Version 1.2.1
Mike Frank
11/26/06

List of Topics for Digital Logic Design
(EEL 3705 / 3705L)
Topics need not be covered precisely in the order listed. For pedagogical purposes, it may be best to intersperse some topics together; for example, topic 4 should be taught concurrently with topics 2 and 3. Topics shown in italics are optional, and may be skipped if the course is short on time. Required course instructional objectives are inserted in the topic list after their prerequisite topics, numbered as “CIO #,” and are shown in boldface.
Part I. Background Topics

These topics are not necessarily in the area of digital logic precisely, but are important background material that may not have been fully covered in the prerequisite courses.

Topic 1. Number Systems and Codes

Subtopic 1.1. Base-b arithmetic and binary unsigned integer representations.
CIO 1. [Numbers] Convert numbers between different number systems (including binary, octal, and hexadecimal)

Subtopic 1.2. Binary signed integer representations.

1.2.1. Sign-magnitude representation.

1.2.2. Biased representation.

1.2.3. Two’s-complement representation.

1.2.4. Two’s-complement signed overflow conditions

CIO 2. [2s-comp] Solve arithmetic equations in two’s complement and interpret results regarding overflow conditions

Subtopic 1.3. Numeric codes

1.3.1. Fixed-point codes

1.3.1.1. Fixed-point fractions

1.3.1.2. Biased fixed-point (used for floats in Arch)

1.3.1.2. Gray codes (used a little for K-maps)
1.3.2. Floating-point codes (covered in depth in Architecture)

Subtopic 1.4. Character codes

1.4.1. BCD (fairly commonly used)

1.4.2. ASCII (required for applications in Micro)

1.4.3. Unicode

Subtopic 1.5. Error Control Codes

1.5.1. Parity Codes (used commonly)

1.5.2. 2-out-of-5 Code

1.5.3. Hamming codes (helpful if they take a course on ECCs)
Part II. Core Topics

These topics are the central, fundamental topics within the subject area of digital logic.

Topic 2. Combinational Digital Logic

Subtopic 2.1. Elements of combinational logic

2.1.1. Basic logic operators – NOT, AND, OR, XOR.

2.1.2. Logic gates and combinational logic networks

2.1.2. Inverting gates: NAND, NOR, XNOR

2.1.3. Multi-input gates, bus lines, bussed and bit-parallel inputs.
2.1.4. Standard implementions of basic gates in static CMOS technology
Subtopic 2.2. Design of combinational logic circuits

2.2.1. Analytical combinational design

2.2.1.1. Boolean algebra (included, not over-emphasized!)

2.2.1.1.1. Syntax, defining axioms, and basic identities

2.2.1.1.2. Hand-derivation of Boolean algebra equivalences

2.2.1.1.3. DNF and CNF expansions
2.2.1.2. Combinational circuits and Boolean formulas

CIO 3. [SynAnal] Derive digital circuits from optimized Boolean equations and compute the Boolean equations of a digital circuit.
2.2.1.3. Simplification of Boolean formulas

2.2.1.3.1 Logic minimization using Karnaugh maps

CIO 5. [K-maps] Use Karnaugh maps to optimize combinational logic, including incompletely specified logic.

2.2.1.3.2 Quine-McKluskey logic minimization

2.2.2. Modular combinational design

2.2.2.1. Principles of modular design

2.2.2.2. Design & use of common modular combinational components

2.2.2.2.1. Decoders, encoders, muxes, demuxes

2.2.2.2.2. Half, full, and ripple-carry adders

2.2.2.2.3. Subtracters and ALU design

CIO 6. [ALU] Analyze and design arithmetic logic units and describe the associated control signals.

2.2.2.2.4. ROMs

2.2.3. Array-based combinational design (PLAs, PALs, etc.)

Subtopic 2.3. Analysis of combinational logic circuits
2.3.1. Basic methods for size and cost estimation

2.3.2. Basic methods for delay estimation
CIO 4. [Timing] Calculate and interpret costs and timing delay in combinational (and sequential) logic circuits.
Topic 3. Sequential Digital Logic

Subtopic 3.1. Basic Sequential Elements: Latches & Flip-Flops

3.2.1. Basic (SR, D, JK) latch/FF implementations using logic gates

3.2.2. Implementations using CMOS transmission gates
CIO 7. [LatchFF] Analyze characteristic tables and timing diagram of D latches and D flip-flops.

Subtopic 3.2. Sequential Logic Design

3.2.1. FSM-based Sequential Design

3.2.1.1. Moore and Mealy machines

3.2.1.2. State-transition diagrams

3.2.1.3. Synthesis of state update logic

CIO 8. [Sequent] Create state diagrams from sequential circuits and design sequential circuits from state diagrams.

CIO 9. [FSM] Design and verify by simulation a finite state machine satisfying given criteria.
3.2.2. Modular Sequential Design
3.2.2.1. Design and use of common modular sequential components

3.2.2.1.1. Shift registers

3.2.2.1.2. Counters, including modulo-n counters

3.2.2.1.3. RAMs

3.2.2.2. Pipelined sequential design

3.2.3. Analysis of sequential logic circuits

3.2.3.1. Timing analysis of sequential circuits
CIO 4. [Timing] Calculate and interpret costs and timing delay in (combinational and) sequential logic circuits.
Part III. Supporting Topics
These topics, although they are essential to train students to be able to complete homeworks, labs, design projects, and the capstone design course, have not yet been rolled into the official course instructional objectives.
Topic 4. Introduction to Digital Design Tools

This material is to be covered in parallel with the core topics, using the design tools throughout the course in examples, homeworks, and projects. This material is expected to change over time as we upgrade the hardware and software that is locally available.

Subtopic 4.1. Introduction to FPLDs and FPGAs

4.1.1. Basic concepts of programmable logic devices

4.1.2. Altera MAX 7000 & FLEX 10k FPLDs

4.1.3. Altera UP2 educational development & prototyping board

Subtopic 4.2. Introduction to FPLD-based design with the Altera Quartus II tool

4.2.1. Projects and files

4.2.2. Schematic entry

4.2.3. Compilation

4.2.4. Simulation

4.2.5. Pin assignment

4.2.6. Programming

4.2.7. Testing

Topic 5. Introduction to Structured Engineering Design Processes
This is included in order to start getting students used to the structured design process early in our curriculum so they will already have a good idea what to do by the time they get to senior project. One or two projects are assigned in this course to give the students early practice with and feedback on the documentation requirements.

Subtopic 5.0. Overview of a structured engineering process

Subtopic 5.1. Needs analysis & requirements specification

Subtopic 5.2. Concept generation & selection

Subtopic 5.3. System-level design & component/interface specification

Subtopic 5.4. Test planning & design-for-test

Subtopic 5.5. Detailed design

Subtopic 5.6. System integration

Subtopic 5.7. Testing & test reporting

Subtopic 5.8. User documentation

Subtopic 5.9. Design for test, design for manufacturing

Part IV. Advanced Topics
These optional topics are more advanced and would be desirable to cover at some level, but there may not be time to cover them in much depth.
Topic 6. Introduction to Hardware Description Languages
This is an important subject that any modern logic designer needs to know, but it has not yet been integrated into our digital logic course. Presently Dr. Uwe Meyer-Baese spends most of his Introduction to FPLDs course covering this topic. It would be desirable to eventually move more of this material to a bit earlier in the curriculum. Examples of component descriptions in an HDL could be interspersed throughout the course right after showing the corresponding schematic representations. Assignments could be modified to require or at least permit students to code in an HDL in addition to or in place of some schematic designs.

Subtopic 6.1. Informal Register-Transfer Language (RTL) pseudocode

Subtopic 6.2. Verilog HDL

Subtopic 6.3. VHSIC HDL (VHDL)

Subtopic 6.4. Vendor-specific HDLs (e.g., Altera’s AHDL, Xilinx’s ????)
Topic 7. (Research Topic) Reversible Logic
This is a variant style of digital logic that theoretically enables substantially more energy-efficient physical implementations than conventional logic, and it may someday become an important technology in practice as a result of this property. It is Dr. Frank’s research specialty, and he hopes to be able to squeeze in a lecture on it at the end of the semester.
