
Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

1 of 15 

A Proposed Set of Mnemonic Symbolic Glyphs for the 
Visual Representation of C0 Controls and Other 

Nonprintable ASCII Characters  
Michael P. Frank 

FAMU-FSU College of Engineering 
Thursday, September 14, 2006 

 
v2.4 corrects DC3+DC4 icons in table 2. (DC3, the secondary stop, is CIRCLED EQUALS) –mpf 4/10/07 

 
Abstract.  In this document, we propose some single-character mnemonic, symbolic 
representations of the nonprintable ASCII characters based on Unicode characters that 
are present in widely-available fonts.  The symbols chosen here are intended to be 
evocative of the originally intended meaning of the corresponding ASCII character, or, in 
some cases, a widespread de facto present meaning.  In many cases, the control pictures 
that we suggest are similar to those specified in ANSI X3.32/ISO 2047, which has not 
been uniformly conformed to for representing the control codes in all of the widely 
available Unicode fonts.  In some cases, we suggest alternative glyphs that we believe are 
more intuitive than ISO 2047’s choices. 

1.  Introduction 
The most current official standard specification defining the 7-bit ASCII character set is 
ANSI X3.4-1986, presently distributed as ANSI/INCITS 4-1986 (R2002).  This character 
set includes 34 characters that have no visible, non-blank graphical representation, 
namely the 33 control characters (codes 0016-1F16 and 7F16) and the space character (code 
2016).  In some situations, for readability and compactness, it may be desired to display or 
print concise graphic symbolic representations of these characters, consisting of only a 
single glyph per character, rather than a multi-character character sequence.  

According to ANSI X3.4-1986, graphic representations of control characters may 
be found in American National Standard Graphic Representation of the Control 
Characters of American National Standard Code for Information Interchange, ANSI 
X3.32-1973.  We have not yet been able to obtain this particular document online, but an 
appendix to ANSI/INCITS 4-1986 states that the X3.32 standard is identical to ISO 2047, 
which we did examine and will discuss below. 

The Unicode standard (version 5.0, also some earlier versions) provides a number 
of code points (240016-242116) that are intended for use in graphically representing the 
C0 control characters and the space and delete characters; however, Unicode itself does 
not specify how these characters should look.  The most widely-supported glyphs for 
these code points consist merely of the standard abbreviations for the control characters’ 
names rendered in a narrow-width font within a single glyph.  For example, in the Arial 
Unicode MS font distributed with MS Office, the code points intended for depictions of 
the nonprintable ASCII characters are rendered as follows (shown here in an 18-point 
bold version, for clarity): 

 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

2 of 15 

␀␀␀␀    ␁␁␁␁    ␂␂␂␂    ␃␃␃␃    ␄␄␄␄    ␅␅␅␅    ␆␆␆␆    ␇␇␇␇    ␈␈␈␈    ␉␉␉␉    ␊␊␊␊    ␋␋␋␋    ␌␌␌␌    ␍␍␍␍    ␎␎␎␎    ␏␏␏␏    ␐␐␐␐    ␑␑␑␑    ␒␒␒␒    ␓␓␓␓    ␔␔␔␔    ␕␕␕␕    ␖␖␖␖    ␗␗␗␗    ␘␘␘␘    ␙␙␙␙    ␚␚␚␚    ␛␛␛␛    ␜␜␜␜    ␝␝␝␝    ␞␞␞␞    ␟␟␟␟    ␠␠␠␠    ␡␡␡␡     
whereas in the Lucida Sans Unicode font, the same code points are rendered somewhat 
less compactly, like this: 

 
 
In both cases, the available glyphs provide no graphic mnemonic or symbolic depiction 
of the meaning of the characters, beyond what is already present in their multi-character 
textual abbreviations, and so these symbols are not much of an improvement beyond 
simply writing out the abbreviations NUL, SOH, STX, and so forth. 
 There is actually an available standard which specifies a more mnemonic set of 
graphical representations:  INCITS/ISO 2047-1975, which is indentical to and apparently 
derived from the earlier ANSI X3.32-1973.  Figure 1 is a code table that was found on a 
random website (without attribution) that shows one rendering of the ISO 2047 standard 
glyphs for characters 0016-1F16.  In most cases, the pictures shown here are almost 
identical to ISO’s images, except that ISO’s backspace arrow doesn’t curve quite as far 
around.  Figure 2 shows an excerpt from the official ISO 2047 standard document (p. 6) 
showing their recommended glyphs for SP (space) and DEL (delete). 
  

 
Figure 1.  ASCII table including the ISO 2047 standard representations of the C0 controls 0016-1F16. 

 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

3 of 15 

 
Figure 2.  Pictorial and two-character representations of the SP (2016) 

and DEL (1F16) characters, excerpted from ISO 2047. 
 
Now, you might like or dislike ISO 2047’s particular choice of symbols, but the bigger 
problem is that these symbols themselves are not supported (in my experience, at least) 
by the widely available software for text entry and display.  For example, in the 
Microsoft Word 2003 word processing environment, the only two fonts that came 
preinstalled that appear to support a large subset of Unicode are Arial Unicode MS and 
Lucida Sans Unicode.  Not only do these fonts fail to use the ISO 2047 symbols to 
represent the standard Unicode codes for control pictures, as we mentioned earlier, but 
even worse, most of the ISO 2047 symbols are not to be found anywhere in these fonts at 
all.   In fact, as far as I have been able to tell, quite a few of the ISO 2047 symbols are 
not specifically mandated to be present even in the complete, latest versions of Unicode.  
One could try searching for ISO 2047’s symbols among available non-Unicode fonts, but 
this hardly seemed worthwhile, since for maximum portability, we would prefer to stick 
with widely available fonts that are based on a well-supported standard such as Unicode. 
 Therefore, it was decided that a worthwhile exercise would be to see if we could 
come up with an alternative set of glyphs (that is, not conforming to ISO 2047) for 
representing the nonprintable ASCII characters, using only symbols that are available 
within the Unicode fonts that are distributed with Microsoft Office, namely the fonts 
mentioned above.  This will permit representations of all nonprinting ASCII characters to 
be easily entered and depicted within popular Microsoft programs such as Word and 
Powerpoint, by using the Insert Symbol menu command. 
 Without further ado, let’s proceed to the next section, which presents our 
suggested symbols.  Then, section 3 will present a discussion to justify these choices. 

2.  The Proposed Symbols 
Table 1 below lists the nonprintable 7-bit ASCII characters and the suggested symbols 
for them.  Generally, when we suggest more than one symbol for a given character, the 
symbols are given in an order that corresponds roughly to the degree to which they are 
preferred, from most to least preferred.  Section 3 explains our choices in detail. 
 
Table 1.  ASCII control characters and other nonprintable characters (space, delete) with some proposed 
new mnemonic symbolic glyph renderings of them.  Column 1 shows the hexadecimal code of the 
character.  Column 2 shows the character that, if typed while holding down the Control key, will generate 
the character (at least on some systems).  The third column shows the official abbreviation for the 
character, from the ANSI X3.4 spec.   The fourth column shows the Unicode control picture for the 
character, as rendered in the Arial Unicode MS font.  The fifth column shows one or more proposed 
choices of suggestive and widely-available Unicode characters that be used to represent the control 
characters, shown in a proposed ordering from most to least preferred.  The next column gives the official 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

4 of 15 

full name of the control character.  Finally is the character type, also represented in the background color of 
the table row, according to OC=other control (magenta), TC=transmission control (red), FE=format 
effector (green), CE=code extension (yellow), DC=device control (cyan), IS=information separator (blue). 
 HexHexHexHex    CtlCtlCtlCtl    AbbrAbbrAbbrAbbr    UCUCUCUC    SSSSymymymymssss    NameNameNameName of control character of control character of control character of control character    TypeTypeTypeType    00 @ NUL ␀ ∅ null OC 01 A SOH ␁ ⌈ ⌜ start of heading TC 02 B STX ␂ ⊥ start of text TC 03 C ETX ␃ ⌋ ⌟ end of text TC 04 D EOT ␄ ↯ □ end of transmission TC 05 E ENQ ␅ ⍰ ؟ ‽ ¿ enquiry TC 06 F ACK ␆ ☑ ✓ ‼ ☺ acknowledge TC 07 G BEL ␇ ☎ ☏ ⌓ bell OC 08 H BS ␈ ⌫ ↶ backspace FE 09 I HT ␉ ↦ horizontal tabulation FE 0A J LF ␊ ␤ ↓ linefeed, newline FE 0B K VT ␋ ↧ vertical tabulation FE 0C L FF ␌ ⇟ ↡ form feed FE 0D M CR ␍ ↵ carriage return FE 0E N SO ␎ ⊙ shift out CE 0F O SI ␏ ⊗ shift in CE 10 P DLE ␐ ⌥  ⌘ data link escape TC 11 Q DC1 ␑ ⊚ ① device control one (XON) DC 12 R DC2 ␒ ⊛ ② device control two DC 13 S DC3 ␓ ⊜ ③ device control three (XOFF) DC 14 T DC4 ␔ ⊝ ④ ⊡ device control four DC 15 U NAK ␕ ☒ ☹ negative acknowledge TC 16 V SYN ␖ ⌚ ⌛ synchronous idle TC 17 W ETB ␗ ▣ ⊣ end of transmission block TC 18 X CAN ␘ ✖ ⌧ cancel OC 19 Y EM ␙ ■  ∎ end of medium OC 1A Z SUB ␚ � ¿ substitute OC 1B [ ESC ␛ ⇑ ↑ escape CE 1C \ FS ␜ ∰ file separator IS 1D ] GS ␝ ∯ group separator IS 1E ^ RS ␞ ∮ record separator IS 1F _ US ␟ ∫ unit separator IS 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

5 of 15 

HexHexHexHex    CtlCtlCtlCtl    AbbrAbbrAbbrAbbr    UCUCUCUC    SSSSymymymymssss    NameNameNameName of control character of control character of control character of control character    TypeTypeTypeType    20  SP ␠ ␣ ␢ space FE 7F ? DEL ␡ ⌦ ▩ delete, rubout OC/FE 
 
Next, Table 2 below gives a complete table showing the most-preferred glyphs for all the 
ASCII characters in a convenient two-dimensional code-table format. 
 
Table 2.  ASCII code table using special proposed mnemonic glyphs for the nonprintable characters.  The 
color code used is the same as in Table 1.  0 1 2 3 4 5 6 7 8 9 A B C D E F 0 NUL ∅ SOH ⌈ STX ⊥ ETX ⌋ EOT ↯ ENQ ⍰ ACK ☑ BEL ☎ BS ⌫ HT ↦ LF ↓ VT ↧ FF ⇟ CR ↵ SO ⊙ SI ⊗ 1 DLE ⌥ DC1 ⊚ DC2 ⊛ DC3 ⊜ DC4 ⊝ NAK ☒ SYN ⌚ ETB ▣ CAN ✖ EM ■ SUB � ESC ⇑ FS ∰ GS ∯ RS ∮ US ∫ 2 SP ␣ ! "  # $ % &  ' ( ) *  + , - . / 3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 4 @ A B C D E F G H I J K L M N O 5 P Q R S T U V W X Y Z [ \ ] ^ _ 6 ` a b c d e f g h i j k l m n o 7 p q r s t u v w x y z {  | }  ~ 

DEL ⌦ 
 
Finally, Table 3 below gives the Unicode code points and names of all of our suggested 
symbols, as well as others that are similar to ISO 2047’s pictures (highlighted in yellow).  
This table may be useful to help the readers of this document in locating these symbols 
using Microsoft Office’s Insert Symbol dialog box, or an equivalent component of their 
preferred text entry environment. 
 
Table 3.  Unicode hex codes and symbol names for some suggested symbolic representations of the 
nonprinting ASCII control codes.  For each character, they are ordered from most to least preferred.  
Symbols highlighted in yellow are the available symbols that were deemed to correspond most closely to 
the ISO 2047 proposals.  In this document, we do not advocate using all of ISO 2047’s suggestions, even 
where they are available, for the reasons discussed in section 3.  However, the available ISO 2047 symbols 
are included in this chart nevertheless, for purposes of completeness. HexHexHexHex    NameNameNameName    SymSymSymSym    UnicodeUnicodeUnicodeUnicode    Symbol NameSymbol NameSymbol NameSymbol Name    ∅ 2205 empty set 00 NUL ☐ 2610 ballot box 01 SOH ⌈ 2308 left ceiling 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

6 of 15 

HexHexHexHex    NameNameNameName    SymSymSymSym    UnicodeUnicodeUnicodeUnicode    Symbol NameSymbol NameSymbol NameSymbol Name    ⌜ 231C top left corner 02 STX ⊥ 22A5 up tack ⌋ 230B right floor 03 ETX ⌟ 231F bottom right corner ↯ 21AF downwards zigzag arrow 04 EOT □ 25A1 white square ⍰ 2370 APL functional symbol quad question ‽ 203D interrobang 061 ؟F arabic question mark ¿ 00BF inverted question mark ✠ 2720 maltese cross 05 ENQ ⊠ 22A0 squared times ☑ 2611 ballot box with check ✓  2713 check mark ☺ 263A white smiling face 06 ACK ☻ 263B black smiling face ☎ 260E black telephone ☏ 260F white telephone 07 BEL ⌓ 2313 segment ⌫ 232B erase to the left 08 BS ↶ 21B6 anticlockwise top semicircle arrow ↦ 21A6 rightwards arrow from bar 09 HT ➔ 2794 heavy wide-headed rightwards arrow ↓ 2193 downwards arrow 0A LF ≡ 2261 identical to 0B VT ↧ 21A7 downwards arrow from bar ⇟ 21DF downwards arrow with double stroke 0C FF ↡ 21A1 downwards two headed arrow 0D CR ↵ 21B5 downwards arrow with corner leftwards 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

7 of 15 

HexHexHexHex    NameNameNameName    SymSymSymSym    UnicodeUnicodeUnicodeUnicode    Symbol NameSymbol NameSymbol NameSymbol Name    ← 2190 leftwards arrow ⊙ 2299 circled dot operator 0E SO ⊗ 2297 circled times ⊗ 2297 circled times 0F SI ⊙ 2299 circled dot operator ⌥ 2325 option key ⌘ 2318 place of interest sign 10 DLE ⊟ 229F squared minus ⊚ 229A circled ring operator ① 2460 circled digit one 11 DC1 ◔  25D4 circle with upper right quadrant black ⊛ 229B circled asterisk operator 12 DC2 ② 2461 circled digit two ⊜ 229C circled equals 13 DC3 ③ 2462 circled digit three ⊝ 229D circled dash ④ 2463 circled digit four 14 DC4 ◕  25D5 circle with all but upper left quadrant black ☒  2612 ballot box with X 15 NAK ☹ 2639 white frowning face ⌚ 231A watch 16 SYN ⌛ 231B hourglass ▣ 25A3 white square containing small black square 17 ETB ⊣ 22A3 left tack ✖ 2716 heavy multiplication X ⌧ 2327 X in a rectangle box 18 CAN ⌛ 231B hourglass 19 EM ■ 25A0 black square 1A SUB � FFFD replacement character 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

8 of 15 

HexHexHexHex    NameNameNameName    SymSymSymSym    UnicodeUnicodeUnicodeUnicode    Symbol NameSymbol NameSymbol NameSymbol Name    061 ؟F arabic question mark ¿ 00BF inverted question mark ⇑ 21D1 upwards double arrow ↑ 2191 upwards arrow 1B ESC ⊖ 2296 circled minus 1C FS ∰ 2230 volume integral 1D GS ∯ 222F surface integral 1E RS ∮ 222E contour integral 1F US ∫ 222B integral ␣ 2423 open box ␢ 2422 blank symbol 20 SP ∆ 25B3 increment ⌦ 2326 erase to the right ▩ 25A9 square with diagonal crosshatch fill 7F DEL ▧ 25A7 square with upper left to lower right fill 
 

3. Discussion 
In this section, we discuss and attempt to justify our choices and recommended order of 
preference for all of the control code pictures that we listed above. 

 Null.  In many fields, the concept of nullity or nothingness is represented by ∅, 
the empty set symbol used in mathematical set theory.  Since, in 7-bit ASCII, the NUL 
(code 0016) character is intended to be used as meaningless filler for the empty space or 
time in between valid symbols, it seemed appropriate to represent it using a symbol that 
literally means “nothing.”  Meanwhile, ISO 2047’s suggestion of using an outlined 
square for NUL is already widely used by many software programs to depict otherwise 
unprintable characters.  In this document, we suggest that a square might be better used to 
represent end of transmission, as discussed below. 
 Start of header.  ISO 2047’s suggestion for this is good; a pair of lines across the 
upper and left sides of the character space.  This image suggests the upper-left corner of a 
page.  If one were to write a message on a piece of paper, one might naturally start by 
writing the message header information in the upper-left corner of the paper.  Therefore, 
it seems natural (at least in languages that read left-to-right) to use this image for SOH.  

In Unicode, we found two symbols that look similar to ISO’s, namely ⌈ (left ceiling) and 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

9 of 15 

⌜ (top left corner).  We prefer the left-ceiling symbol mostly because the horizontal line 
is closer to the top of the character space. 
 Start of text.  ISO 2047’s suggestion for this looks like it could be a separator 
between the message header and the message text, which is what STX is defined to be.  It 
is also an upside-down “T”, which mentally associates it with the word Text.  Therefore, 
we propose adopting this character as a good choice for STX.  It is available in Unicode 

as ⊥ (up tack), a symbol that is widely used in mathematics, for example to represent the 
relation “perpendicular to” in geometry. 
 End of text.  This is logically the complement of SOH, as it is intended to end a 
message.  Therefore it is appropriate that it should have the opposite symbol to SOH. 
 End of transmission.  This is a tough one.  At first, we thought that a white 
square might be appropriate, analogously to how mathematicians sometimes use this 
symbol to end a proof.  But then, we decided that we rather liked ISO’s lightning-bolt 
symbol.  The lightning bolt suggests an electrical shock, and electricity is what is often 
used to send transmissions, and an electric spark might result from breaking a wire to end 
a transmission.  However, no lightning bolt symbol was to be found in our subset of 

Unicode.  However, we did find a squiggly downwards-arrow symbol ↯, whose 
downwards orientation seems to suggest an ending.  Therefore, we decided to adopt this 
symbol, in preference to the white square. 
 Enquiry.  Clearly, ASCII’s ENQ symbol, which is used for “Are you there?” 
polling between sender and receiver, ought to be represented using some sort of question 

mark.  In contrast, ISO’s suggestion to use a Maltese cross (✠) or, if this is not available, 

a square with an X in it (⊠) appears to make no logical sense whatsoever.  The available 

symbols containing question marks in Unicode were ⍰ (a question mark inside a white 

square, which is included due to its use as an operator in the APL programming 
language),؟  (arabic question mark, which is backwards to the right-to-left text direction 

of arabic), ‽ (interrobang, a rarely-used hybrid of a question mark and exclamation 

point), and ¿ (upside-down question mark used in Spanish).  At first, we liked the 
interrobang, since the ENQ is in the nature of a question that demands an answer.  But, it 

was decided that the APL quad-question operator ⍰ should be preferred, due to its 
similarity in appearance to our recommended symbols for ACK and NAK.  The three 
characters ENQ, ACK, and NAK are intended to be used together in handshaking 
protocols.  The square represents the check-box or ballot box where the answer to the 
“Are you there?” question should be filled in.  When there’s a question mark there, that’s 
the ENQ character.  When the receiver answers yes (ACK) or no (NAK), that’s a check-
mark or X, respectively, thrown into the ballot box.  Thus, our recommendations for these 
three symbols go together.  Other possibilities include the Arabic question mark, although 
this can cause difficulties in typing because it is intended to be used in right-to-left text; 
in some environments, it may cause the cursor to move in the wrong direction.  Also, ISO 
suggests a backwards question mark to represent SUB instead, and we’d like to avoid 
confusion.  The inverted question mark of spanish is also a possibility, but the problem 
there is that it is a page-0 code point in Unicode (00BF16) and so it is already used to 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

10 of 15 

represent character number BF16 in internationalized 8-bit ASCII character sets.  We’d 
prefer to avoid using any existing 8-bit ASCII symbols in our proposal, so that our 
symbol selection can be used unambiguously to represent control codes appearing in 8-bit 

ASCII character streams, as well as the usual 7-bit ASCII.  Thus, ¿ is also ruled out, and 

so interrobang remains the best alternative if quad-question isn’t available. 
 Acknowledge.  We approve of ISO’s quite logical suggestion to use a check-
mark to represent this transmission protocol function.  However, we suggest that even 
better is to put the check-mark inside the same white square that we propose using around 
the symbols for ENQ and NAK; this visually ties the three symbols together.  See the 
discussion of ENQ above.  Other logical possibilities for representing the positive, yes 
semantics of ACK include smiley-face characters, of which there are two in Unicode, the 

white smiling face ☺ and the black smiling face ☻.  However, we felt that these looked 
too silly, and the black face especially stands out too strongly.  Also, in some IBM 
extensions to ASCII, used in old EGA text-based CRT drivers, the white and black 
smiley faces are how the ASCII characters 0116 and 0216 (SOH and STX) are rendered on 
a monitor screen!  When possible, we’d prefer to avoid any confusion with such pre-
existing 8-bit ASCII extensions. 
 Bell.  ISO’s suggestion for this is decent in that it looks vaguely like a bell, but it 

isn’t an available symbol in Unicode.  The closest thing to it is ⌓ (code 231316), which is 

the top half of a circle.  However, the similarity is not too close, and ⌓ is anyway perhaps 

too abstract-looking.  We suggest instead using Unicode’s black telephone character ☎.  
It stands out visually, but this is appropriate, since BEL is a character that is meant to 
stand out, and to physically ring a bell.  There is also the cute coincidence that Alexander 
Graham Bell is the inventor of the telephone, and that old telephones rang by actually 

ringing a physical bell.  The white telephone ☏ is also a possibility, but it doesn’t stand 
out as well. 
 Backspace.  ISO’s symbol (for which the closest Unicode analogue we found is ↶) is not too bad, since it visually depicts the action of moving the cursor or print head 
backwards one space.  However, in most modern computer-based text entry systems, and 
even on many electric typewriters having whiteout ribbons, the backspace key not only 
moves the cursor backwards, but furthermore actually erases the previous character.  

Therefore, we prefer the symbol ⌫ (erase to the left), which literally means this, and is 
actually how the backspace key is labeled on some keyboards. 
 Horizontal tabulation.  Unicode’s symbol looks a lot like �, which is a wide 
rightwards-pointing arrow character from the Wingdings 3 font, and which can be created 
in Word by typing the simple character sequence --> (dash, dash, greater than).  
However, this is not a Unicode character.  There are right arrows in Unicode, but they are 

not as fat.  Therefore, we instead decided to use ↦, rightwards arrow from bar, where the 
small vertical bar suggests movement that involves a definite position, i.e., a tab stop.  It 
would be a more accurate depiction of HT’s function if the little vertical bar were at the 
head of the arrow rather than its tail, but hey, we do what we can.  If this character is not 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

11 of 15 

available, or if one prefers to stick closer to ISO’s suggestions, we suggest ➔, the “heavy 
wide-headed rightwards arrow,” although this one may stand out too much. 
 Line feed.  ISO’s suggestion appears to be an abstract depiction of the horizontal 
lines of text on a printer.  Although vaguely appropriate, it does not suggest actual 
movement of the print head or cursor position, which is what LF does.  Therefore, we 

suggest using a simple downwards-pointing arrow ↓ (code 219316), since this is the 
direction that the print head is supposed to move relative to the paper, and is also the 
direction that the cursor moves relative to the text in a more modern CRT terminal or 
word processor program that interprets LF characters.  If you’d rather use ISO’s symbol 

when possible, the “identical to” operator ≡ looks pretty similar to it. 
 Vertical tabulation.  The symbol for this should obviously be similar to the 

symbol for HT, due their analogous function.  Conveniently, there is a ↧ (downwards 
arrow from bar) symbol in Unicode.  This goes with our HT symbol, and justifies out not 
having used a plain rightwards arrow for HT, since the analogous plain downwards arrow 
is already being used for LF. 
 Form feed.  ISO’s double-headed downwards arrow symbol for this makes sense, 

since form feed moves the print head down a lot.  And there is a Unicode symbol ↡ (code 
point 21DF16) that looks similar.  However, we thought that an even better representation 

would be ⇟, “downwards arrow with double stroke.”  The double stroke can represent the 
bottom of one page and the top of the next, and the arrow is the print head moving from 
near the end of the first page to near the start of the next.  I can’t think of a more direct 
depiction of FF’s intended function.   

 Carriage return.  The obvious choice for this is the ↵ symbol that already 
decorates the RETURN or ENTER key of many keyboards.  The actual semantics of CR 
in ASCII does not specify moving downwards (only left), but there are enough systems 
that move the cursor down simultaneously, at least during text entry, that this 
representation seems reasonable.  If it is not available, or if one’s system doesn’t advance 

the cursor upon CR, then one may wish to use a plain left arrow ← instead, although this 

suggests an overly strong analogy with the function of LF (↓); the CR moves all the way 
left, whereas LF only moves one line down.  The ideal symbol would be a leftwards 
arrow that approaches a vertical line representing the left edge of the page, but this is not 
available. 
 Shift out.  For the shift out and shift in characters, which invoke alternate 

character sets, ISO’s suggestions of ⊗ (circled X) ⊙ (circled dot) are pretty good, but I 
would suggest swapping them.  The reason is that in physics, a circled dot standardly 
represents a magnetic field vector coming out of the page, wheras a circled X represents a 
vector going into the page.  Thus, ISO’s suggestions as to which symbol means “in” and 
which means “out” seem backwards.  With this fixed, I endorse ISO’s suggestions, and 
they are already available in Unicode. 
 Data link escape.  This character is intended to initiate escape sequences meant 
for advanced transmission control functions.  ISO’s suggestion for this is a square with a 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

12 of 15 

horizontal line across the middle.  This seems rather abstract and does not evoke for me 
the concept of what DLE is supposed to do.  I thought a better choice might be a symbol 
that is already associated with the concept of invoking new options.  This brought to 

mind the symbol ⌥ that decorates the Option key on some Macintosh keyboards.  It’s 

especially suggestive of “data link escape” because the broken horizontal line at the top 
suggests the “data link” whereas the diagonal part coming down could represent 
“escaping” from it to process some special escape sequence.  Anyway, it’s the best thing 

I found.  Another possibility is Apple’s Command key logo ⌘ (place of interest sign), but 
it does not seem quite as appropriate.   
 Device controls one through four.  ISO’s symbols for device controls 1-4 look 
like 25%/75% pie charts with the 25% part in different quadrants.  These symbols are 
very abstract, and they exaggerate the amount of symmetry between these functions.  The 
ASCII spec does not treat DC1-4 completely symmetrically, but rather specifies 
particular functions that are supposed to be used for each one, if needed.  The pie chart 
symbols are also not available in the Arial Unicode MS font, although they are actually 
available in full Unicode (in code points 25F4-25F7).  Anyway, I greatly prefer to use the 

convenient four Unicode symbols ⊚, ⊛, ⊜, ⊝ which are already available (and are even 
adjacent and in the right sequence!) in code points 229A-229D.   

 Device control one.  The circled-circle ⊚ looks good for DC1 (XON), which is 
supposed to turn on some device at the receiving end, since it looks like a push-button to 
turn something on, or we can think of the inner circle as being an “O” for “On.” 
 Device control two.  DC2 is supposed to put the device in some special mode.  

The symbol ⊛ looks good for this, with the asterisk representing “something special.” 
 Device control three.  DC3 (XOFF) is a “secondary stop” that is supposed to just 
pause the receiving device (rather than turning it off completely).  Well, the double lines 

inside ⊜ look a lot like the pause symbol that one sees on audio/video playback devices.  

Also, the fact that there are two of them suggests a secondary level stop.  The only 
improvement might be if the two lines were vertical (like a pause button) instead of 
horizontal. 

 Device control four.  DC4 is supposed to turn off the remote device.  ⊝ is perfect 

for this, since like ⊚, it also looks like an on-off button, but one where the inner “O” has 
collapsed or closed shut, like a closed eyelid.  Also, the fact that there is only one 
horizontal line instead of two suggests that it is a “primary stop” in contrast to DC3’s 
“secondary stop.” 
 If these characters are not available, or for applications where the device control 
functions assigned to DC1-DC4 are more arbitrary than the ones suggested by the ASCII 

spec, the characters ①, ②, ③, ④ would seem a nice straightforward representation. 
 Negative acknowledge.  ISO suggests a checkmark with a line through it, which 
is a nice counterpoint to ACK’s checkmark, but is unfortunately not available in Unicode.  

We suggest instead using ☒, which is a no or “X” answer to the ballot box question posed 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

13 of 15 

by ⍰ (ENQ).  If smiley-face ☺ is used instead for ACK, then clearly one should use 

frowny-face ☹ for NAK. 
 Synchronous idle.  ISO’s suggestion looks like a square-wave pulse.  This 
suggests the idea of synchronization nicely, but isn’t available in Unicode.  We suggest 

instead using the stopwatch (⌚) or hourglass (⌛) icons to represent the idle passage of 
time, although they are both a little cutesy.  Of these two, the stopwatch icon does a better 
of evoking the idea of discrete-time synchronization between sender and receiver. 

 End transmission block.  ISO’s suggestion, a leftwards-pointing tack ⊣, is not 
too bad; the line coming from the left representing the transmission coming to the edge or 

end of a particular block of data.  It also associates ETB visually with EOT (⊥), which is 
another transmission control character.  So, using this symbol is not a bad choice.  But we 

also liked ▣, a filled square inside an empty square.  The filled square represents the 
“block” of data, and the empty square around it represents finality, like the QED 

tombstone □ that ends a proof.  Take your pick. 
 Cancel.  ISO’s symbol, which looks like an abstract depiction of an hourglass, 
doesn’t seem to make very much sense.  CAN is supposed to literally cancel or withdraw 
some preceding information, such as perhaps the entire content of the current message, 
transmission block, or maybe even the entire transmission.  This is a fairly drastic action, 

and it requires a bold, direct presentation.  The best icon I found seemed to be ✖, the 
bold, black X.  It stands out from the crowd, as a cancel character should. 
 End of medium.  ISO’s symbol is a vertical line with a dot in the middle.  This 
doesn’t make much sense, and isn’t available in Unicode.  I thought a better symbol 

would be a filled square ■, which is a bold statement of finality, a filled tombstone 
symbol that is sometimes used to end a proof in mathematics.  It is a more final version 

of the empty square □ that might be used to mean “end of transmission.”  If the medium 

is over, then that’s it!  However, EM can be used to mark the end of just the used part of 
the medium, which gives it a close analogy to EOT. 
 Substitute.  ISO suggests a backwards question mark.  This is actually available 
in Unicode as an Arabic question mark, but this character presents problems with cursor 
movement which we discussed earlier.  We suggest instead using the Unicode 

replacement character �.  This is in fact the perfect representation, since the replacement 
character in Unicode serves exactly the same purpose as SUB is supposed to in ASCII – 
that is, it is intended to be a replacement for characters that are found to be illegal, 

invalid, or unknown.  Another possibility is the upside-down question mark ¿, but that 
would be conflict with its existing use in 8-bit ASCII. 
 Escape.  ISO suggests a circle with a horizontal line across it.  This is similar to 
their symbol for DLE, which is appropriate, but both symbols are too abstract.  We 

suggest instead an upwards arrow ↑ or upwards double arrow ⇑.  The upwards arrow 
suggests rising up to escape from the context of the literal data stream or application 
within which one is embedded.  Of these two symbols, the double arrow is probably 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

14 of 15 

better, to avoid a false perception of similarity to the single arrows that we propose using 
to represent the formatting characters. 
 File separator.  The ISO symbols for the information separators, like their 
symbols for the device controls, give a mistaken impression of some kind of “rotational 
symmetry” between the four functions.  But actually, the ASCII file separators are 
hierarchical; there is a definite ordering associated to them, a “highest” and a “lowest,” 
which is not apparent in the fourfold symmetry of the ISO symbols.  Also, the ISO 
symbols were not available in my fonts, although they are present in full Unicode, in 
code points 25F0-25F0.  The best representation I found in my subset of Unicode was a 
series of integral operators.  The higher-dimensional integrals correspond to higher levels 
in the information grouping hierarchy.  FS is the highest level, so it gets the triple volume 

integral ∰.  A quadruple integral might have been better, but it wasn’t available.  A 

bonus is that the integral symbol looks like the “S” in “separator,” which is the case for 
historical reasons, because it originally stood for “Sum.”  Integrals sum things up, and the 
information separators say, “this is/was the sum total of everything contained in this 
particular information unit.”  The oval makes it clear that even the triple integral is a 
single glyph. 
 Group separator.  One hierarchy level below the file separator, the group 

separator can be represented by a surface integral ∯.  The oval “groups” the two integral 
symbols together. 
 Record separator.  One level below the group separator, RS can be written with 

a countour integral ∮.  The circle suggests the completeness of the record’s information 
about its contents. 
 Unit separator.  At the lowest level, we have the unit separator, represented by a 

plain integral ∫.  This is the most common separator, and it has the simplest symbol. 
 Space.  In my experience, the most common visible typographic symbol used for 

representing a space is the open box, ␣.  The alternate symbol ␢ (blank) is also provided 
by Unicode, but seems less intuitive.  ISO suggests using the triangle or increment 

symbol ∆, which may make some kind of sense, since the space character increments the 
cursor position, but it is visually less evocative of empty space than is the open box. 
 Delete.  Code point 7F16 originally meant RUBOUT, or the manual nullification 
of a character by poking out all the holes in its area of a punch card or paper tape to 

change it into a 11111112.  ISO’s hatched box ▧, or something like it, has actually been 
used in many systems to depict the rubout character.  However, nowadays, 7F16 is called 
DEL and, when used for text entry, it is more likely to delete the next character to the 

right.  Therefore, the Unicode ⌦ (erase to the right) character seemed most appropriate 

for it.  However, I wouldn’t mind if you decided to use ▧ instead.  There’s also a darker-

looking double-crosshatched box, ▩, which looks a little bit more like most of the 
RUBOUT glyphs that I’ve seen used in practice. 



Michael P. Frank  My-ASCII-Glyphs-v2.4.doc 9/14/06   

15 of 15 

4. Conclusion 
In this document, we proposed that, when necessary and possible, the traditionally non-
printable ASCII characters 0016-1F16, 2016, and 7F16 ought to be represented, in systems 
supporting Unicode subsets that are at least as complete as is the Arial Unicode MS font, 
by the following symbols, respectively: 
 ∅⌈⊥⌋↯⍰☑☎⌫↦↓↧⇟↵⊙⊗⌥⊚⊛⊜⊝☒⌚▣✖■�⇑∰∯∮∫␣⌦ 

 
These symbols were chosen based on the criteria of (1) availability in the Arial Unicode 
MS font, which is widely distributed as part of Microsoft Office 2003 (as well as some 
earlier versions), (2) appropriateness for conveying the control characters’ semantics as 
specified by ANSI, (3) semantic appropriateness of the visual relationships between the 
characters, and (4) their similarity to the standard ANSI X3.32/ISO 2047 symbols where 
those symbols make sense, with these criteria being applied in roughly the given order of 
priority.  We also explained in detail our rationale for each choice of symbol. 
 Improvements on this proposed system are doubtless possible; and this system 
may in fact be obsoleted by future standards, and/or by extensions to Unicode and/or the 
character sets that are supported on widely-available platforms.  Furthermore, many of 
the control characters (particularly the transmission control characters) in the original 7-
bit ASCII code are themselves largely obsolete today, being either rarely used, or used 
for some purpose that is completely unrelated to the one originally dictated by the ANSI 
X3.4 spec.  Still, a certain fraction of legacy systems (and even some occasional new 
systems) may continue to use these old codes for some time to come, and for purposes of 
describing these systems’ behavior using modern word processors, the symbol set 
proposed above may be useful, at least for a while. 


