rs, (rs)


c. rt


d. (rs)(ALU


i. op


j. imm, SE out, ALUSrc ctl


k. rt(RegDst mux


l. ALUSrc out, ALUFunc ctl, ALU out


m. ALUout(RegInSrc


v. (PC)(Next addr


y. RegDst out, Register input, RegWrite ctl


z. RegInSrc ctl

1. Test BEQ


If BEQ fails also, this suggests the broken wire is one of {a,b,c,i,v}.


1.1. Test LUI



If LUI fails also, the broken wire is {a,i,v}



1.1.1. Test JAL




JAL Fails ( {a,i}




1.1.1.1 Test AND





AND Fails({a}





AND Works({i}




JAL Works ( {v}



If LUI works, the broken wire is {b,c}



1.1.2. Test BLTZ




BLTZ Fails ( {b}




BLTZ Works ( {c}


If BEQ works, this eliminates these, and leaves {d,j,k,l,m,y,z}

1.2. Test SW



SW fails ( {d,j,l}



1.2.1. Test AND




AND fails ( {d,l}




1.2.1.1. Test LUI





LUI fails ( {l}





LUI works ( {d}




AND works ( {j}



SW works ( {k,m,y,z}



1.2.2. Test LW




LW fails ( {k,y}




1.2.2.1. Test ADD





ADD fails ( {y}





ADD works ( {k}




LW works ( {m,z}




1.2.2.2. Test JAL





JAL fails ( {m}





JAL works ( {z}

I.e., here are the possible sequences of tests and outcomes:

BEQ
LUI
JAL
AND

a. Next PC, (PC), (PC)(IC, inst

BEQ
LUI
JAL
AND

i. op

BEQ
LUI
JAL


v. (PC)(Next addr

BEQ
LUI
BLTZ


b. rs, (rs)
BEQ
LUI
BLTZ


c. rt

BEQ
SW
AND
LUI

l. ALUSrc out, ALUFunc ctl, ALU out
BEQ
SW
AND
LUI

d. (rs)(ALU

BEQ
SW
AND


j. imm, SE out, ALUSrc ctl
BEQ
SW
LW
ADD

y. RegDst out, Register input, RegWrite ctl
BEQ
SW
LW
ADD

k. rt(RegDst mux
BEQ
SW
LW
JAL

m. ALUout(RegInSrc
BEQ
SW
LW
JAL

z. RegInSrc ctl

Note that the maximum number of tests needed is 4.  This is optimal, since note there are 12 possible sets of wires that could be to blame, and (log212( = 4, so at least 4 binary tests are needed in order to narrow down the set of options from 12 possibilities to 1.
