
Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 1 of 9

Discussion of the Intended Meanings of the
Nonprintable ASCII Characters

Michael P. Frank
FAMU-FSU College of Engineering

Friday, September 15, 2006

This document discusses how the invisible ASCII characters (that is, the page C0 control
characters, codes 0016-1F16, along with the SP (2016) and DEL (7F16) characters) were
apparently intended to be used originally, and also something about how they are used in
practice presently. This discussion is based loosely on ANSI X3.4-1986, ISO 646-1983,
ISO/IEC 6429, and other official standards specifications. However, some of the below
material is also a matter of interpretation, or educated guesswork based on experience.
The symbol glyphs that I use to graphically represent the control characters in the
examples are my own notation, and are not standard. The choice of these characters is
explained in a companion document, “A Proposed Set of Mnemonic Symbolic Glyphs for
the Visual Representation of C0 Controls and Other Nonprintable ASCII Characters.”
 The section on transmission control characters needs to be updated to incorporate
information from ANSI X3.28-1976, American National Standard for the Use of the
Communication Control Characters of American National Standard Code for
Information Interchange in Specified Data Communication Links. Likewise, the sections
covering the use of the shift in, shift out, and escape characters need to be updated to
integrate information from ANSI X3.41-1974, Code Extension Techniques for Use with
the 7-Bit Coded Character Set of American National Standard Code for Information
Interchange (or equivalently, ISO 2022-1973).

1. Characters Addressed in this Document
Table 1 gives the complete list of characters whose meanings are discussed in this
document.

Table 1. Table of characters discussed in this document. The first column gives the code point in ANSI
X3.4’s notation. The next four columns give the hexadecimal, decimal, octal, and binary equivalents. Next
is the control sequence that can be used for typing the control character on some systems. Next come a
couple of choices of glyphs for visual display of the control character, the first of these being the one
intended for this use in the Arial Unicode MS font, the other being my suggestion for a more visually
suggestive glyph that is still available in that same font. Next is the official 2-3 character abbreviation for
the character name, followed by the official character type. Next is the character type, also represented in
the background color of the table row, according to OC=other control (magenta), TC=transmission control
(red), FE=format effector (green), CE=code extension (yellow), DC=device control (cyan), IS=information
separator (blue). Finally is the section number that addresses that character.

x/y Hex Dec Oct Bin Ctl Syms Abbr Name Type Sec

0/0 00 0 000 000 0000 ^@ ␀ ∅ NUL null OC 2.1

0/1 01 1 001 000 0001 ^A ␁ ⌈ SOH start of heading TC 2.2

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 2 of 9

x/y Hex Dec Oct Bin Ctl Syms Abbr Name Type Sec

0/2 02 2 002 000 0010 ^B ␂ ⊥ STX start of text TC 2.2

0/3 03 3 003 000 0011 ^C ␃ ⌋ ETX end of text TC 2.2

0/4 04 4 004 000 0100 ^D ␄ ↯ EOT end of transmission TC 2.2

0/5 05 5 005 000 0101 ^E ␅ ⍰ ENQ enquiry TC 2.2

0/6 06 6 006 000 0110 ^F ␆ ☑ ACK acknowledge TC 2.2

0/7 07 7 007 000 0111 ^G ␇ ☎ BEL bell OC 2.3

0/8 08 8 010 000 1000 ^H ␈ ⌫ BS backspace FE 2.4

0/9 09 9 011 000 1001 ^I ␉ ↦ HT horizontal tabulation FE 2.4

0/10 0A 10 012 000 1010 ^J ␊ ↓ LF line feed FE 2.4

0/11 0B 11 013 000 1011 ^K ␋ ↧ VT vertical tabulation FE 2.4

0/12 0C 12 014 000 1100 ^L ␌ ⇟ FF form feed FE 2.4

0/13 0D 13 015 000 1101 ^M ␍ ↲ CR carriage return FE 2.4

0/14 0E 14 016 000 1110 ^N ␎ ⊙ SO shift-out CE 2.5

0/15 0F 15 017 000 1111 ^O ␏ ⊗ SI shift-in CE 2.5

1/0 10 16 020 001 0000 ^P ␐ ⌥ DLE data link escape TC 2.2

1/1 11 17 021 001 0001 ^Q ␑ ⊚ DC1 device control one DC 2.6

1/2 12 18 022 001 0010 ^R ␒ ⊛ DC2 device control two DC 2.6

1/3 13 19 023 001 0011 ^S ␓ ⊜ DC3 device control three DC 2.6

1/4 14 20 024 001 0100 ^T ␔ ⊝ DC4 device control four DC 2.6

1/5 15 21 025 001 0101 ^U ␕ ☒ NAK negative acknowledge TC 2.2

1/6 16 22 026 001 0110 ^V ␖ ⌚ SYN synchronous idle TC 2.2

1/7 17 23 027 001 0111 ^W ␗ ▣ ETB end of transmission block TC 2.2

1/8 18 24 030 001 1000 ^X ␘ ✖ CAN cancel OC 2.7

1/9 19 25 031 001 1001 ^Y ␙ ■ EM end of medium OC 2.7

1/10 1A 26 032 001 1010 ^Z ␚ � SUB substitute character OC 2.7

1/11 1B 27 033 001 1011 ^[␛ ⇑ ESC escape CE 2.7

1/12 1C 28 034 001 1100 ^\ ␜ ∰ FS file separator IS 2.8

1/13 1D 29 035 001 1101 ^] ␝ ∯ GS group separator IS 2.8

1/14 1E 30 036 001 1110 ^^ ␞ ∮ RS record separator IS 2.8

1/15 1F 31 037 001 1111 ^_ ␟ ∫ US unit separator IS 2.8

2/0 20 32 040 010 0000 ^` ␠ ␣ SP space FE 2.4

7/15 7F 127 177 111 1111 ^? ␡ ⌦ DEL delete OC/FE 2.4

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 3 of 9

2. Character Descriptions
In this section we give our detailed descriptions of the use of the above-listed characters.
We break this section up into subsections corresponding to different classes of characters.
In some cases (e.g. DEL), our classifications below may differ slightly from ANSIs.

2.1. Use of the Null character.
NUL (∅∅∅∅)
The null character NUL (∅; ^@; 0016; 000,00002) is intended to be used as filler for the
empty space and time that exists in between meaningful data. For example, the
characters ∅∅∅∅∅… may repeat indefinitely throughout the empty regions of a storage
medium, or during the time between messages in a transmission medium. See also
TC9/SYN (⌚) below, which is used to fill gaps when it is important not to lose
synchronization with character boundaries, which may be difficult to discern in the ∅
symbol, due to its all-0s binary pattern. NUL rarely if ever appears as a character within
ASCII text files on a storage medium; when it does, its meaning is application-dependent.

In string-manipulation libraries for some programming languages, such as the C
language, the NUL character is used the mark the end of a character string in memory.
However, a strict reading of the ASCII standard would suggest that this use of NUL is
inappropriate for this purpose, since NULs that appear in an ASCII character sequence
are supposed to be just skipped over without affecting the reading of the data. Therefore,
perhaps a more appropriate way to self-terminate an ASCII string would be to use one of
the transmission control characters ETX (⌋), ETB (▣), or EOT (↯), or perhaps one of the
information separator characters, such as US (∫), RS (∮), GS (∯), or FS (∰).

2.2. Use of Transmission Control characters
TC1/SOH (⌈⌈⌈⌈), TC2/STX (⊥⊥⊥⊥), TC3/ETX (⌋⌋⌋⌋), TC4/EOT (↯↯↯↯), TC5/ENQ (⍰⍰⍰⍰), TC6/ACK
(☑☑☑☑), TC7/DLE (⌥⌥⌥⌥), TC8/NAK (☒☒☒☒), TC9/SYN (⌚⌚⌚⌚), TC10/ETB (▣▣▣▣)
Suppose that a node at one end of an (initially asynchronous) data link wants to send
some ASCII text messages to the remote end. The transmission control characters can be
used to facilitate a simple protocol for doing so, which works as follows.

Synchronization stage. If necessary, the sender first begins establishing
synchronization of character boundaries by sending repeating synchronous idle TC9/SYN
(synchronous idle; ⌚; ^V; $16; %001,0110) characters, in other words ⌚⌚⌚… . The
importance of this character is that no matter whether one is using a 7-bit or 8-bit
encoding, the location of the character boundaries is well defined. For example, in 7-bit
encoding, the string …∅⌚… renders as …00000000010110… at this point the receiver
knows where the character boundary is, assuming it’s expecting to see ⌚ before any other
data. Even if the receiver tunes in during the middle of a string of ⌚’s, it simply need
look for the repeating pattern 0010110 with the two adjacent 1’s, and then it knows the
next bit is the last bit of the character. In 8-bit encoding, the same is true.

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 4 of 9

Handshaking stage. Once the synchronization pattern is established, the sender
attempts to initiate contact by sending a TC5/ENQ (enquire; ⍰; ^E; $05; %000,0101)
character. If the receiver is ready to receive a message, it responds with a TC6/ACK
(acknowledge; ☑; ^F; $06; %000,0110) character, possibly after a sequence of SYN
characters if necessary. If the receiver receives the ENQ but is not ready yet, it instead
responds with TC8/NAK (negative acknowledge; ☒; ^U; $15; %001,0101). If NAK is
received or no response is received, the sender waits a while and then polls with ⍰ again.

Transmission of messages. Once the receiver is ready, the sender begins sending
a sequence of messages. These are of the general format ⌈message-headers⊥message-
body-text⌋ where we’re using the character TC1/SOH (start of header; ⌈; ^A; $01;
%000,0001) to mark the start of the message header, TC2/STX (start of text; ⊥; ^B; $02;
%000,0010) to mark the boundary between the end of the header and the start of the
message body text, and TC3/ETX (end of text; ⌋; ^C; $03; %000,0011) to mark the end
of the message text. Finally, after all messages in the current transmission have been
completed, a TC4/EOT (end of transmission; ↯; ^D; $04; %000,0100) is sent to mark the
end of the transmission. After this, sender and receiver may either continue or drop their
synchronization signals ⌚, depending on how badly they wish to make sure that the
receiver does not lose synchronization before the start of the next message. (If messages
need to be received with low latency, it may be useful to keep synchronization.) Also,
whether the ENQ/ACK sequence will need to be repeated before the next transmission
depends on the details of the protocol.

Data blocking. Finally, some media may require that transmissions be broken up
into blocks of limited size for purposes of coding, medium access control, flow control,
or other purposes. For example, Ethernet and IP protocols specify a maximum size for
their data packets. If the transmission needs to be broken up into blocks like this, each
block should be terminated with a ETB (end transmission block; ▣; ^W; $17;
%001,0111) character. This tells the receiver that the transmission is being stopped
intentionally, rather than accidentally, and that it will resume shortly. Filling any empty
space between blocks may be ∅ or ⌚ characters, depending on the stringency of the
requirements for maintaining character-boundary synchronization in the meantime.
ETBs may come between messages or in the middle of messages, depending on the
protocol.

Protocol extensions. In more complex transmission-control protocols, the
limited set of characters provided above may not be sufficient. Therefore the DLE (data
link escape; ⌥; ^P; 1016; 001,00002) character is provided for extending the protocol.
Following this character comes a limited sequence of characters whose interpretation is
determined by the specific protocol extension. ASCII itself does not define it.

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 5 of 9

As an example of the simple transmission control scheme outlined above, here is
a complete self-synchronizing transmission with handshaking of four text messages with
headers, broken into three blocks:
 ∅∅∅⌚⌚⌚⌚⍰⌚⌚⌚⌚⌚⌈header1⊥text1⌋⌈header2⊥text2⌋▣⌚⌚⌚⌚⌚⌚⌚⌚⌚⌚⌚⌈h

eader3⊥text3⌋▣⌚⌚⌚⌚⌚⌚⌚⌚⌈header4⊥text4⌋↯∅∅∅∅∅∅

The presumption here is that the receiver returned an ACK (☑) sometime between when
we sent the ENQ (⍰) and the SOH (⌈).

2.3. Use of the Bell character.

BEL (☎☎☎☎)
When sending data to a remote terminal manned by human operators, there may be a
need to alert the humans that a particularly important or urgent message is arriving. This
may be accomplished by inserting one or more BEL (bell; ☎; ^G; 0716; 000,01112)
characters into the data stream. These can be arranged to cause a bell to ring or a light to
flash at the receiving end, thereby calling attention to the message. (In a more modern
environment, we can imagine that the BEL character might be followed by a pager
number or instant-messaging identifier which would cause the designated human operator
to be alerted regardless of his physical location.)

2.4. Use of the Format Effector characters
FE0/BS (⌫⌫⌫⌫), FE1/HT (↦↦↦↦), FE2/LF (↓↓↓↓), FE3/VT (↧↧↧↧), FE4/FF (⇟⇟⇟⇟), FE5/CR (↲↲↲↲),
SP (␣␣␣␣), DEL (⌦⌦⌦⌦)
These characters are intended for specifying the control of text-formatting characters for
use with a teletype printer, text CRT terminal, or text editor software. Many modern
command-line console applications and terminal emulators (e.g., cmd in Windows,
xterm in Unix) as well as modern word processors such as MS Word handle many of
these characters.

FE0/BS (backspace; ⌫; ^H; 0816; 000,10002) causes the cursor to move
horizontally backwards one character position, optionally erasing or deleting the
character it passes over in the process; precise behavior depends on the capabilities and
mode settings of the display system. It is usually generated by the Backspace or left-
arrow (←) key on a computer keyboard. ⌫ characters are intended primarily for text
entry, and are not normally stored in text files. However, sometimes they do appear in
files that are generated directly from keyboard transcripts.

FE1/HT (horizontal tab; ↦; ^I; 0916; 000,10012) causes the cursor to move
horizontally to the next predefined tab stop position. On some systems, these may be
predefined to be at multiples of some fixed amount of space from the left margin. The
precise behavior depends on the application. HT characters (also called TAB) are usually

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 6 of 9

treated as whitespace characters which are stored along with printable text in a data file.
Often, the Tab or ↹ key on the keyboard causes this character to be inserted.

FE2/LF (line feed; ↓; ^J; 0A16; 000,10102) was originally intended to cause
teleprinters to advance the paper by one line of text without moving the print head. In
some modern systems (particularly Unix systems) it has acquired the more abstract
meaning of NL (newline), causing the equivalent of a CR/LF sequence. In other words, it
serves the role of a line-break character on these systems. However, other systems
interpret it as moving the cursor down one line without causing a carriage return.
Therefore, care must be taken when porting files containing LF characters between
different systems.

FE3/VT (vertical tab; ↧; ^K; 0B16; 000,10112) is the analogue of HT for text
formatting systems that also provide vertical tab stops (e.g., for advancing the cursor
vertically to the next predefined region on a preformatted page). However, it is rarely
used today. A sensible modern use in text entry might be to advance the cursor to the
first line of the next paragraph of text.

FE4/FF (form feed; ⇟; ^L; 0C16; 000,11002) is intended to advance the cursor or
print head to the first line of the next page of text. It can be included in text files to serve
as a page-break character. In some CRT terminals and terminal emulators, printing this
character clears the display. In some text editors and word processors, the Page Down
key enters this character, advancing the cursor to the next page or inserting a page break.

FE5/CR (carriage return; ↲; ^M; 0D16; 000,11012) was originally intended to
return the teletype print head to the start of the current line. As with LF, some modern
systems have co-opted it to serve as a newline or line-break character. Some text display
systems might advance the cursor to the next line when CR is printed; others might not.
Care must be taken when porting files containing CR characters between different
systems. In text entry systems, CR is usually generated by the Return, Enter or ↲ key,
and causes the cursor to advance to the start of the next line or a line-break character
sequence to be inserted in the text file. However, it may be translated to a CR/LF
sequence internally.

SP (space; ␣; 2016; 010,00002) is simply an invisible space character that is used
as whitespace to separate words. In text entry systems, it is entered with the spacebar
key, inserting a space and moving the cursor to the right, and it is stored within text files
and transmitted just like as with normal printable characters. However, in some contexts
(notably, web URLs), space characters are not allowed, and must be represented with
predefined printable character sequences instead.

DEL (delete; ⌦; ^?; 7F16; 111,11112) was originally defined as a RUBOUT
character (▩) which was used to manually obliterate characters already printed on punch
cards or punched tape by punching out all of the unpunched holes within the character
code. It was defined to be interpreted like NUL, that is, as a meaningless pause in the
data stream. However, the meaning has since evolved, and now it is used primarily as a

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 7 of 9

text-entry character which usually means, “delete the character immediately following
the insertion point.” It is rarely found inserted into text files, but when it is, its meaning
is application-dependent. ANSI classifies it as “other control,” but here we classify it as
a format effector.

2.5 Use of the Shift characters
LS1/SO (⊙⊙⊙⊙), LS0/SI (⊗⊗⊗⊗)
The characters LS1/SO (shift out; ⊙; ^N; 0E16; 000,11102) and LS0/SI (shift in; ⊗; ^O;
0F16; 000,11112) are intended to extend the capabilities of the graphic character set. In a
transmission or data file, characters with codes 2116 through 7E16 that appear between an
SO and subsequent SI may be given an alternate interpretation and visual appearance; for
example, they might be mapped to characters in some extended character set. ASCII
itself does not define what these alternate characters will be. In text entry systems, SO
could represent the pressing of a modifier key such as Shift, Ctrl, Alt, or Meta, and SI the
later releasing of that key. (However, in practice most systems process keypresses using
proprietary keycodes, and only use ASCII for character storage or transmission.) In 8-bit
ASCII, the SO and SI characters are called LS1 (Locking Shift 1) and LS0 (Locking Shift
0) respectively, and their defined behavior is slightly different.

2.6. Use of the Device Control characters
DC1 (⊚⊚⊚⊚), DC2 (⊛⊛⊛⊛), DC3 (⊜⊜⊜⊜), DC4 (⊝⊝⊝⊝)
These characters are intended for controlling a remote device. This could be an output
device such as a printer or terminal emulator, or some other predefined device associated
with the receiving node, such as for example a remote device that is transmitting data
back to the current node. DC1 (device control 1; ⊚; ^Q; 1116; 001,00012) is intended to
cause the remote device to turn on or resume normal operation. In the XON/XOFF flow
control standard, it is the XON character which means that the flow of data back from the
remote device should be resumed. DC2 (device control 2; ⊛; ^R; 1216; 001,00102) means
that the remote device should turn on and go into some predefined special mode. This
code is rarely used. DC3 (device control 3; ⊜; ^S; 1316; 001,00112) means that the
remote device should perform a secondary type stop, such as wait, pause, stand-by, or
halt. In XON/XOFF, it causes the remote terminal to pause in its sending of data.
Finally, DC4 (device control 4; ⊝; ^T; 1416; 001,01002) is a primary stop signal that
interrupts the remote device and/or causes it to turn off. All of the DCn character codes
are permitted to be used for device-control purposes other than these, if they are not
needed for the specific purposes listed. The precise meaning depends on the system.

2.7. Use of Miscellaneous Characters

CAN (✖✖✖✖), EM (■■■■), SUB (����),ESC (⇑⇑⇑⇑)

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 8 of 9

CAN (cancel; ✖; ^X; 1816; 001,10002) means that the preceding data is in error and
should be ignored. As the ASCII specification is ambiguous as to how much data is
indicated, the precise meaning is up to the application. Since BS already provides a
means for character-by-character backwards deletion, a sensible meaning would be for
cancel to terminate and disregard the entire current message, transmission block, or
transmission.
 EM (end medium; ■; ^Y; 1916; 001,10012) marks the end of a physical storage
medium or the end of the meaningful data stored on that medium. For example, after
overwriting the initial portion of a tape, we may terminate the new data with ■ to indicate
that the subsequent data is just old left-over content that should be ignored. If we later
append more data, it would be appended starting at the ■’s position.
 SUB (substitute; �; ^Z; 1A16; 001,10102) is a placeholder for corrupted
characters. For example, suppose we are embedding 7-bit ASCII into 8-bit octets where
the high bit is used as a parity bit for error detection. If the receiver of a message finds a
mismatch in the parity bit, then it knows that the character received is not the one that
was sent. It then automatically replaces the corrupted character with � before passing it
along to whatever application or user is reading the message. This tells the application or
user that this character was bad, and it can then cope with the error at some higher level.
 ESC (escape; ⇑; ^[; 1B16; 001,10112) is a character that is used to extend the set
of control characters. It is followed by subsequent characters that specify additional
codes. ASCII itself does not define the syntax and meaning of these extended codes, but
other specifications such as ISO 2022 do. ESC is usually generated by the “Esc” key on
a keyboard. Many keyboard-controlled systems interpret it as a command to abort or
terminate the current mode or application.

2.8. Use of the Information Separator characters

IS1/US (∫∫∫∫), IS2/RS (∮∮∮∮), IS3/GS (∯∯∯∯), IS4/FS (∰∰∰∰)
These characters are intended to be used for delimiting hierarchically structured data. For
example, suppose that the content or body of a message is followed by attachments
consisting of a set of database files. Then, individual files within the body may be
separated from each other by IS4/FS (file separator; ∰; ^\; 1C16; 001,11002) characters.
Within a given database file, there may be several different tables, or in other words
groups of records. The different groups would be separated by IS3/GS (group separator; ∯; ^]; 1D16; 001,11012) characters. Within each group, there would be a sequence of
records. Records within a group would be separated by IS2/RS (record separator; ∮; ^^;
1E16; 001,11102) characters. Finally, within each data record would be several fields or
units of data. The different fields within a record would be separated by IS1/US (unit
separator; ∫; ^_; 1F16; 001,11112) characters. So, a given message containing such files
might look something like this:

Michael P. Frank ASCII-controls-v2.2.doc 9/15/06

 Page 9 of 9

⌈From: ∫larry∮
To: ∫mike∮
Subject: ∫HR databases⊥
Mike, Take a look at this file. It contains the

updated employee databases. ∰Last∫First∫SSN∫Date Hired∫Salary∮
Smith∫John∫123-45-6789∫9/11/01∫$50,000∮
Doe∫Jane∫987-65-4321∫10/31/69∫$100,000∮
Gates∫Bill∫666-66-6666∫01/01/40∫$10,000,000∯
Emp SSN∫Manager SSN∮
123-45-6789∫987-65-4321∮
987-65-4321∫666-66-6666∮
666-66-6666∫666-66-6666⌋

Here we see a file separator used to separate the message text from a file that contains
two tables, or groups of records. The first line (record) in each table gives the names of
the fields in that group. The subsequent records in the group give the data. The tables
are separated from each other using the group separator character. Finally, the ETX
character ends the whole message.

3. Conclusion
In this document, we have summarized, to the best of our knowledge to date, the proper
intended (or in some cases, de facto) interpretation of the nonprintable ASCII characters.
The discussion can likely be further improved after the assimilation of more of the
available standards documents.

