EEL 4746 (Microprocessor-Based Systems Design), Fall 2004
EXAM #1 – Sample Questions

The questions below are representative of general types of problems that you might encounter on the real exam. This is not intended to be limiting – other problems could appear that are substantially different from those shown here. Past homework and quiz questions are additional sources for types of problems that could appear on the exam.
To practice for the exam, you should try solving these problems, and time how long it takes you. The real exam will contain roughly 10 questions at varying levels of difficulty. (If you can complete the below problems in 2 hours or less, you will be in good shape.) The exam will be open book and open notes, and you should bring a calculator.

1. Draw a generic high-level block diagram of a basic computer system, including CPU, Memory, I/O system, and Bus.
For this, you could basically just copy down the diagram on slide 35 of the slide set “01_course_introduction.ppt”, or (slightly more detailed) the diagram in figure 1-1 on p.2 of the book.
2. Draw a state-transition diagram for a Moore machine having one input signal called dir, and an output signal called count which is a 3-bit binary number c2c1c0, which does the following: It starts in a state where count=0. When dir is 1, count counts upwards up to 5 in binary and stops there. When dir is 0, count counts downwards to 0 and stops there.
There are lots of valid ways to draw this. Here’s one:

[image: image1]
3. Write an HC11 assembly code fragment that implements the finite-state machine of the previous problem. Assume that the symbol “dir” has been defined as the address of an input port whose low-order bit represents the dir input of the previous problem, and that the symbol “count” has been defined as the address of an output port whose low 3 bits represent the count output. Use the A accumulator to store the current state.
If we assume the other bits of the dir and count port (not mentioned) should just always be zero, this can be done easily:

start:
CLRA

; Set the current state to S0.
output:
STAA
count
; Output current state # as count.
loop:
TST
dir
; Test the "dir" input

BEQ
down
; Go down if dir=0
up:
CMPA
#5
; Already 5?

BEQ
loop
; If so, no change.

INCA

; Increment state number.

BRA
output
; Update output and repeat.

down:
TST
count
; Check current count

BEQ
loop
; If count=0, keep it.

DECA

; Decrement state number.

BRA
output
; Update output and repeat.
Try running this code under THRSIM11 with dir EQU $1003 and
count EQU $1004, and use the I/O box to toggle the PC0 input and observe the PB0-2 outputs. You may want to add a delay loop so it doesn’t go too fast to see.

Partial credit would be given for a pseudocode solution.

If we assume instead that the other bits in dir and count ports must be ignored and remain undisturbed, the solution becomes quite a bit longer.

4. How many bits are there in a kilobyte? Give the exact number.

When people use “kilobyte” in computer engineering, they usually mean a kibibyte, which is 210 bytes, or 1,024 bytes. There are 8 bits in a byte, so there are 8×1,024 = 8,192 bits in a kilobyte.
5. Convert the number 1,23410 from decimal to binary, then from binary to octal, from binary to hexadecimal, and finally convert the hexadecimal code directly back to decimal (without going through binary). Show your work.

We’ll convert to binary by repeatedly subtracting the largest power of 2 less than the given number, to find where all the 1 bits are.

1,23410 − 1,024 = 210
(1 in 1024’s or 210’s place)

210 − 128 = 82

(1 in 128’s or 27’s place)

82 − 64 = 18

(1 in 64’s or 26’s place)

18 − 16 = 2

(1 in 16’s or 24’s place)

2 − 2 = 0

(1 in 2’s or 21’s place)

So, 1,23410 = 100110100102
(210+27+26+24+21)

To find octal, we merely break the number up into groups of 3 bits: 10,011,010,010 = 23227.

For hex, we use groups of 4 bits: 100,1101,0010 = 4D216.

Converting back to decimal, we have

4(162)+13(16)+2 = 1024+208+2 = 1234.
6. What integer does the bit pattern 10110100 represent, if interpreted as…?

a. a signed binary number in sign-magnitude format,

10110100 = -0110100 = -(32+16+4) = -52
b. a signed binary number in two’s complement format,

10110100 = -128 + 32 + 16 + 4 = -128 + 52 = -76
c. an unsigned binary number,

10110100 = 128 + 32 + 16 + 4 = 128 + 52 = 180
d. an unsigned BCD (binary-coded decimal) number.

10110100 = 1011 0100 = B4
This is not a valid BCD number because B is not a decimal digit. (This was a mistake in the problem statement; it was not intended to be a trick question.)
7. Perform the subtraction 10110100 − 01001101 in binary (using either the ordinary borrow method or the new method I showed in class), and show what the result would be in decimal, if the bit pattern was interpreted as an (a) signed or (b) unsigned number.

 1

01 01011

10110100
 -76
 180
· 01001101 - 77 - 77
01100111 103 Wrong 103 Correct

The result is interpreted as 103 in either case.

8. Would the subtraction done in problem 7 cause the C flag in the HC11 condition code register to be set to 1? Why or why not?

No, because there’s no borrow out of the high order bit.
9. Would the subtraction done in problem 7 cause the V flag in the HC11 condition code register to be set to 1? Why or why not?

Yes, because: (Any of the following explanations would be acceptable.)

· The result of the signed subtraction is wrong.

· We took a negative minus a positive and got a positive.

· A7=1, B7=0, but R7=0, so
[image: image2.wmf])

(

)

(

7

7

7

7

7

7

R

B

A

R

B

A

V

×

×

+

×

×

=

evaluates to true, due to the left-hand clause
[image: image3.wmf]7

7

7

R

B

A

×

×

 of the OR = 1.
· There was a borrow into bit 7, but not out of bit 7.

10. Which of the following branches would be taken immediately following the subtraction in problem 7? Circle all the ones that would be taken. BRA, BEQ, BNE, BGT, BGE, BLT, BLE, BLO, BLS, BHI, BHS, BPL, BMI, BCS, BCC, BVS, BVC.
BRA is taken because it is always taken.

BEQ is not taken because the subtraction result wasn’t 0.

BNE is taken because the subtraction result was ≠0.

BGT is not taken because -76 isn’t greater than 77.

BGE isn’t taken because -76 isn’t (77

BLT is taken because -76 < 77. (Note N=0 & V=1, so N(V=1.)

BLE is taken because -76 (77.

BLO is not taken because 180 is not lower than 77. (Note C=0.)

BLS isn’t taken because 180 isn’t (77.

BHI is taken because 180 > 77. (And C=0; no borrow fr. bit 7.)

BHS is taken because 180 (77.

BPL is taken because the result 103 (0. (N bit is 0.)

BMI is not taken because 103 isn’t < 0. (N bit isn’t 1.)

BCS is not taken because C=0. (No borrow out of bit 7.)

BCC is taken, because the carry bit C is clear (0).

BVS is taken because the overflow bit V is set (1).

BVC is not taken because V isn’t clear (0).
11. In the HC11, is it possible for accumulator A to contain the number 300? Why or why not?

No, because accumulator A is an 8-bit register and so (in standard number representations) it could only ever contain numbers ranging from -128 (signed $80) to +255 (unsigned $FF). [One could always invoke some other non-standard number system, but that is not the intent of this question.]
12. In the HC11, is it possible for accumulator A to contain the number $3F at the same moment that accumulator D contains the number $403F? Why or why not?

No, because A is the high-order byte of D. Thus if D=$403F, then A=$40, not $3F.
13. The “top” of the stack is generally at a higher-numbered/lower-numbered (circle one) memory address than the “bottom” of the stack.

The top of the stack is at a lower-numbered address, unless the stack is empty, in which case the “top” and “bottom” are the same location.
14. If A=$3F, SP=$7FFF, and we do PSHA, then (a) what will SP be afterwards, and (b) what memory location will contain $3F?

SP will be $7FFE, and MEM[$7FFF] = $3F.
15. If register X contains $1004, and accumulator B contains $36, then the instruction sequence PSHX, PSHB, PULX, PULB will result in what values in X and B?

After PSHX, the stack will contain (top to bottom) ($10, $04).

After PSHB, the stack will contain ($36, $10, $04).

After PULX, X will contain $3610; stack will be ($04).

After PULB, B will contain $04; stack will be ().
16. If you wanted a program to remain in memory after the power is turned off, would you store it in DRAM or EEPROM?

EEPROM, since this is non-volatile. DRAM is volatile.
17. In the default HC11E9 memory map, what range of addresses is reserved for the control registers?

If you forgot, you could look this up in the textbook (table 2-2, pp. 9-10), the lecture slides (slide set 04, slides 23-24), the programming reference guide, or other references.

The address range is $1000:103F.
18. Suppose you wanted to write a subroutine to copy data from one region of memory to another using a loop. What addressing mode would you use in the load and store instructions inside the loop? Explain your choice.
Register indirect addressing mode (a form of indexed addressing) would be preferred here, because it allows the identity of the location accessed to be different each time through the loop.
19. Write the subroutine alluded to in the previous question. Assume that initially X contains the address of the start of the source region to be copied from, Y contains the address of the destination region to be copied to, and D contains the number of bytes to copy.

For simplicity, we’ll assume that the source and destination regions are non-overlapping. (Removing this assumption would complicate our code quite a bit.)

memcopy:
CPD
#0
; Compare D to 0.

BEQ
done
; If D=0, nothing left to copy.

PSHA

; Save the MSB of D.

LDAA
0,X
; Load next byte to copy.

INX

; Go to next source byte.

STAA
0,Y
; Store A at destination addr.

INY

; Go to next destination byte.

PULA

; Restore the MSB of D.

SUBD
#1
; Decrement # of bytes left.

BRA
memcopy
; Repeat.

done:
RTS

; Return to caller.
20. Suppose you wanted an assembly language program to initially (when it is first loaded) contain the data value 10,000 (decimal) located at address $2000. What sequence of two assembler directives would accomplish this?

 ORG
$2000
; Start assembling at this addr.

data:
 RDB
10000

; Reserve double-byte with this value

(The label is optional.)
21. Suppose that accumulator A contains a signed integer with an absolute value less than 32. What sequence of two instructions would have the affect of multiplying A by 4 in-place (that is, A=A*4), without affecting any other registers besides A (and PC and CC)? (Hint: Don’t use MUL.)

We just need a sequence of two ASLA instructions:

ASLA

ASLA

You could use LSLA also (it has the same opcode, $48), but using ASLA is a nice way of reminding a human reader that we are working with signed numbers here.
22. Suppose you want to write a subroutine that uses register X internally, but you want other routines that call your subroutine to be able to depend on the value of register X remaining the same after your subroutine is called. Fill in the blanks with a pair of instructions that would accomplish this. You may assume that SP is pointing into RAM.

mysub:
PSHX_

…

(subroutine’s body here)

…

PULX_

RTS
c2c1c0 =�0 0 0

c2c1c0 =�0 0 1

c2c1c0 =�0 1 0

c2c1c0 =�0 1 1

c2c1c0 =�1 0 0

c2c1c0 =�1 0 1

start

dir = 1

dir = 1

dir = 1

dir = 1

dir = 1

dir = 1

dir = 0

dir = 0

dir = 0

dir = 0

dir = 0

dir = 0

s0

s1

s2

s3

s4

s5

_1159796608.unknown

_1159950276.unknown

