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Abstract Over the last few decades, developments in the physical limits of com-
puting and quantum computing have increasingly taught us that it can be helpful
to think about physics itself in computational terms. For example, work over the
last decade has shown that the energy of a quantum system limits the rate at which
it can perform significant computational operations, and suggests that we might
validly interpret energy as in fatteingthe speed at which a physical system is
“computing,” in some appropriate sense of the word. In this paper, we explore the
precise nature of this connection. Elementary results in quantum theory show that
the Hamiltonian energy of any quantum system corresponds exactly to the angular
velocity of state-vector rotation (defined in a certain natural way) in Hilbert space,
and also to the rate at which the state-vector’'s components (in any basis) sweep
out area in the complex plane. The total angle traversed (or area swept out) corre-
sponds to the action of the Hamiltonian operator along the trajectory, and we can
also consider it to be a measure of the “amount of computational effort exerted” by
the system, oeffortfor short. For any specific quantum or classical computational
operation, we can (at least in principle) calculatalifficulty, defined as the mini-

mum effort required to perform that operation on a worst-case input state, and this
in turn determines the minimum time required for quantum systems to carry out
that operation on worst-case input states of a given energy. As examples, we cal-
culate the difficulty of some basic 1-bit anebit quantum and classical operations

in an simple unconstrained scenario.

Key words Time evolution operator, Margolus-Levitin theorem, Hamiltonian
energy, action of the Hamiltonian operator, quantum logic gates, energy as comput-
ing, physics as computation, geometric phase, quantum computational complexity
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1 Introduction

Over the years, the quest to characterize the fundamental physical limits of infor-
mation processing has also helped to give us a deeper understanding of physics
itself. For example, Shannon’s studies of the limits of communication [1] taught
us that the entropy of a system can also be considered to be a measure of the ex-
pected amount of unknown or incompressible information that is encoded in the
state of that system. Landauer’s [2] and Bennett's [3] analyses of the lower limit
to the energy dissipation of computational operations led to Bennett’s resolution
[4] of the famous Maxwell's demon paradox, via the realization that the demon’s
record of its past perceptions is a form of physical entropy, which must be returned
to the environment when that information is erased. More recently, Margolus and
Levitin [5] showed that the energy of a quantum system limits the rate at which
it can perform computational “operations” of a certain type, namely, transitions
between distinguishable (orthogonal) quantum states. In the last few years, several
articles by Lloyd and colleagues [6—8] have elaborated on this theme by suggest-
ing that we can think of all variety of physical systems (ranging from particles and
black holes to the entire universe) as comprising natural computers, with each sys-
tem’s “memory capacity” given by its maximum entropy, and its “computational
performance” given by its total energy. We should also note that Ed Fredkin has
been promoting a universe-as-computer philosophy for many decades.

The concept of interpreting physics as computing is certainly an exciting theme
to pursue, due to its promise of conceptual unification, but we would like to pro-
ceed carefully with this program, and take the time to understand the details of
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this potential unification thoroughly and rigorously. While taking care to get all of
the details exactly right, we would like not only to establish that a given physical
guantity “limits” or “relates to” a given informational or computational quantity,
but also justify the even stronger statement that the physical quantity ads,ally
root, a fundamentally informational or computational quantity, one that has been
traditionally expressed in terms of operationally defined physical units for reasons
that can be viewed as being merely historical in nature.

As one the most famous examples of this type of conceptual progression,
Rudolph Clausius [9] first defined (differential) entropy as the ratio of differential
heat to temperature,S = dQ /7', and at the time, entropy had no further explana-
tion. Later, Ludwig Boltzmann [10] proposed the relati$nc —H = [ flog f d¢
(wheref is a probability density function ranging over particle energies or veloc-
ity vectorsg), which was backed up by his “H-theorem” showing tltatspon-
taneously decreases over time for statistical reasons. In subsequent decades, this
relation for entropy evolved and was generalized to become Boltzmann'’s eventual
epitaphS = klog W, which related entropy to the logarithm of the number of
ways W of arranging a system [11]Boltzmann’s logarithmic quantity (in a
discrete and negated form) was later recognized by Shannon and others to also be
an appropriate measure of the information content of a system. But, Boltzmann'’s
fundamental insight regarding the nature of entropy can be viewed as having gone
far beyond justelating a physical quantity to an information-based one. Rather,
it can be viewed as telling us that physical entropy, at rizateally nothing but
an informational quantity, one which merely manifests itself in terms of measur-
able physical units of heat and temperature due to the fact that these quantities
themselves have an origin that is ultimately of a statistical natigg, heat as
disorganized energy.

Indeed, the long-term quest of physics to eventually create a grand unified
“theory of everything” can be viewed as the effort to eventually reedigbhys-
ical concepts, quantities, and phenomena as being manifestations of underlying
structures and processes that are purely mathematical and/or statistical in nature,
and that therefore have an informational/computational flavor, at least insofar as
the entire realm of formal mathematics can be viewed as being a fundamentally
“computational” entity. As one interesting logical conclusion of this conceptual
progression, if all observed phenomena are indeed eventually explicable as being
aspects of some underlying purely mathematical/computational system, then we
can argue that in the end, there really is no need for a sepgamgsicalontology
at all any more; we could instead validly suppose that the entire “physical” world
really is nothing but a certain (very elaborate and complex) abstract mathemati-
cal or computational object. Such a viewpoint has many attractive philosophical
features, at least from the perspective of a hard-core rationalist. One prominent
proponent of such musings is Tegmaelg, see [12]. Another proposal for unify-
ing mathematics and physics was recently made by Benioff [13].

However, regardless of one’s personal feelings about such far-ranging philo-
sophical agendas, if we can at least show that it is consistent to say that a given

! The references to Clausius and Boltzmann in this paragraph are also taken from [11].
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physical quantity can be exactly identified with a given mathematical or computa-
tional quantity, then, as scientists, we can certainly all agree that the most parsimo-
nious description of physics will indeed be one that does make that identification,
since otherwise our description of the world would be burdened with an unneces-
sary proliferation of artificially distinct concepts, in violation of Ockham'’s razor,
the most fundamental principle of scientific thought.

In this paper, we will primarily concern ourselves with just one small aspect
of the grander theme of interpreting physics as information processing. Specifi-
cally, we focus on the idea of interpreting the physical energy content of a given
system as being simply a measure of the rate at which that system is undergoing
a certain ubiquitous physical process—namely, quantum state evolution—which
can also be viewed as a computational process, as we do in quantum computing.
In other words, the premise is that physical energy is nothing busateef quan-
tum computingif the meaning of this phrase is appropriately defined. This paper
will clarify precisely in what sense this statement is true.

We'll also see that the concept of physieation in a certain (somewhat gen-
eralized) sense, corresponds to a computational concept aftbant of compu-
tational effort exertegwhich we’ll call effort for short.

Of course, it is not necessarily the case that a given system will have been pre-
pared in such a way that all of its physical computational activity will actually be
directly applied towards the execution of a target application algorithm of inter-
est. In most systems, only a small fraction of the system’s energy will be engaged
in carrying out application logic on computational degrees of freedom, while the
rest will be devoted to various auxiliary supporting purposes, such as maintaining
the stability of the machine’s structure, dissipating excess heat to the environment,
etc, or it may simply be wasted in some purposeless activity.

For that part of energy thas directly engaged in carrying out desired logical
operations, we will see that one fruitful application of the computational interpre-
tation of energy will be in allowing us to characterize tinénimumenergy that
must be harnessed in order to carry out a given computational operation in a given
period of time. In section 12, we will show how to calculate this “difficulty” figure
for a variety of simple quantum logic operations, and we briefly discuss how to
generalize it to apply to classical reversible and irreversible Boolean operations as
well.

2 Background

Of course, the earliest hints about the relationship between energy and the rate
of computing can be found in Planck’s origin&l = hv relation for light, which
tells us that an electromagnetic field oscillation having a frequeneyrefjuires
an energy at leagtr, whereh ~ 6.626 x 10~34J s is Planck’s constant. Alterna-
tively, a unit of energyF, when devoted to a single photonic quantum, results in
an oscillation (which can be considered to be a very simple kind of computational
process) occurring at a cycle raterof= E/h.

Also suggestive is the Heisenberg energy-time uncertainty principle\t >
h/2, which relates the standard deviation or uncertainty in engrfyto the min-
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imum time intervalAt required to measure energy with that precision; the mea-
surement process can be considered a type of computation. However, this relation
by itself only suggests that thspreador standard deviation of energy has some-
thing to do with the rate of a process of interest; whereas we are also interested
in finding a computational meaning for the absolute or mean value of the energy,
itself.

More recently, in 1992, Tyagi [14] proposed a notion of “computational ac-
tion” that was based on the amount of enedigsipatedmultiplied by the elapsed
time (a quantity which has the same physical units as action) and proposed a theory
of optimal algorithm design based on a “principle of least computational action.”
However, Tyagi’s analogy with Hamilton’s principle was still a long way from in-
dicating thaphysicalaction actuallys computation in some sense, or that physical
energy itself (which is, in general, not necessarily dissipated) corresponds to a rate
of computation. Still, it was suggestive.

Going much further, in 1998 Toffoli [15] argued that the least-action principle
in physics itself can be derived mathematically frérat principles(rather than as
anad hocphysical postulate) as a simple combinatorial consequence of counting
the number of possible fine-grained discrete dynamical laws that are consistent
with a given macroscopic trajectory. In Toffoli's model, which intriguingly even
captures aspects of relativistic behavior, the energy of a state is conjectured to
represent the logarithm of the length of its dynamical orbit. Toffoli also gives a
correspondence between physical action and amount of computation that is more
explicit than Tyagi's, and in which the path with the least Lagrangian action is the
one with the greatest amount of “unused” or “wasted” computational capacity. In
later papers following up on the present one, we will show that indeed, Lagrangian
action corresponds negatively to the portion of the computational effort that does
not contribute to an object’s active motion.

At around the same time as Toffoli's work, Margolus and Levitin [5] showed
that in any quantum system, a state with a quantum-average eReafypve the
ground state of the system takes at least titte> ¢~ = h/4F to evolve to an
orthogonal state, along with a tighter boundaf > ¢, = (N — 1)h/2NE that
is applicable to a trajectory that passes through a cycl€ afutually orthogonal
states before returning to the initial state. In the limit\s— oo, t, — h/2E,
twice the minimum time ot~ = ¢, which applies to a cycle between 2 states.
Both bounds are achievable in principle, in freely constructed quantum systems.

In a widely-publicized paper ifNaturein 2000, Lloyd [6] used the Margolus-
Levitin result to calculate the maximum performance of a 1 kg “ultimate laptop,”
in a hypothetical limiting scenario in which all of the machine’s rest mass-energy
is devoted to carrying out a desired computation.

Two years later, Levitin, Toffoli and Walton [16] investigated the minimum
time to perform a specific quantum logic operation, namely a CNOT (controlled-
NOT) together with an arbitrary phase rotation, in systems of a given eiiergy

In 2003, Giovannetti, Lloyd and Maccone [17,18] explored tighter limits on
the time required to reduce the fidelity between initial and final states to a given
level, taking into account the magnitudes of béttand AE, the system'’s degree
of entanglement, and the number of interaction terms in the system’s Hamiltonian.
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Results such as the above suggest that energy might fruitfubaetlyiden-
tified with the rate of raw, low-level quantum-physical “computing” that is taking
place within a given physical system, in some appropriate sense, if only the quan-
tity “amount of computing” could be defined accordingly. We would like to show
that some well-defined and well-justified measure of the rate at which “computa-
tional effort” (not necessarily useful) is being exerted within any quantum system
is indeedexactlyequal to the energy of that system.

3 Preview

In subsequent sections of this paper, we address the aforementioned goal by propos-
ing a well-defined, real-valued measure of the tatabunt of changendergone

over the course ainycontinuous trajectory of a normalized state vector along the
unit sphere in Hilbert space. This measure is simply given by the line integral of
the magnitude of the imaginary component of the inner product between infini-
tesimally adjacent normalized state vectors along the given path. This quantity is
invariant under any time-independent change of basis, since the inner product it-
self is. As we will show, it is also numerically equal to twice the complex-plane
area (relative to the origin) that is circumscribed or “swept out” by the coefficients
of the basis vector components, in any basis. For closed paths, this quantity is even
invariant under not only rotations but also translations of the complex plane. Fi-
nally, our quantity can be perhaps most simply characterized as terartion

of the Hamiltoniaralong the path; this is to be contrasted with the usual action (of
the Lagrangian), whose precise computational meaning will be addressed in later
work.

We propose that the above-described measure of “amount of change” is the
most natural measure of the amount of computatieffalt exerted by a physical
system as it undergoes a specific trajectory. For any pair of trajectory endpoints,
the effort has a well-defined minimum value over possible trajectories which is ob-
tained along a “geodesic” trajectory between the endpoint states, thereby inducing
a natural metric over the Hilbert space.

We will show that in any quantum system, the instantaneous rate at which
change occurs (computational effort is exerted) for any state, under any time-
dependent Hamiltonian operator, is exactly given by the (Hamiltonian) instanta-
neous average energy of the state. Thus, the state’s erseegctly its rate of
computation, in this sense.

We use the word “effort” here rather than “work” both (a) to distinguish our
concept from the usual technical meaning of work in physics as being directed
energy, and also (b) to connote that effort is something that can be ineffectually
wasted;.e,, it does not necessarily correspondusefulcomputational work per-
formed. In fact, we will see that indefinitely large amounts of effort could be ex-
pended (inefficiently) in carrying out any given quantum computational izsk,
accomplishing a given piece of computational work.

Despite having no upper bound, our concept of effort turns out to still be mean-
ingful and useful for characterizing computational tasks, since (as we will see) any
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given quantum or classical computational operation does have a well-defined and
non-trivial minimumrequired effort for worst-case inputs, which we will call the
difficulty of the operation. As we will see, for any pair of unitarlég Us, the dif-

ficulty of the operatiorUsz that takes us fronb/; to U, gives a natural distance
metric overU,, the Lie group of rankz: unitary operators.

The difficulty of a computational operation, according to our definitions, de-
termines the minimum time required to perform it on worst-case inputs of given
energy, or (equivalently) the minimum worst-case energy that must be devoted to a
system in order to perform the operation within a given time. The difficulty thus di-
rectly characterizes the computational complexity or “cost” of a given operation,
in the same “energy-delay product” units that are popular in electrical engineer-
ing, but where the energy here refers to the average instantaneous energy that is
investedn carrying out the computation, rather than to the amount of energy that
is dissipated

4 A Simple Example

In this section, we start by presenting a simple, concrete example in order to help
motivate our later, more general definitions. Consider any quantum system subject
to a constant (time-independent) Hamiltonian operafotet |G) and|E) be any
normalized, non-degenerate pair of the system’s energy eigenstates. The labels G
and E here are meant to suggest the ground and excited states of a non-degenerate
two-state system, but actually it is not necessary for purposes of this example that
there be no additional states of higher, lower, or equal energy.

Since the Hamiltonian is only physically meaningful up to an additive constant,
let us adjust the eigenvalue corresponding to vestrto have value Oife. let
H|G) = 0), and then lefZ denote the eigenvalue {f) (i.e, H|E) = E|E)). For
example, for a two-state system, we couldigt= (1 + o.)FE/2 with the usual

definition of the Paulk-axis spin operatos. = [} _%]; and let|G) = [{] and
|E) = [}], thus we have thall = |E)(E| and soF = 1.

Now, consider the initial state),) = (|G) + [E))/+/2 at timet = 0, and let it
evolve over time under the influence of the system’s Hamiltonian, Wwith)) =
etft/"y) denoting the state vector at tinté Let ¢y (t) and cpy(t) denote
(G| (t)) and (E|y(t)) respectivelyj.e, the components (complex coefficients)
of the state vectop)(t)) when decomposed in an orthonormal basis that includes
|G), |E) as basis vectors.

Initially, c|q(t) = gy (t) = 1/v/2. Over time ¢z, phase-rotates in the com-
plex plane in a circle about the origin, at an angular velocitwef = E£/h. In
timet¢ = 2E/h, it rotates by a total angle éf= 7. The area swept out by the line
betweenc s, (¢) and the origin isypy = i7|cjp)|[? = w/4. This is the area of a
semi-circular half-disc with radiusgy = |cjg)| = 1/v/2. Meanwhile,c/q (t) is

2 For convenience, we use the opposite of the ordinary sign convention in the time-
evolution operator.
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Fig. 1 Under the HamiltoniatH = E|E) (E|, starting from the initial state)o) = (|G) +
|E)) - 27'/2, the complex coefficient;sy = (E|:(t)) of |E) (the excited state) in the
superposition sweeps out a half-circle in the complex plane with aydain time ¢t =
2E /h, while the ground-state coefficieat;, remains stationary.

stationary and sweeps out zero area. The total area swept out by both components
is thusa = 7 /4. This evolution is depicted in fig. 1.

Does the area swept out by the complex components of the state vector depend
on the choice of basis? We will answer this question in a much more general setting
later, but for now, consider, for example, a new basis that includes basis vectors
|0}, [1) where|0) = (|G) + |E))/v2 and|1) = (|G) — |E))/+/2. Consider the
evolution again starting from the same initial state as befafg, = |0). Note
that the final state after time= 2E/h is |1). In the new basis, the coefficients
cioy(t) and ey (t) respectively trace out the upper and lower halves of a circle
of radius1/2 centered at the point/2 + i0. The total area swept out by both
components (on lines between them and the origin) is the area of this circle, namely
a = n(1/2)? = 7/4. (See fig. 2.) Note that the total area in this new basis is still
/4.

At this point we may naturally ask, is the area the samannfixed basis?
Later we will show that the answer is yes; in general, the area swept out is inde-
pendent of the basis fanytrajectory ofanyinitial state. The area swept out will
be (proportional to) our proposed measure of the amount of computational effort
exerted by a system in undergoing any specific state-vector trajectory.
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Fig. 2 The evolution from fig. 1, re-plotted in the ba$ts = (|G) + |E)) - 272, |1) =
(|G) +|E)) - 27172, The coefficients ofo) and|1) together sweep out a full circle, but the
total area swept out is stitt /4.

5 General Framework

In this section we proceed to set forth the general mathematical definitions and
notations to be used in the subsequent analysis.

5.1 Time-independent case

Let H be any Hilbert space. Any linear, norm-conserving, invertible, continuous
and time-independent dynamics on such a space must proceed via the application
of a unitary time-evolution operator, expressible as

U = U(At) — eiA(At) — eiHAt (1)

whereAt is the length of a given time interval,(At) = H At maps the interval to
an Hermitian operatad that is proportional tal¢, andH is an Hermitian operator
with units of angular frequency. For any two timigst, € R, and for any initial
state vectory)) = [¢(¢1)) at timety, the implied state at any other tintg is
given by ¢ (t2)) = U(At)|¢(t1)), whereAt = to — ¢1. We will sometimes also
write U and A as functions of the directed pair of times, writtan— ¢5. We will
sometimes call th&/ and A operators “cumulative” when the intervalt is not
infinitesimal.

Note that in eq. (1) we are using the opposite of the usual (but arbitrary)
negative-sign convention in the exponent; this is an inessential but convenient
choice, in that later it will let us automatically associate positive energies with
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positive {.e., counter-clockwise) phase velocities for the coefficients of state com-
ponents.

For convenience, for any operatorand vector, we will sometimes use the
notationO[v] as an abbreviation for the expectation vajugO|v).

Now, of course, the eigenvectors Gf are also eigenvectors of and H, so
H's expectation valud?[] for any initial vectory(t;) € H is preserved by the
time-evolutiony(¢;) — 1 (t2). This conserved gquantity (whose existence follows
from time-independence even more generally, vighér's theorem) is called the
Hamiltonian energyf the system. Although in our expressions it has the dimen-
sions of angular velocity, this is the same as energy if we choose units ikeite
as is customary. Thug{ is called the Hamiltonian operator. We will call the op-
eratorA = A(t; — to) thecumulative action of the Hamiltonian from timeto
t2, where some of the qualifying phrases may be omitted for brevity. The reasons
for the use of the word “action” will be discussed later.

For convenience in the subsequent discussions, we will often just set0
(without loss of generality) and writ€ = U(t) = U(0 — t) = eIt We refer
to the complete operator-valued functianU (¢) for all ¢ values in some range
(which usually includes$ = 0, for whichU(0) = I) as aunitary trajectoryover
that time interval. Also, for any we write A(t) := A(0 — t) for the cumulative
action from O tof.

Differentiating U (¢) with respect to time and applying the result to an initial
state|1(0)) then yields us Scldinger’s equation in various forms that we’ll use,

U= %ﬁ’f) = %eth = iHet = iHU(t) 2)
CUWR0) = HUD(O)) ©
. d
9 = S1(0) = (1) @
< —in, ©)

where again, note that we are usihg= 1 and the opposite of the usual sign
convention. Note also that we are able to differentiéfé in eq. (2) because/dt
commutes withH, sinceH here is a constant.

5.2 Time-dependent case

The natural generalization of eq. (5) (the operator form of &imger’s equation)
to a system with a time-dependent Hamiltonfd() is of course just

d

— —iH(t 6

G = (6)
where nowH (t) is permitted to vary over time, though often with a constraint that
it be differentiable, smooth, or analytic.
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One may at first think that in this time-dependent context, we could appropri-
ately generalize the time-evolution operator equation (1) by simply changing the
definition of the action operatot (as a function of) from the originalA(t) = Ht
to what one might ri@ely think would be the obvious generalization to a time-
dependenty,

t
At) = H(7)dr, @)
7=0

while still keeping the relatio/ (t) = ¢'A(*), But in fact, the definition (7) does
not work for this purpose, since in general the values/¢f) at different timesr
will not commute with each other; taking the integral loses all information about
their relative time-ordering, and the time-derivativeddf) will no longer be equal
toiH (t) as required, sincé/dt will no longer commute withH (¢).

The standard way to repair this problem (discussed in almost any quantum field
theory textbooke.g, [19]) is to define a time-ordering meta-operafoy which
takes a given operator expression and reorders its internal operator products so
that operators associated with earlier time points are applied first in all products
(reading right-to-left). For example, as a matter of definition,

. H(tl)H(tQ) if t1 >t
T[H(t1)H(t2)] := {H(tg)H(tl) otherwise ®)

With this notational convention, we can write
U(t) = T4 (9)

whereA(t) is as defined in eq. (7), and the meaning of this meta-expression will
be well-defined and consistent with eq. (6) applied’{@). But the problem with
this approach is that the expressid(¥) in (9) no longer denotes a “first class ob-
ject” of our language, but rather is a sort of meta-mathematical place-holder to be
manipulated via a rather complex interpretational procedure, which involves ap-
plying eg. (8) to uncountably many infinitesimal pieces of the integrals appearing
in the Taylor-expanded version of eq. (9). There is no longer any simple, direct
relationship between the properties of the linear operad{ey defined in eq. (7)
(e.g, its eigenvalues and eigenvectors) and the properti€¥of

Thus, in what follows we will find it more useful to instead abandon eq. (7),
and take the rather more concrete approach of simply redefitingfor a given
unitary trajectoryU (t) to be the unique continuously time-dependent Hermitian
operator such that(0) = 0 and

U(t) = e4® (10)

(with notime-ordering operator!) for all. To see that such as indeed exists and
is unique, note that since each particdlae= U (t) (at a given moment) is unitary,
it is a normal operator and can thus be given a spectral decomposition

U= Zm\m)(ui\ (11)
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where{|u;)} and{u;} respectively comprise an orthonormal eigenbasi§ aid
the corresponding unit-modulus eigenvalues. We can therefore define the multi-
valued logarithm ot/ by

InU = anuz|uL><uz|

= Z(lnuz)\uz>(uz|
= Ziarg(ui)\uﬁ(ui\ (12)
= Zi[Arg(ui) + 2mn;]|ui) (u;l (13)

where in step (12) we have used the fact that = 1, and where in line (13)
Arg(u;) € [0,27) denotes the principal value of the multivalued functiog(u; ),
while then; values may be any integers. Although we see that there are infinitely
many values oflnU) for any individualU in isolation, nevertheless theig a
unique single-valued definition of the entire functié(¢) = In U(t), given the
functionU (t), that iscontinuousover¢ and wherel(0) = 0.

The uniqueness is due to the fact thdt) varies continuously in, and thus,
if we like, the eigenbasi$|u;(t))} that we choose fob/ at each moment (which
hask free gauge-like parameters determining thewherek = dim ) can vary
continuously as well. Given basis vectdrs) (and thusu, values) that change
continuously, it follows that at any moment, only one assignment of values to the
n; parameters can possibly yield continuity with the logarithm valge — dt)
at the previous moment, since any other choice would (discontinuously) change
one of the phase anglésg(u;) + 27n; in the expression (13) by an amount that
is (infinitesimally close to) a multiple of=. Then,; parameters can (and must)
change byt+1 from their preceding values (while leavirdgt) continuous) only
at a discrete set of time points, namely those where the continuously-changing
value crosses the branch cut of the Arg() function (in some direction)Aag(.;)
jumps byF2m.

Now, given this uniquely-defined unitary trajectory logarittiuft) = In U (¢),
we simply define our action operator 4ét) = —iL(¢), and then trivially we have
thatU(t) = ¢'A® holds for allt, where the exponential can be defined via the
spectral decomposition of (equivalently to the standard Taylor-series definition),
thereby inverting the logarithm.

Meanwhile, the entire unitary trajectoty(¢) itself is derived from the Hamil-
tonian trajectoryH (t) by settingU (0) = I and applying the operator form (6) of
the time-dependent Sdbdinger equation t&/(¢). So(d/dt)U(t) = iH(t)U(t),
and we are thereby guaranteed that in fact

geiA(t) = iH (t)eA® (14)
de
as desired, which (recall) failed to be true (in the absence of a time-ordering oper-

ator) for theA(t) defined in eq. (7).
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For reasons we will explain, we will refer to a complete functidnA(t) as
defined by eq. (10) as tleamulative Hamiltonian action trajectoignplied by the
Hamiltonian trajectony (¢).

In cases wherdf(t) = H is constant over time, note that this definition of
A(t) reduces to the simplél¢ form that we used back in eq. (1). This follows
from the observation that the definitioh(t) = Ht indeed solves eq. (10) when
H is constant, and the fact that (as we just showed}tfi¢ implied by eq. (10) is
unique under the continuity constraint.

Later, we will see the importance of the Hamiltonian action trajectdfs),
and discuss the precise meaning and computational interpretation of its expectation
value when applied to a given state.

To clarify our terminology, note that in this document we are using the word
actionin a somewhat more general sense than is usual; typically in phesigsig
Hamilton’s principle) “action” just refers to the quantity having units of action that
is obtained by integrating the Lagrangi&n= pv — H along some path. However,
it is also perfectly valid and reasonable to consider the more general notion of the
action that is associated witmy quantity that has units of energy, by setting the
time-derivative of that action along some path to be equal to that energy.

Indeed, we will see later that the time-derivative of the cumulative Hamiltonian
action A(t) (as we have defined it) along a given trajectory is in fact exactly the
instantaneous Hamiltonian energi(t), i.e,,

SADW(0)] = HOW W), (15)

similarly to how the time-derivative of the ordinaryg, Lagrangian) action along
a given trajectory is the instantaneous Lagrangian enk(gy

As a final piece of notation which will help us generalize our results to the
time-dependent case, we will sometimes wiitét) to refer to the “instantaneous”
unitary transformation that applies over an infinitesimal time intedvait timet,
that is,

U't):=U(t —t+dt)
= 1+ iH(t)dt. (16)

Note also that any larger transformatibift; — t2) can be expressed as the time-
ordered product of all the infinitesimé&l’(¢) over the continuum of timesin the
range from¢; to t,. That is, we can write

Uty > t2) =T 1_2[ U'(t) 7

t=t1

with the opposite ordering if; < t;. Thus,U’(¢) uniquely defined/(t), so we
will sometimes refer td/’(¢) as the unitary trajectory also.

We should keep in mind that although the complete unitary trajeditity
(or U'(t)) betweent; andt, determines the overall transformatiéi{z; — t2),
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the converse is not true: Knowing the cumulative= U(t; — t2) for a par-
ticular pair of timesty,t, is of course insufficient to determine a unique uni-
tary trajectoryU (), since in general infinitely many cumulative action operators
A = A(t; — ta) can exponentiate to yield the same cumulafivésince ex-
pression (13) is multivalued), and furthermore, in the time-dependent case, a con-
tinuum of different Hamiltonian trajectoried (¢) (which determind’/’(t)) could
implement a given cumulative action operator

We will similarly use the notatiom’(¢t) = H (¢)dt¢ to denote the infinitesimal
action operator that applies from timeo ¢ + dt; note thatU’(t) = ¢4'() =
1+ iH (t)dt.

6 Defining Computational Effort

With the above general definitions and observations aside, let us now proceed to
define our concept of the amount of computational effort exerted by a system in
undergoing a state trajectopy(t)) between two times.

We will find it easiest to define this quantity first for the case of a system with
a time-independent HamiltoniaH () = H = const. Later, we will show how
our results can be generalized to the time-dependent case.

Let |v) be any eigenvector dff, andw the corresponding eigenvalue, which is
real sincef] is Hermitian. Thatis, lef/|v) = w|v). Thus,|v) is also an eigenvector
of the cumulative action operater(t) = Ht¢ for anyt, with eigenvaluex = wt.

First, whent is an infinitesimatl¢, consider the instantaneoli$ = 1+ iHdt.
Clearly,|v) is an eigenvector df’, sinceU’|v) = (1+iHdt)|v) = (14iwdt)|v) =
ulv), where the scalat = 1 + iwdt = e“* = e'd®, Thus, under application of
U’, the eigenvectopv) transforms tdv’) := e'“dt|v) = eld|v), that is, it phase-
rotates in the complex plane at angular velocityhrough an infinitesimal angle
da. Note also that

S(wv') = S|(1 + ida)|v) = S(1 + ida)(v|v)
= da = (v|wdt|v) = (v]|A'|v) = A'[v]. (18)

That is, when|v) is an eigenvector off, the magnitude of the imaginary part
of the inner product between infinitesimally adjacent state vectors is equal to the
expectation valuel’[v] of the infinitesimal action operatot’ = Hdt applied to
the state. As we go on, we will extend the relationship (18) to non-infinitesimal
trajectories, non-eigenvectors, and time-dependent Hamiltonians.

Next, note that the eigenvectdrs of H are also eigenvectors of the cumula-
tive action operatorsi(t) = Ht and cumulative unitarie§ (t) = el4(®) = elft,
and vice-versa. Lefl(t)|v) = «(t)|v), with |v) a fixed eigenket ofA(t), and with
aft) = wt as its eigenvalue. The(t)|v) = e4®|y) = e*@|v) = u(t)[v)
whereu(t) = ("), Thus, upon the application f, |v) gets multiplied by the
phase factow(t), or (we can say) rotated by a total phase angle@) = wt,
which could be much greater th&m in long evolutions, as can also be seen by
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integratingda overt. Note also that if we integrat&(v|v’) along the trajectory,
we still get the cumulative actioA(¢)[v(0)]:

[ st@@) = [ seeia+iedn) @9)
—ut=a() = (LOMAORO). (@0

Next, consider an arbitrary pure statg(0)) = >, ¢;(0)|v;), where thelv;)
are normalized eigenstates Hf with eigenvaluesy;, and thec;(0) are the initial
coefficients of thév;) in the superposition. The state at titmean be expressed as

Z explic]c;(0)]v;)
= Z expliw;t]c; (0)|v;)
= Z Ci(t)l’l}i>, (21)

where we see that each coefficier(tt) = expliw;t]co(t) (in the fixed basig|v;) })
simply phase-rotates with angular velocityalong an origin-centered circle in the
complex plane with constant radius= |c;|. Over any amount of time, we see
thatc; rotates in the complex plane by a total anglengf= w;t, while the line
in the complex plane that joins to the origin sweeps out an arc with an area of
a; = letr (Seefig. 3 for an illustration of the area swept out in the infinitesimal
case.) For example, in time= 27 /w;, coefficientc; sweeps out a complete disc
of areaa; = 7r? as it traverses an angle of= 2. For consistency, in the case
of clockwise rotations (negative;), we will consider the area swept out to also be
negative.

Now, lety’(t) = (¢ + dt). Then

t
(3 (3 d 22
/TZO (7)Y (r / \YZC T)e; (T +dT) (22)
_ /Zr?%{e—iei(T)ei[él(r)-i-wid'r]} 23)

_ / 3PS +iwidr) (24)
_ / > pida (25)
= / da = a(t) = A(t)[1(0)] (26)

where the overbar denotes complex conjugatign= |c¢;| as beforeg;(r) =
arg(c; (7)), anda is now the weighted-average valueaf

Now, consider theotal areaa(t) swept out byall coefficientsc; over timet.
Note thatr? = |¢;|? is also the probability; of basis state;, and so theotal
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Fig. 3 In the energy eigenbasis, a complex coefficigraf a basis state sweeps out a small
wedge-shaped area (shown exaggerated) in the complex plane over an infinitesimal time
intervaldt.

area swept out is always exactly half of theerageanglea(t) of phase rotation
(weighted the by state probability), or in other words, half of the expectation value
of the A(¢) operator applied to the statg0). That is,

Z %witr?
1
9 zi:piai

SADW0)] = Sa(t). @)

a(t)

Thus we have shown that for time-independent Hamiltonians, the expectation
value of the action operatot(¢) applied to any initial state(0) is equal to the in-
tegral over the state trajectory of the inner product between infinitesimally adjacent
statesy(t) andv)’(t) = ¢ (t + dt) along the trajectory, as well as to the average
phase anglex accumulated and to twice the complex-plane aresavept out by
the state’s coefficients, when the state is decomposed in the energy eigenbasis.

Of course, the inner product between two state vectors is a pure geometric
quantity, and so is basis-independent. Therefore, the integfa{ff)’) over the
state trajectory does not depend at all on the (fixed) choice of basis under which
states are decomposed into components. Likewise, the opetétpitself is a
geometric object not inherently associated with any particular basis. Therefore,
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the identity
t
| sl ) = Aw[wo) (28)
that we proved above is a fundamental one whose truth does not rely on any par-
ticular basis or coordinate system.

However, it is perhaps somewhat less obvious that the averagecaofjdrase
rotation and the complex-plane areawept out by the state coefficients should
also be basis-independent quantities, since their original definitions explicitly in-
voked a choice of basis (the energy basis). However, in the next section we will
show that in fact, these quantities are basis-independent as well. Thus, all of the
following identities still hold true, regardless of basis:

t
20=a= [ S0l = AORO), 29)
wherea is the total complex-plane area swept out by the state coefficients in any
fixed basis, = [wdt is the time-integral of the expected valueof the an-
gular velocityw; of the state coefficients in any fixed basis,= (7) is the
state trajectory, with)’ = (7 + dr), A(t) is the action operator as we de-
fined in equation (10), and we are using our mean-value notat{@i:)(0)] =
(W (0)|A()[(0)).

Our proposed measure of the amount of change undergone (and computational
effort exerted) along a state trajectafyt) generated by a constaht will then
just be then value for that trajectory.

Later, in section 8, we will show that the above identities also still hold even
when H (t) varies over time, and so our measure will generalize to that case as
well.

7 Generalizing to Arbitrary Bases

The above discussion made use of a set of basis vefdtoi$ which were taken to

be orthonormal eigenvectors of the (temporarily presumed constant) Hamiltonian
operatorH. Now, we will show that this particular choice of basis was in fact
unnecessary, and that the same statements concerning the relationship between the
area swept out, the average phase angle accumulated, and the4(¢diovould

remain true in any fixed (time-independent) basis.

At first, it may seem very non-obvious that the area swept out should still be
exactly half of the action. Note that our previous arguments for this relied on the
fact that in the energy bas{$v;)}, the coefficients; all rotate at uniform angular
velocitiesw; in circles in the complex plane, while their individual magnitudes
remain constant. In a different basis) (distinguished by using a different index
symbolj), this will no longer be true. Each basis vectoy) in the new basis is in
general some superposition of thie;) }, such as

o) = Do), (30)
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where the matriXU = [u;ﬁ] of complex coefficients (with the subscriptndexing

rows, and the superscripindexing columns) is, most generally, any unitary ma-
trix. We can also write this equation in matrix-vector formas = Ulv;), where

the over-arrow here denotes that we are referring to the entire column-ordered se-
guence of basis vectorm = {U}q. Of course, a general state vectpican

equally well be expressed as a linear superposition of either set of basis vectors,
that is,

|¢> = Zci|vi> (31)
) = ch|vj>. (32)

But now, we can substitute eq. (30) into eq. (32) and rearrange, as follows:
) =D cgullon) =D | D eyul | v (33)
(%] % 7

Now, since thdv;) are linearly independent, the expansiomfin terms of them
must be unique, so we can equate the coefficientmonn equations (31) and
(33) to get

(34)

where T is matrix transpose. We can easily solve this equation faz;toeeffi-
cients as follows:

o =U'g
) E =7
Uz =2
cj = ’a;-ci. (35)

In other words, each complex coefficient in the new basis is just a particular linear
combination of what the various complex coefficients were in the old basis.

If the coefficientse; in the old energy basis are describing perfect circles
around the complex origin at a variety of radii and angular velocities, there is no
guarantee that the coefficientsin the new basis will still be describing circular
paths centered on the origin, although their paths will of course still be continuous
and smooth if the original; trajectories were. In general, thewill follow com-
plicated looping trajectories in the complex plane, generated as if by Ptolemaic
planetary epicycles,e. as a sum of circularly rotating vectors. A givenwill in
general return to its initial location in the complex plane only when its components
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Fig. 4 Area swept out (exaggerated) by a coefficien(in a basis other than the energy
eigenbasis) over an infinitesimal time interdal Note that both its phase and its magnitude
change, in general.

¢; that have nonzero values oj‘ all simultaneously return to their initial locations
exactly, which might even take infinitely long, if the correspondinyalues were
relatively irrational.

Anyhow, the important point for our present purposes is thatbelo not, in
general, maintain a constant magnitude (distance from the origin), and so the area
swept out by the:; over a given time is no longer just a section of a circle, which
was very easy to analyze. Instead, whijés phase anglé; is rotating, simulta-
neously its magnitude; may also be growing or shrinking. Fig. 4 illustrates the
situation.

To clarify what we mean by the phase angjét) a bit more carefully, let us
useda;(t) =~ 0 to denote the infinitesimal increment of phase angle from titnes
tot + dt¢ such that

doy = arg(c;) —arg(c;) (mod 27), (36)

so thatde; remains infinitesimal even when crosses a branch cut of the Arg()
function. Then, lety;(¢) be the total accumulated phase angle over tintleat is,
the integral ofdc; over time,

t
a;(t) = / da, (37)
7=0

so thato;(0) = 0. Now, just letd; (t) = Arg[c;(0)] +«;(t). Thus alsalf; = do;.
What, now, is the area swept out in our new basis? First, notice that in the
infinitesimal limit, it is exactly half of the area of the parallelogram that is spanned
on two adjacent sides by = ¢;(t) andc; = ¢;(t + dt), considered as vectors in
the complex plane. See fig. 5.
The parallelogram area, itself,ds;; = ;77 sin(d¢;), wherer; andr’; are the

J J
magnitudes of the old and new coefficients, respectively. However, note that the
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Fig. 5 The infinitesimal areda; swept out approaches one-half of the parallelogram area
;75 sindf;.

areada; of this parallelogram is also the signed magnitude of the scalar “cross

product”c; x c; between the coefficients, considered as vectors in the complex

plane. (The traditional cross product, defined in three dimensions, would be a vec-
tor perpendicular to the complex plane having this valugas its length.) There

is a nice identity [20] connecting the scalar cross product and dot product with the
conjugate multiplication of complex numbers, namely:

cd=c-d+ i(cxd), (38)

whereé means the complex conjugate @fandc - d denotes the real scalar “dot
product” betweei andd considered as vectors, namélyjd| cos[arg(d)—arg(c)],
andc x d denotes the real scalar “cross product” previously mentioned, namely
el d] sinarg(d) — arg(c)].

Applying this identity to our situation, we can see that the area swept out, since
it is half the cross product, is half of the imaginary part of the conjugate product
¢;c; between the old and new coefficients, and also to halfigfie;) = da;;

1 1., -
daj = §daj = gg(cjc;-). (39)
Now, this is just the area swept out by a single componerifo find the total

areada swept out by all coefficients, we merely sum over components:

1 _ 1 _
da = 5 Z%(cjc;v) = 5%2@0}
J

i
Lo, o 1
= 5S(@lY) = 5da (40)

In other wordsjust like in the energy basig an arbitrary basis, it is still true that
the infinitesimal incremenda in the area swept out by the coefficients is exactly
one-half of &(¢|¢)’'), the imaginary component of the inner product between in-
finitesimally adjacent vectorg = «(t) andty’ = (¢t + dt) along the trajectory,
and further that this is equal to half dix = d6, the average increment of the
continuously-varying phase anglést) of the coefficients.

Now, we saw earlier th&k () |¢’) is also equal to the expectation valdy] =
(1| A’]¢) of the infinitesimal action operatot’ = Hdt applied to the state, for
any state). So in connection with the result (40) that we just obtained, this means
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that A'[¢)] givesexactlythe average phase angle accumulationof the coeffi-
cientsc; of ¢ in any basis, and twice the complex-plane arkaswept out by
those coefficients. We can thus think 4f as being the operator representation

of a fundamental, basis-independent concept of “average angle accumulated” or
“total area swept out” over infinitesimal intervals.

8 Generalizing to Time-dependent Hamiltonians

In the previous section, we established the basis-independence of the identities
2da = da = SWY') =wdt = A'[Y] = (p|Hdt|y) for infinitesimal changes of
the state vector{ — ') along its trajectory over infinitesimal time intervals,
under anyconstantHamiltonianH .

But, as long as the HamiltoniaH (¢) only changes in continuous fashion, it
can always be considered essentially “constant” throughout any infinitesimal inter-
val dt, even if it is varying over non-infinitesimal timescales. Therefore, the above
identities will still hold true instantaneously even for a time-dependent Hamil-
tonian H (t), which is what we originally started out our discussion with. Thus,
when we integrate the above equation (40) over time, it remains true that:

2 —a-= / SO+ b)) (41)
o @
- /:lw(th(t)w(t»dt (43)
- / AW (44)

In words, this says that for any initial state we have tha2a (twice the complex-

plane area swept out by the coefficients/gin any basis) is equal te, the aver-

age phase angle swept out by the state coefficients, as well as to (41) the integral
along the trajectory)(t) of the imaginary component of the dot product between
neighboring vectors along the trajectory, and also to (42) the integral of the av-
erage phase velocity of the coefficients, weighted by the instantaneous basis state
probabilitiesp; (t) = r;(¢)?, which is (43) the time-integral of the instantaneous
Hamiltonian energy= (¢t) = H(t)[¢(¢)] of the instantaneous statét), which (fi-

nally) is (44) the integral of the infinitesimal actiods(t) = (¢(¢)|A’ ()| (L))

on the instantaneous statgg).

The natural next question to ask is, given tHak)] = da remains true over
infinitesimal intervalsit in the general time-dependent case, and given that cumu-
latively, A(t)[¢(0)] = « in the time-independent casH (t) = H = const.), does
this cumulative relation still hold true in the general time-dependent case? That is,
for A(t) (as defined in eq. (10)) is it still true that

A)[$(0)] = (45)
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even if the phase angtewas accumulated under the influence of a varyifh@)?

If this equation (45) is universally correct, then we will have a very nice, sim-
ple interpretation for the general action operatdt) even in the case of a time-
dependent (t), namely that, when applied to any initial stat@), it simply gives
the angular length of the trajectory that will be traversed by that state, a quantity
which obeys all of the identities (41)-(44).

Actually it seems that this is true, and the proof is quite elegant. First, from
eq. (17) and the boundary conditiéh(0) = 1, fix U = U(t), the overall unitary
transform operating between times 0 anthat is implied by the values of the
time-dependent HamiltoniaH (7) for all 0 < 7 < ¢t. Fix then alsaA = A(t) by
using eg. (13) and the associated discussion, using the continuity requirement on
A(7) and the requirement that(0) = 0.

Now, consider any eigenvectty;) of U, which is a state that undergoes a
cyclic evolution (in the projective Hilbert space) undé(r) or any other process
(Hamiltonian trajectory) that implements, sinceU|¢) = p;|¢;), with u; being
the associated unit-modulus eigenvalue. Of coyrsé s then also an eigenvector
of A, with an eigenvaluey; such thatd|¢;) = a;|¢;) andy; = el®:.

To see that thisy; must indeed be the same as the total phase anglecu-
mulated by|¢;) as defined ire.g.eq. (44), consider that once the overall operator
A has been determined, we can simply divide ittktp find an alternativéime-
independentd. = A/t that would also generate the very same action operator
A and the same unitary when applied over the same time intervaFrom the
discussion in section 6, is is easy to see that the valueisthen indeed exactly
the phase angle accumulated from the initial sfate when implementingd via
this (alternative) time-independeft,.

Now, doesveryHamiltonian trajectory that implements(including our orig-
inal time-dependent (7)) involve the same total accumulationof phase angle?
We can see that it must, because any trajectd(y) can, it seems, be continu-
ously deformed into the constant trajectdil.() = H. while maintaining the
same overald (and thudJ) throughout the deformation process. At no point dur-
ing this continuous deformation process can the total phabat is accumulated
ever change, since, to produce the sdmeéhe total phase: must always remain
congruent tay; (mod2w), and it would be impossible for the total phase accumu-
lated to jump by a multiple o at any point during any continuous deformation
of the trajectory.

To see that this is true, recall from eq. (13) and the associated discussion that
any continuousA(7) can be characterized by a continuously varying eigenbasis
{|u; (7))} of U(7) (with a sort ofk-dimensional continuous gauge freedom, where
k is the Hilbert space dimension), and by implied integer parametgrsg that
select which of the logarithm values must be used at each time poifss we
continuously deform the Hamiltonian trajectoHy(r) as well as the eigenbases
{]ui(7))} (and thus the gauges of the associated eigenvalie$), the set of time
points 7 at which then;(7) values change also changes continuously. Nowhere
during this continuous, local process can the total angdéecumulated along the
trajectory possibly change discontinuously by a multipl@of
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Thus, our arbitrary time-dependefit{ ) takes the eigenstate;) through the
same total angler as would the constanti. for which we already know that
(9ilAlgi) = a.

The above discussion establishes that (regardless of the dyn&rttipsthe A
operator that we derive from it always gives the correct accumulated arfgie
all eigenstates; of A; therefore it is also correct for arbitrary initial superposition
stateg)(0) (and for mixed states as well).

For a final interesting observation, let:(0),t) denote the angle accumu-
lated from the initial stat@)(0)) over timet, and note that since

(Y(0)[A(1)[4(0)) = a(i(0),1) (46)
for all initial ¢»(0), the time-derivative of the operatai(t) must satisfy

0

WO HADWO) = 2a(b(0),). (@7)

Recall meanwhile thada(¢) is given by applyingA’(t) = H(t)dt to the state
P(t);ie, da(t) = A'(t)[(t)]. Of courseg)(t) = U(t)(0), so we have that

@12 @) = 2D wawo) (48)
= (V(O)|UT () H(B)U (1)[1(0)). (49)

and thus

dA
= () =UOHMNU()

= e ADH (1)l 4®), (50)

Now, note that applying the time-dependent operator form (6) of thed8uotger
equation tdJ () = ¢4, we get

d . .
&GIA(t) _ iH(t)elA(t)

_ ieiA(t)e—iA(t)H(t)eiA(t)

a4
=e A(“&[m(t)], (51)

where we have used (50) in the last step. In other words, the ordinargalile

e/ df for the differential of an exponential of a functighactually turns out to be
true whenf = iA(t), despite the fact that the Hamiltonian may be time-dependent
and thatA(¢) doesn’t necessarily even commute with its time-derivative! This is
due to the special way in which we defined oliit) function, and would not be
true for more general time-dependent operators.
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9 Discussion of Effort

Although a choice of a particular cumulative action operatatill gives us free-
dom to choose any number of different Hamiltonian trajectoHes) for imple-
menting it, over various total amounts of timewe have seen above that all such
trajectories are equivalent in terms of the total amaurdf phase angle that is
accumulated starting from any fixed initial statg0)).

As hinted previously, we might even consider the quanti¢gr, more properly,
its absolute value) to be a reasonable definition of the geontetrgthof the path
that a normalized state vectps(¢)) describes as it moves along any continuous
path (parameterized by any real variatjl@long the unit sphere in Hilbert space,
since (note)x depends only on the shape of the state trajectory itself, and not
on any other properties of the Hamiltonian trajectory, such as the energy of other
orthogonal states.

As a result, an intrinsic metric on the normalized Hilbert space is provided by
the distance function

d([¢1), [¢2)) := min|a] (52)

whereq is the accumulated phase angle along a given trajectory, and the minimum
is taken over all normalized, continuous paths fijgm) to |42 ), or a subset of such

that is deemed available. The absolute-value operator is required in order to obtain
a proper (positive) metric, since trajectories with unboundedly negative values of
could exist if we allow states to have negative energy. Paths having the minimum
absolutea between a given pair of states can be considered to be (sections of)
geodesics on the normalized Hilbert space.

In [21], Wootters introduced a statistically-motivated distance metric between
guantum states which he called “statistical distance,” and showed that it was iden-
tical to the ordinary Hilbert-space distance functitig , 1)2) = arccos |[{(1)1 [t)2)].

It turns out that our distance functiehabove is in fact exactly the same as this
also, if all Hilbert-space trajectories are considered. However, if the space of al-
lowed trajectories is restricted (for example, if the Hamiltonians are forced to be
local) then a different distance measure results. In Wootters’ metric, the distance
between any two distinguishable stategy( two different randomly chosen com-
putational basis states) is onlyccos 0 = 7/2, whereas if we define distance by
minimizing over allowed trajectories, we could obtain a much greater figure.

Later, we will see that our distance measure will also allow us to derive a nat-
ural metric on unitary operations, telling us the “distance” between two unitaries,
as measured by the difficulty of getting from one to the other, in terms of the min-
imum distance traversed by worst-case states.

Anyway, noting that this measuke of trajectory length which we have ex-
plored above is stable with respect to changes of basis, that there are multiple
simple ways of defining it, and that it connects strongly with fundamental physical
concepts such as action and energy, as well as with primitive geometric concepts
such as angles and areas, and that it forms a natural metric on the Hilbert space,
all of these facts together motivate us to propose this measure as being the most
natural and genuine measure of the total “amount of change” that is undergone by
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a physical quantum state vecten(t)) as it changes dynamically under a (possibly
varying) physical influencé/ (¢).

Insofar as we can considall dynamical evolution and change to be forms of
“computation,” where this word is construed in a very general sense, we can also
accept this measure as being an appropriate measure afrthent of computa-
tional effort exertedy the system as it undergoes the given trajectory.

Thus, from here on, rather than calling our quantity “action” (which would
lead to confusion with the action of the Lagrangian), or “accumulated phase angle”
(which is awkward) we will refer to our quantity as simply thigortwhen we wish
to be concise, and abbreviate it with the symlolThat is,

to

Foray ()] = / SO (1)) (53)

=t

is areal-valued functional of a state vector trajectofy) taken between two times

t; andt,. Note that the value of depends only on the shape of the path. It is
independent of the absolute time, the speed at which the trajectory is traversed,
and on various other details of the Hamiltonian that generates the trajectory (such
as its eigenvalues for eigenstates that are not componerits iof general, many
different Hamiltonian evolutions can generate the same path, which will always
have the same total effort. So, in the above equation, we can consiteo just

be a parameterized curve wheris now just anyarbitrary real-valued parameter,

not necessarily even corresponding to physical time. In other wordsftbet
guantity does not depend on the precise system of coordinates that is used for
measuring the passage of time, but rather only on a pure geometric object, namely
the path taken through Hilbert space.

Note that to say that the path length corresponds to computatffoetis not
to imply that all of the physical computation that is occurring in the given system
is necessarily being harnessed and applied by humans to meet our calculational
needs, only that this is the total amount of raw computational work that is occurring
“in nature.” The choice of the word “effort” is intended to evoke the commonsense
realization that effort may be wastédd;., not used for anything useful.

Note also that the action operatdr(as we have defined it) gives a concise yet
particularly comprehensive characterization of a given computational process, in
the sense that it determines not only the overall unitary operafica ¢4 that
will be performed, but also the amount of effort that will be expended in getting to
the final result from any given initial state.

The primary caveat to the above conception of computational effort seems to
be that the quantity (together with the rate of phase rotation, and the path length
in Hilbert space) is dependent on where we choose to draw our zero of energy.
As is well known, absolute energies are only physically defined up to an additive
constant, and so the total Hamiltonian action or effort is only well defined up to
this constant multiplied by the elapsed time

A natural and widely-used convention is to define the least eigenvalue of the
Hamiltonian (the “ground state” energy) to be the zero of energy. In a similar fash-
ion, we can choose to additively shift the Hamiltonian so that the least eigenvalue
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of the cumulative action operatek(t) is taken to represent zero effort. (Note that
this approach can even be used when the Hamiltonian itself is time-dependent.)

However, this choice is by no means mandated mathematically, and in fact,
in certain pathological cases (such as an infinite-dimensional or time-dependent
Hamiltonian with unboundedly negative eigenvalues), there might not evamybe
minimum eigenvalue for the resulting action operator over a given interval. One
needs to keep these caveats in the back of one’s mind, although they seemingly
end up not very much affecting the potential practical applications of this concept,
which we will address in a later section.

Another reason that we might not want to consider the ground state energy to
always be zero is if the ground state energy varies, especially if it includes energy
that had to be explicitly transferred into the system from some other external sub-
system. Thus, energy that is present in a given system, even if that system is in its
ground state, may still represent energy that was transferred from elsewhere and
isn’t being used for other purpose., it may represent “wasted” computational
effort, and we may wish to count it as such, rather than just counting it as zero
effort.

Another possible convention would be to count a system’s energy as being its
total (gravitating) mass-energy, or rest mass-energy, if we want it to be indepen-
dent of the observer’s velocity. One might think this choice is a somewhat less
arbitrary than the ground state convention, since mass is a physical observable, but
unfortunately, in general relativity, the contribution to the total mass-energy of a
local system that is due to its gravitational self-energy isn't actually independent
of the coordinate system that is used ([22], p. 62). However, this caveat is usually
only important in extreme systems such as neutron stars and black holes, where
the gravitational self-energy contributes significantly to the system’s total mass.

In any case, for now, we propose to just make a “gentlepersons’ agreement”
that we will always make sure that the energy eigenvalues of the systems that
we consider are always shifted so as to be positive, so that the total effort is al-
ways positive, and we don't have to worry about what would be the meaning of
a negative “amount of computational effort.” Unfortunately, this strategy rules out
considering certain classes of systems, such as bottomless potential wells, or the
infinite Dirac sea of negative-energy fermion states. But resolving this issue will
have to wait for future work.

10 More Abstract Scenarios

In the above, we have specified a well-defined (at least, up to an additive constant)
positive, real-valued measuféof the amount of computational effort represented
by any trajectory of a state vector in Hilbert space.

This raises the question of whether we can assign a measure of computational
effort to other physical situations that may be less completely specified. For exam-
ple, we may be given a cumulative action operatoibut not know the detailed
Hamiltonian trajectoryH(t)|§2:t1 that generated it, and we may be given only a
setV of possible initial states (rather than a single definite state), or we may have
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a probability distribution or density functiop : V' — [0, 1] over initial states.
In such more abstract situations, can we still meaningfully define the amount of
computational effort exerted by the system as it undergoes the evolution specified
by its Hamiltonian over a given time interval?

Of course we can. Given a cumulative action operatand given any specific
statey) = 1(¢1) at the initial timet,, the value ofF, _, [ (t)] is independent of
the details of the Hamiltonian trajectofy(¢) and is given simply by

Fa() = Al = (Y| Aly), (54)

which can be callethe effort undergone by under A.
We can therefore also naturally expressalierage or expected effort over
exerted by the action operatot as:

Fv(A) =Bxy[Fa] = Y p($))Falv) = (A) = Tr(pA), (55)
PpeVv

where the density operatprdescribing the initial mixed state is constructed from
the probability distribution over pure statésin the usual fashion, that is, with
p = Zwevp(w)W)(w. If no probability distributionp has been provided, we
can use a uniform distribution over some natural measure on thé set

This then gives us a workable definition of the mean effort exerted by a system
over time under a given Hamiltonian, even when the initial state is not exactly
known.

In some situations, we might also be particularly interested inmbgimum
effort over the seV’ of possible initial states. For example, suppose we are prepar-
ing the initial state of the system, and we want to initialize the system in such a
way that it will exert the maximum effort possible. Givenand maximizing over
V', we define thenaximum effort exerted by overV as

Fy(A) = max Fa(4). (56)
This can be considered to be a measure opthtentialcomputational “strength”
of the given action operatot, expressing that any Hamiltonidi(¢) that imple-
mentsA over some arbitrary intervah — t, could exert an amounﬂ—"ﬁ(A) of
computational effort over that same interval, given a suitable initial state. Insofar
as the actual state that we end up gettitightbe the one that undergoes the max-
imal amount of effort, we can say that a system with an unknown or unspecified
state is, at least, exerting this much “potential” computational effort.

Even if the actual state turns owbtto be the maximal-action one, the system
could still be thought of as having “done the work” of determining that the ac-
tual state isnotthe one that should have transitioned through the given maximum
Hilbert-space distance. This particular thought should really be credited to Seth
Lloyd, who pointed out to me in personal discussions, as an analogy, that an ordi-
nary Boolean gate operation can still be thought of as doing computational work
even if the output bit that it is applied to is not actually changed; namely, it is doing
the work of determininghat the bit should not change.
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Similarly to how we defined the maximum effort, we can likewise define the
minimum effort ofd overV asF,, (A) := minyecv Fa(7), although we should
keep in mind that if the ground state of the action operdt@ an available initial
state inV/, and if we use the convention that the ground state action is defined to
be zero, thetf, (A) will always be 0, and so will not be very useful.

11 Difficulty of Performing an Operation

Suppose now that we are givan information about the situation to be analyzed
except for a unitary operatdf on the Hilbert spacé{, and we want to address

the following question: How much computational effort, at minimum, is required

to physically implement/? By “implement” we mean thdf is the time evolution
operator that ends up being generated by the dynamics over some interval, accord-
ing toU = ¢/ for some action operatot. We can call this minimum required
effort the difficulty D of implementing the unitary operat@f. Our framework

gives us a natural way to formalize this notion.

Assuming we have some freedom of choice in the design of the system, then
among the se# of all Hermitian operatorst on H, or among at least a s&tC
A of availableor implementable action operators, we might want to choose the
operatorA that generate¥ that has thesmallestvalue of the maximum or worst-
case effortF," (A) over the set” of possible initial state vectors. Thi$é can be
considered to be the “best” action operator for generating the given uritary
in the sense that the length of the longest trajectory that would be undergone by
any possible state vectgr € V' is minimized. This strategy is analogous to what
we do in traditional algorithm design, where we usually choose the algorithm that
has the minimum time complexity on worst-case input data. In our chsan be
considered to abstractly represent the algorithm selected, while the initial vector
1 represents the input data. Rather than time complexity, we focus on effort or
Hamiltonian action, since (as we will see) this translates directly to time when a
given supply of energy is available to be invested in the system.

In some situations, it may be preferred to chodsso as to minimize thex-
pectedeffort rather than the worst-case effort, for example, if we want to minimize
the total effort exerted over an arbitrarily large set of computations with randomly
chosen input states selected from some distribution.

We can thus define the maximurﬂ;(}v) and expectedﬁzN,V) difficulty of a
desired unitary transforfl under the available action sgtand initial-state set’
as follows:

Dy (U) := min 7y (4)

" ) ®7)

DN’V(U) 1= min fv(A)

= min » p(y)Fa(y) (58)
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Note that in all cases we still want to minimize over the available action operators
A € X, because there is usually no physical reason why indefinitely large action
operators (which waste arbitrarily large amounts of effort) could not be constructed
to implement a given unitary; thus, maximizing over action operators would thus
always giveoo and would not be meaningful.

A remark about the set of available action operators. Typically it would be
constrained by what constitutes an “available” dynamics that we are free to choose
within a given theoretical, experimental, or manufacturing context. For example,
N might reasonably be constrained to include only those action operators that are
obtainable from time-dependent HamiltoniaHg¢) which are themselves con-
structed by summing over local interaction terms between neighboring subsys-
tems, or by integrating a Hamiltonian density function that includes only local
terms on a field over some topological spaeg, to reflect the local structure of
spacetime in a quantum field theory picture. Or, we might constrain ourselves to
action operators that are obtainable from time-independent Hamiltonianganly,
if we are designing a self-contained (closed) quantum system. Finally, practical
considerations may severely constrain the space of Hamiltonians to ones that can
be readily constructed in devices that can be built using a specific manufacturing
process, although we should note that if scalable universal quantum computers can
be built, then any desired local Hamiltonian could be straightforwardly emulated
on these machines.

As a brief aside, it is also interesting to note that a given difficulty function
D(U) (either the worst-case or average-case version, and whatewed V' are)
also induces an intrinsic metric on the space of unitaries of a given rank; we can
define a suitable distance function between unitaries by

d(Uy,Uy) = D(ULUY) (59)

that is, the distance betweéh andUs in this metric is just the difficulty of per-
forming the relative unitary/; _,, := U2U1T that is equivalent to undoind; (using
UlT = U; ') and then doind/,. A unitary trajectory for implementing; . that
actually minimizes the effort will then form, when right-multiplied by, a (sec-
tion of a) geodesic in the space of unitaries passing between the unitarsesd
Us (sinceU;_U; = Uy). Of course, in general, the shortest unitary trajectory
for implementingU; .o will not actually work by doing{]lT followed by Us; for
example, ifU; andU; have high difficulty but are very close together, then the
shortest unitary trajectory between them will be much more direct than this.

Now, given our notion of the computational difficulty of a given unitarywe
can now reinterpret previous results (such as [5,16]) regarding “quantum speed
limits” or minimum times to implement various specific unitary transforms of in-
terest, or classes of transforms, given states of specified average energy above the
ground state, as follows: These analyses are implicitly specifying arsually,
just all Hermitian operators) andla (usually, just the entire Hilbert space), and
showing that the worst-case difficul®™ (U) for the transform/ has a specific
value (or lower bound), assuming the presence of a time-independent Hamiltonian
where the ground state energy is usually set to 0. In other words, such analyses
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show that a certain minimum worst-case effort or Hamiltonian action is required
to implement the particuldy in question.

As an example, Margolus and Levitin’s result [5] can be interpreted as telling
us that anyU that rotates some state to an orthogonal state has a worst-case
difficulty of D*(U) > h/4, since their result shows that any state of enefgy
takes time at leadt/4 E (no matter what the Hamiltonian) to accumulate the action
needed to take it to an orthogonal state; thus the Hamiltonian adtienF't that
is required to carry out such a transition is at lggst.

Another result in [5] implies that if there issa such that o)), Ulw), U?|4),
L UNZH), UN ) = |9)) comprises a cycle oV states, with each orthogonal
to the preceding and succeeding states in the cycle Bhed/) > g% even if
we are given complete freedom in constructing the Hamiltonian, aside from a re-
quirement that it be time-independent. Pér= 2, this expression reduces g4,
while for N — oo, it goes toh /2. Thus, any physical computation that proceeds
autonomously though an unbounded sequence of distinct states must exert at least

h/2 effort per state transition.

Notice that the Margolus-Levitin theorem is, strictly speaking, only giving us
alower boundon the worst-case difficulty, since it is considering only a particular
statey of interest (namely, one that actually undergoes a transition to an orthogo-
nal state), rather than finding the worst-case potential effort to perform the corre-
spondingU, maximized over all possible initiab in the Hilbert space. Later, we
will see that the actual worst-case effort for an orthogonalizing transformation is
actuallyh/2 = 7 even in theN = 2 case, and possibly even higher in cases that
go through more states.

We anticipate that, armed our definitions, it would be a highly useful and
worthwhile exercise to systematically go through a variety of the quantum unitary
transforms that have already been identified in quantum computing as comprising
useful “quantum logic gate” operations, and quantify their worst-case and average
difficulty, according to the above definitions, under various physically realistic sets
of constraints. This would directly tell us how much physical Hamiltonian action
is required to carry out those operations (given a best-case Hamiltonian imple-
mentation, while operating on a worst-case or average-case input state). We can
likewise do the same for classical reversible Boolean logic operations embedded
within unitary operations, as well as classical irreversible Boolean logic operations
embedded within classical reversible operations, with ancilla bits used as needed
for carrying away garbage information to be discarded.

Such an investigation will, for the first time, give us a natural and physically
well-founded measure of the physical complexity of logic operations, in terms of
Hamiltonian action. This in turn would directly tell us the minimum physical time
to perform these operations within any physical system or subsystem using a set of
states having a given maximum energy about the ground state, given the known or
prespecified constraints on the system’s initial state and its available Hamiltonian
dynamics. This new quantification of computational complexity may also allow us
to derive lower bounds on the number of quantum gates of a given type that would
be required to implement a given larger transformation in terms of smaller ones,
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and possibly to show that certain constructions of larger gates out of smaller ones
are optimal.

In subsequent subsections, we begin carrying out the above-described line of
research, with some initial investigations of the difficulty of various simple opera-
tions in situations where the available dynamics is relatively unconstrained, which
is the easiest case to analyze.

12 Specific Operations

In this section, we explore the difficulty (according to our previous definitions) of
a variety of important quantum and classical logic operations.

We will begin by considering some educated guesses about the difficulty of
various unitaries. For each unitatywe are to imagine implementing it via a par-
ticular transformation trajectory/’(¢) (and HamiltonianH (¢) such that’(¢) =
eH ()4t that is as “direct” as possible, in the sense of minimizing the Hilbert-
space distance through which worst-case states are transported. Intuition tells us
that these minimal trajectories are expected to follow geodesics in the space of uni-
taries, as per the metric we defined earlier; in other words, they should be “straight-
line” paths, so to speak, that get us to the desired unitary as directly as possible.

12.1 General two-dimensional unitaries

Let us begin by considering,, the space of unitary transformations on Hilbert
spaces of dimensionality 2. In quantum computing, these correspond to single-
gubit quantum logic gates. As is well knowe.g, see [23], eq. 4.9), any sudh
can be decomposed as

U =c“Ry(0) (60)

wheren = (ng,ny,n,) is a real 3D unit vector and; () is a Bloch-sphere
rotation about this vector by an angleffthat is,

Rﬁ(@) — ei(9/2)(ﬁ~o‘) (61)

whereo = (0, 0y, 0,) is the vector of Pauli matrices

e P A

Let us now consider breaking dowhinto its multiplicative factore'® andR;, (6),
which we observe commute with each other, sia€eis a scalar. Thus, we can
consider these two components @fto be carried out in either order, or even
simultaneously if we prefer.

Let's start by looking atR; (). At first, we might guess that the worst-case
effort that is required to perforn,(¢) for anglesd where—= < 6 < 7 ought
to just turn out to beé|/2, since, for example, a Bloch sphere rotation through
an angle of) = = radians corresponds to inverting a spin in ordinary 3D space
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through an angle of80° to point in the opposite direction, which is an orthogo-
nalizing transformation, and we already know from the Margolus-Levitin theorem
that any transition to an orthogonal state under a constant Hamiltonian requires
a minimum action (given zero ground state energy) for the state in question of
h/4 = (n/2)h = (w/2) rad, or an area swept out af/4 square units. This is a
good first guess, but later, we will see that the actual worst-case action turns out to
be twice as large as this. (Our intuition forgot to take into account the fact that the
state vector in the Margolus-Levitin theorem isn’t actually the worst-case one, as
far as the accumulated Hamiltonian action is concerned.)

Indeed, for any real unit 3-vectar(the “axis of rotation” for the Bloch sphere),
one can easily verify that there is always a corresponding complex state vector

1 n, +1
R e A 63
|Un> 2(1-1—712) {nx—i—lny] ( )

which is a unit eigenvector of - o having eigenvalue +1. This state vector is
therefore also an eigenstate Bf,(#), with eigenvalueci(®/2), In other words,
in any orthonormal basis that includes’) as one of the basis vectors, @-
creases from 0 (for now, we’ll assume for simplicity that the final valué of
non-negativep) < 6 < ), the coefficient of the}v;> component of the state
lv(t)) = Ra(0)|v) (starting from the initial state)(0)) = |v7), where the co-
efficientc‘vg> is 1) describes a circular arc in the complex plane centered on the
origin, sweeping out a total angle 6f2, and an origin-centered area@®f4. As
we saw earler, this same measure of the weighted-average accumulated angle and
total area accumulated still holds in any basis. So, we have that the eff@xt 6j
must be at leagt/2. Indeed, this is the exact worst-case effort, singe’s eigen-
value is maximal, so no pure energy eigenstate can possibly sweep out a larger
angle a9 increases, and therefore no superposition of energy eigenstatesq
general state) can do so either.

Now, what about the'® factor that’s included in the expression for a general
U € Uy? Note that this term represents an overall (global) phase factor that applies
to all eigenstates. As such, even the ground sfigteof whatever Hamiltonian
is used to implement/ might still accumulate a phase due to this phase factor.
In this case|g) would have nonzero Hamiltonian energy. If we redefigeto
instead have zero energif (g) = 0), then|g)’s coefficient would not phase-rotate
at all, since the action operatet = Ht would give A|g) = 0 for this state,
andU|g) would give (e'4)|g) = (e°)|g) = |g), that is,|g) would be unchanged
by this U. However, it does not follow that we can always justdebe zero, as
|g) may generally have accumulated an additional phase resulting frofytt
component ot/ as well. It is thetotal phase accumulated by the ground state that
we wish to define to be zero.

Let us now consider the following: Under the transformati®gn(6), asé in-
creases from 0, we notice thhx;f) (the eigenvalue-1 eigenstate ®f o which
we constructed above) only phase-rotates by an ah@eUnderU = '*R;(0),
luF) therefore undergoes an overall phase-rotation by an anglefef)/2. We
confidently conjecture that the “least potential action” or most efficient way to im-
plementU is to apply a Hamiltonian that simultaneously sweeps hoténd 6
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forward steadily from 0, at respective rates that are exactly proportional to their
intended final values. If this is correct, then’) is indeed an eigenstate of that
best-case Hamiltonian, with ener@y + 6/2)/t (recall that we're usingi = 1),
wheret is the total time taken fo andd to reach their final values.

However, since the space we are working with is two-dimensional, there must
be another energy eigenstate as well. Solving the eigen-equ@tiowr)|v) =
r|v), we find that the other eigenvalueof 7 - o is —1, and the other unit-length
eigenvector, modulo phase-rotations, is ¢igr> 0)

_ 1 n, — 1
V) = ——— . 64
| n> 2(1 —n.) [nermy] (64)
or, in the special case when, = 0, then instead any normalized column vector
lvy) = [vo;v1] where|vo| = |vi| = 271/2 will work, so long as the vector

components, andwv; have the specific obtuse (that is, 90°) relative phase
angle that is given by the relatian = (—n, — in,)vo. (Note thatn, + in,| = 1
whenn, = 0.)

Thus, for any Hamiltonian that smoothly sweepforward in a steady trans-
formationR;,(6) with 6 ¢, there will actually be two different energy eigenstates
having energies that are negatives of each other, one state in which the accumu-
lated action of the Hamiltonian /2 (as we saw above), and another state (the
ground state) where the action is the negative of this; ®f2. Together with the
global phase-rotation of, we have that the total action féf is o + 6/2 and
a — /2 for these two energy eigenstates, respectively.

Following our convention that the total action in the ground state should be
always considered to be zero, we can shift the energy levels upwards in such a
way that the lower value: — 8 /2 will be equal to 0, in other words, we can adjust
our rate of global phase rotation (which determingdn such a way that we have
exactlya = 6/2. Now, the total action in the high energy statenist /2 =
0/2+6/2=49.

In other words, starting with arly € U, and decomposing itd$ = e'® R, (0),
which involves a rotation of the Bloch sphere through an anglé about an
axis n, we can calculate a meaningful difficul®* (U) by using the conven-
tion that the ground state should be considered to have energy 0, and by letting
DH(U) = DH(Ux(9)), where we defind/,, (8) = €%/2R;(6), that is, ignoring
the original value otx (whatever it was) and instead adjustingo have the value
a = 6/2 which assigns the ground state to zero energy. Thus, we can say that the
“true” computational/physical difficulty of/ (given this choice) is exactlg for
any single-qubit unitary/ = 'R, (0), regardless of the value of. If 6 is a pure
number (implicitly bearing an angle unit of radians), then the worst-case Hamil-
tonian action to carry out the desired transform using the best-case Hamiltonian
(assuming that is indeed what we have managed to characterize abé¥e)ns
whatever physical units we wish to exprésShat is,D*(U) = 6.

To wrap up this section, let us take a look at the precise form of the Hamiltonian
that we are proposing. Note that

(65)
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is itself an Hermitian operator which plays the role of the Hamiltonian operator
H with respect to the Bloch-sphere rotation unitdty(d) = (/29 if the
rotation anglé is taken be equal to twice the timeMeanwhile, in this scenario,

the extra phase-rotation facte* = €i(?/2) out front corresponds simply to an
additional constant energy of +1, using the same angular velocity uniés'2f).

This gives us a total “Hamiltonian” (in quotes because we haven't introduced an
explicit time parameter here yet) @f; that is required to implement a steady
rotation about: which is equal to

_ 10 n n, Ng — iny
01 Ng +iny  —n,

| 14+n, ng —iny
- {nx—kiny 1—n, } ' (66)
With this choice of “Hamiltonian,” we can easily check that the) are in-
deed its energy eigenstates, with,|v, ) = 0 (the ground state has “energy”
0) andHj|v}) = 2, which is what we want since it will cancel out with the 2 in
the denominator of the exponent in the rotation unitégy(6) = ¢'%/?R;(0) =
el(0/2)(14+i-0) _ i(0/2)Hy

To generalize the picture slightly, if a rotation throughbout an axis: is to

take place over an arbitrary amount of timehen we require a Hamiltonian (a
proper one now, in actual angular-velocity energy units) of

0 0 14+n, n,—in,
H_27tH"_27t ng +in, 1—n, (67)

With this choice of Hamiltonian, note that things works out nicely so that the
high-energy eigenstate) phase-rotates at exactly the desired tate= 6//t,
since we have that

0 0 0
Hlv}) = EHﬁ\Uﬁ = %2“};{) = ;W{) =wtul). (68)

Thus, the action operatot = Ht comes out exactly equal to the angle operator
2 which gives the total angle of phase rotation for both the energy eigenstates
), thatis,Alv; ) = Q2v;) = 0lv; ) andAjvf) = Qv}) = 0v). And for
an arbitrary initial state), i.e., for any normalized complex superposition of the
eigenstatef), A[] = 2[¢] gives the quantum mean angle of phase rotation.
Note that in all the above discussion, we have assumed that the rotation angle
is non-negativei.e., that0 < # < « (rad). To complete the picture, note that for
values of) between 0 and 7, we can convert them to positive angles by the simple
expedient of rotating instead by an angld@if= —6 about the—n axis , which is
an exactly equivalent rotation. This has the effect of exchanging the values of the
|v§> eigenstates, as well as the sign of ftig component off. Other than that,
everything else is the same, with the result that the actiaiways comes out non-
negative and equal to the absolute valu@.oDf course, for the case of absolute
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angles outside the range-, 7], we can just reduce them to the equivalent angle
in (—7, 7] by adding or subtracting the appropriate multipleof

In the above, although we have not yet quite finished proving rigorously that
the specificH we have given is in fact the one that implemebtsvith the least
possible value of the worst-case actidn still, we expect that it should already
seem highly plausible to the reader that this should in fact be the case, due to the
directness and simplicity of our construction, which made use only of the simple
fact that any arbitrary/ € U, can be decomposed into a single generalized ro-
tation about an arbitrary axis is real three-space, accompanied by a global phase
rotation. Of course, a more complete proof of the optimality of this construction
would be desirable to have, but it will have to wait for future work.

12.2 Specific single-qubit gates

Given the above discussion, to determine the diffic@iitgf any single-qubit gate

U is a simple matter of finding some unit 3-vectorand anglesy, 6 € (—m, 7]
such thatU' = e'®R;(6), which is always possible. This then establishes that
Dt (U) = |6|, under our ground zero energy convention. Let us look briefly at
how this calculation comes out for various single-qubit gates of interest.

1. The Pauli spin-operator “gateX” = o, (which is the in-place NOT operation
in the computational basis), = ¢,, andZ = o all of course involve a
rotation angle oy = =, since they all square to the identita( rotation).
Thus,DH(X) =D (Y)=D"(Z) =m = h/2.

2. The “square root of NOT” gat®& = 5[ 1+ 171] of course requires an angle of
7/2, sinceN? = X. Thus,DT(N) = 7/2 = h/4.

3. The Hadamard gat&y = %[1 _1] requires a rotation angle af about the
f = (1,0,1)/v/2 axis,i.e, #-o = (0, +0.)/\/2. Also note that7?> = 1 and
a rotation througlr is the identity. ThusP*(H) = 7 = h/2.

4. The “phase gateS = [} 9] requires§ = /2 since note that? = Z. So,
DT (S)=n/2=h/4.

5. The so-called#/8" gate T' = [ ., (/4] iNVOlves® = /4 since note that

T* = Z. Thus, D+ (T) = /4 = h/8.

6. The generalized phase gate(§) = [} ng[ie]} is just a rotation by an angle of

6 about thez axis, soD" (ph(f)) = 6 = 6h.

As a point of comparison, the paper [16] studies the time required to perform the
specific gatd/ = ¢ X (i.e., NOT with global phase rotation) using an optimal
Hamiltonian, and conclude that the minimum timeesquired (for a specific initial
state) is

h 9
T=4E(1+2ﬁ). (69)
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Note that the corresponding Hamiltonian actioor effort F is

= g 10 (with h=1). (70)

At first glance, this might appear to contradict our claim that the difficulty of such

a U ought to be exactlyr. However, we should keep two things in mind. First,

in [16], Levitin et al. are concerned with the time to carry diitin the case of

a specific subset of initial states which will actually transition to an orthogonal
state in the time-. However, these particular states are not the “worst-case” ones
from our perspective, and so they don’t determine the maximum effort. Rather, the
particular states under consideration in their paper all have a mean energy of only
E = (E1+E,)/2, whereE; andE, are the low and high energy eigenvalues of the
ideal Hamiltonian, respectively. Letting;, = 0 (our ground zero assumption), we
have that, = 2F. SinceFE, has the highest energy available given this spectrum,
the E5 energy eigenstate accumulates more action over thestithan any other
possible state, in particular, double that of states with enérgy E» /2, and thus

it is the E, state that determines the worst-case action, which is twice that of [16],
or in other wordsA = . The term involvingd in (70) drops out entirely, since

as we already saw earlier, global phase shifts are irrelevant when considering total
action, under our convention that the ground state action is always defined to be
zero. Levitinet al. don’t make this adjustment, because they are assuming that the
Hamiltonian has already been arranged in advance to have a desired energy scale.
Thus, the global phase rotation Byeads to an extra additivein their expression

(70) for the action.

12.3 Difficulty of achieving infidelity

A natural and widely-used measure of the degree of closeness or similarity be-
tween two quantum statesv is thefidelity, which is defined (for pure states) as
F(u,v) = |(ulv)| = |[u'v|. (See [23].) Note that if the actual state of a system is
u, and we measure it in a measurement basis that includssa basis vector, the
square of the fidelity = F? gives the probability that the measurement operator
will project the state down to, and that will be seen as the “actual” state. (This
is a “quantum jump” or “wavefunction collapse” event, or, in the many-worlds
picture, it is the subjectively experienced outcome when the state of the observer
becomes inextricably entangled with that of the system.) Likewise with the roles
of v andw reversed. Thus, only wheli = 0 are the states andv orthogonal.

We can also define a related quantity, the “infidelifylf (u,v) = /1 —p =
V1 — F2. The squared infidelity betweenandv is then just the probability — p
that if the actual state ig, then it will not be taken tav by a projective measure-
ment (in a measurement basis that includesind vice-versa. In other wordsuif
is some old state of a system, amds its new state, the squared infidelity between
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u andv is the probability that the answer to the question “Is the state different from
v yet?” will be found to be “yes” when this question is asked experimentally by a
measurement apparatus that compares the stateywith

Let us now explore the minimum effort that is required in order for some of
the possible state vectors of a system to attain a given degree of infidelity (relative
to their initial states), in the case of two-dimensional Hilbert spaces. Note that
not all vectors will achieve infidelity; in particular, the eigenvectors of any time-
independent Hamiltonian will always have 0 infidelity.

We start by recalling from earlier that any 2-dimensional unitary can be consid-
ered a rotation of the Bloch sphere about some axis in ordinary (real-valued) 3-D
space. Since a simple change of basis suffices to transform any axis to any other,
we can without loss of generality presume a rotation about #vds, represented

b
Y efi0/2 0
R:(0) = { 0 ei9/2:| (71)

We saw earlier that the effort of any such rotation (under the ground-zero con-
vention) is always exactly. What initial state will gain infidelity most rapidly
under this transformation? Until we figure this out, let us allow the initial state to
be a general unit vectdr) = [vg; v1] = v9|0) + v1]1) in the basig0), |1). Then

lu) = R:(0)v) = [e719/2vy;e?/2v,] as a column vector of complex coefficients.
Now the fidelity between andu is

F(v,u) = [(v]u)| = [{v]Rz(0)]v)]

—i0/2 19/21)1'

= |vge v + vie

_ e—iG/Z‘UO|2+eiG/2|vl|2’

2 0 9
= COb - — 151n |vg|® + |cos 3 + 15111

0
= (cos ) (Jvol? + |v1|?) +1i (Sin 2) (|v1]? = |vo|?)
= cosf +i sing (Jv1]? = Jvol?)] .
2 2

where in the last line we have made use of the fact that + |v1]|*> = 1 for a
normalizedv. Now, F2 is the sum of the squared real and imaginary components
of the expression inside the outermost absolute-value delinjjtab®ve:

(72)

[ (u, 0)]* = S*[{v]u)] + R*[(v]u)]

0
= cos? ( ) + sin? (2) (Jor]? = |110|2)2
= cos? ( ) + sin? <Z> (1 — 4Jv1[|vo]?)

=1 —4sin? (Z) lv1|%|vol?, (73)

N D
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where in getting from the second to the third line, we have again made use of the
fact that|vg|? + |v1|*> = 1. We can reassure ourselves that the last line of (73) is
always in the range [0,1], sing¢ey|?|v1|> < 1/4 given thatjvg|? + |v1|? = 1. Note
also that the fidelity is minimized wheno|? = |v;|*> = 3, that is, when the two
z-basis states are in an equal superposition. This is then the “worst case” (worst in
terms of “least fidelity”) which we wish to focus on.

So now, the infidelityl = Inf(u,v) = /1 — F2(u,v) comes out to be a
reasonably simple expression:

]nf(u,v) = 1- [F('LL, 1))]2

= \/4sin2 (g) |v1[2|vo]? (74)

0
=2 (sin 2> |vo||v1]- (75)

Note that for any given angle of rotation in< 6 < 7 /2, the infidelity is maxi-
mized wherjvg| = |v1| = 1/V/2. For suctw, we havelv||v;| = 3 and so

Inf (u,v) = sin g (76)

Thus, if we wish that some system initially in statshould achieve a desired de-
greel of infidelity (relative to its initial state) using a transformation of minimum
effort, we must choose a unitary transformation that is a rotaig(9) about an
axisn that is “perpendicular” t, and rotate by an angle= 2 - arcsin(7). The
Hamiltonian actiona accumulated by “worst-case” (that is, maximum-energy)
vectors under this transformation is (by definition) the difficuRy (R;(6)) of
that unitary, and is given by = 2 - arcsin(I).

However, the specific initial vectar that we are dealing with will not have
the maximum energy¥ (relative to ground) but rather half of this, @&/2, since
half of its probability mass will be in the high-energy state, and half in the zero-
energy ground state. Therefores total Hamiltonian action (amount of change)
along its trajectory will instead be exacthyfv) = arcsin(I), a wonderfully simple
expression. Thisy is the effort exerted by the specific stateas it traverses a
maximally efficient path for achieving infidelity = sin «.

So, for example, suppose we want to cause some given initiakstatgansi-
tion to a new state that has only a probability of at most 1/2 of being confused
with the initial state if it were measured. This is to say that the infidelity between
the states should be at least= /T —p = 1/v/2, which requires the state to
traverse a trajectory that has a length of at l6astarcsin(I) = arcsin(1/v/2) =
m/4 = h/8, which can be done using a minimum-difficulty unitary transform
whose worst-case effort is twice as great as this; & = h/4, meaning that the
worst-case (maximum-energy) states of the system would traverse a trajectory of
this (greater) length under an optimal implementation of such a transformation.

Assuming that the actual given initial state in question is assigned an average
energy of onlyE above the ground state, it will take time at least h/8F to
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carry out a unitary transformation on this state that achieves a probability above
1/2 of distinguishing it from the resulting state; whereas, if we are given that the
maximunenergy state in the qubit spectrum has endrgthen it will take time at
leastt = h/4E to carry out the transform.

In other words, to carry out an operation in timiat yields a 50% probability
(or less) of conflation of some initial states with their successors requires that the
initial states in question must have energy at ldast h/8t, and that states of
energy at leastl = h /4t must exist in the spectrum.

Note that the above results are also perfectly consistent with the Margolus-
Levitin theorem [5]. That is, plugging in an infidelity of = 1 to represent
a transition to an orthogonal state, we find that the specific initial state’s effort
F(v) = arcsin(1) = w/2 while the worst-case difficulty for this transform is
6 = 2arcsin(1) = ; these figures are twice that for the previous example. And
so for a state to attain a 0% probability of conflatide.( to reach an orthogonal
state) requires that it have at least twice the energy as the previous scenario, or
E = 7/2t = h/4t (under the Hamiltonian used to carry out the transformation),
while other energy levels of at leasft = h/2t must be present in the spectrum
of the Hamiltonian operator being used.

12.4 Higher-dimensional operations

Naturally, we are interested not only in unitariesUi, but also in higher di-
mensions, in particular, unitaries in the grodps., which correspond to general
“guantum logic gate” operations (really, arbitrary quantum computations) operat-
ing on sets of, qubits.

In particular, let us focus on the “controlléd* gates with one target bit, which
take the general form (modulo qubit reorderings)

1

1
U =Cc U= _ (77)

U

where we haveé™ —2 ones along the diagonal, and a rank-2 unitary mafrir the
lower-right corner. In other words, for computational basis stggs . .. b,—1),
whenever the firsh — 1 qubitsbgb; ...b,_o are not all 1's, the state remains
unchanged; otherwise, the unitdryis performed on the final qubit, ;.

We observe immediately th@* (U’) > D*(U), since all the input states
that undergo any change at all will undergo the exact same transformation (in the
subspace associated with the last qubit) that they would v¥ere just applied
unconditionally. Thus, the worst-case trajectories when conditionally applying
can be no shorter than the worst-case unconditional trajectories (under an optimal
implementation).

Furthermore, ifU by itself would be optimally implemented by the Hamil-
tonian H, then it is easy to believe that’ would likewise be optimally imple-
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mented by the Hamiltonian

H=| (78)

that is, with O's everywhere except for a copy#fin the lower-right2 x 2 sub-
matrix. It is easy to verify that thig’, when exponentiated, indeed produces the
desired/’. And since its worst-case difficulty is equal to our lower bo@nd(U),

it is in fact an optimalH’, assuming our earlier conjecture about the optimality of
H is correct. In this case, iff’ is actually an available Hamiltonian in the context
one is considering, then the effort &f is indeed exactly the same as the effort of
U.

We can see from this example that when we consider the full space of math-
ematically describable Hamiltonians, we are likely to greatly underestimate the
effort, compared to what can actually be implemented. The typical known im-
plementations ot/ in terms of small local quantum gates would require a num-
ber of orthogonalizing operations that is at least linean,invhereas in our case
above, the effort is constant (upper-boundedrhylt seems likely that the effort
for a physically realistic€.g.field-theory based) Hamiltonian for this classia$
would have to be more than constant, since the interactiargobits to determine
an outcome would appear to necessarily be a non-local process.

In most physical situations of interest, we will not necessarily have available
Hamiltonians that are of any form desired, such as the fArnsuggested above.
Instead, we may only have available a more limited, perhaps parameterized suite of
Hamiltonians, perhaps ones that are formed by a sum or time-sequence of specific,
controllable, localized couplings having (say) at most 2 qubits each, as is popularly
represented in the quantum computing literature using the schematic notation of
guantum logic networks.

Obviously, whenever our space of available Hamiltonians is more restricted
than the simple “all Hermitian operations” scenario analyzed above, the resulting
values of DT (U) will in general become much larger, and probably also much
more difficult for us to analytically calculate. To compdie (U) for Hamiltoni-
ans that can plausibly be constructed within the context of particular experimental
frameworks that are readily physically realizable in the lab (or in a manufactured
product,e.g, a someday-hopefully-to-be-realized commercial quantum computer)
is clearly a much more complex and difficult task than we have attempted to tackle
in this paper. To address this problem more fully will have to wait for future work.

Still, we hope that the present work can at least serve as a fruitful conceptual
foundation on which we can proceed to build meaningful analytical and/or nu-
merical analyses of the physical/computational “difficulty” of performing various
guantum operations. We also hope that this work will serve as a helpful stepping
stone for future investigators who wish to continue exploring the many deep and
rich interconnections between physical and computational concepts.
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12.5 Classical reversible and irreversible Boolean operations

Although in the above discussion we have focused on the effort required to carry
out quantum gate operations, it is easy to extend the results to classical logic oper-
ations as well. Any classical reversible operation is just a special case of a quantum
gate where the matrix elements of the unitary operator (in the computational basis)
are 0 or 1. For example, a reversible Toffoli gate or Controlled-Controlled-NOT
(CCNOT) is a special case of th¢’U gate addressed i§l2.4 above. Specifi-
cally, since thel/ in question isX (NOT), which has a rotation angle af the

effort required for Toffoli must be at least and indeed is exactly if arbitrary
Hamiltonians can be constructed. Toffoli is a universal gate for classical reversible
computation, so a construction of any classical reversible circuit out of Toffoli
gates sets an upper bound (as a multiplerpbn the difficulty of that computa-

tion, apart from any extra effort that may be required to control transitions between
gates (which could be substantial, but is probably close to linear in the number of
operations performed).

As for ordinary irreversible Boolean operations, these can be embedded into
reversible operations as follows. Consider, for example, a standard boolean in-
verter, whose function is irreversible as it is normally specified in an electrical
engineering context. The explicit function of an inverter is to destructively over-
write its output node with the logical complement of its input. (Please note that this
function is distinct from that of a classical reversible NOT operation, which simply
toggles a bit in-place.) Due to Landauer’s principle, the physical information con-
tained in the output node cannot actually be destroyed, but is instead transferred to
reside in the environment. So, we can model the ordinary inverter’s function as a
sequence of reversible operations as follows:

1. Exchange output bit with an empty bit in the device’s environment

2. Increment an “environment pointer” to refer to the next empty bit in some
unbounded list

3. Perform a CNOT between input node and (now empty) output node

The first step can be understood as the emission from the device of the old stored
value of the bit, in the form of entropy. The second step can be viewed as imple-
menting the continuous flow of entropy away from the device, to make room for
discarding the results of subsequent inverter operations. Finally, the third step car-
ries out the desired logical function. The above breakdown is not necessarily the
simplest possible implementation of the classical inverter (although it is probably
close), but it at least sets an upper limit on the number of quantum operations that
are absolutely required.

The first step can be carried out by a unitary SWAP operation between the two
bits in question. The second step can be carried out by an annihilate/create pair
of operations that moves a “particle” by one position to point to the next empty
location in the environment; this corresponds to a unitary operation that increments
the state vectofi) of some subsystem that specifies the integer locatiointhe
environment pointer. Finally, the third step is just an ordinary CNOT, with an effort
of 7. In principle, we could calculate and add up the effort for all these steps,
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together with the effort needed to update a part of the machine state that keeps
track of which step we are on, to arrive at an upper bound on the effort required
to implement a classical inverter operation. However, this calculation might not
be very meaningful unless we did more work to specify a detailed physical setup
that would allow us to confirm that such a bound was achievable in a practical
hardware implementation.

13 Relation to Berry phase

An interesting question to ask about our quanfitys what relationship (if any) it
has to the classic notion of the geometric or Berry phase of a quantum trajectory
[24-31]. So far, the relationships between these concepts are not completely clear,
and working them out in more detail will have to wait for future work. However,
some initial remarks are in order.

Let H(t) be any time-dependent Hamiltonian that implements the unitary
for ¢ going from 0 tor, and letj+) be an eigenvector df, with eigenvalue'?. The
state|)) thus undergoes a cyclic evolution in the projective (phase-free) Hilbert
space. Aharonov and Anandan [26] point out the relatiegh= o — S (the in-
tegrated form of their equation (2)), whetieis the integral of the instantaneous
Hamiltonian energy of the state,

1 T
o= [ wolH@ ) (79

andg is a term given by
T ~ . d ~
o= [ GRG0, (80)

vyherezZ;(t) is any continuously gauge-twiddled versiomgfit) such that)(0) =
¥(7) = 9(0). Aharonov and Anandan’s paper [26] revolves around their claim
that this quantity is a generalized version of the Berry phase that applies even to
non-adiabatic evolutions.

However, if the results of the present paper are correct, then Aharonov and
Anandan’sg is always an arbitrary value congruent to 0 (mode#9 and thus is
not a physically meaningful quantity. The reason is thatdha (79) is exactly
oura = A[(0)], whereU = e~4 (in the usual sign convention, which A&A are
using), and thug)(0) is also an eigenvector of with eigenvaluex, so|y (7)) =
Ul(0)) = e~'[3)(0)). Since we are already given thatr) = e'®4(0), it fol-
lows that¢ = —a (mod27); thus3 = 0 (mod27). Any desired multiple oRx
can always be selected f6iby appropriate choice of the functiar(¢). So,5 does
not contain any information at all about the specific evolutign), and thus it is
not a physically meaningful quantity.

It it interesting to note that the A&A paper [26] never actually shows that their
guantity 8 can ever be different from 0 (mdzir), although they do prove that
has some other “interesting” properties (such as being independent of the gauge of
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the original trajectory) which of course are true triviallydfis always congruent
to zero.

Thus, it seems that one implication of our results (assuming they are correct)
is that Aharonov and Anandan’s particular version (at least) of the “geometric
phase” is a chimera, and does not really exist. Further study is needed to verify
this conclusion more rigorously, and also to determine whether other definitions
of the Berry phase might escape from it, and retain a useful physical meaning
that relates in some way to our quantity Since many researchers have reported
the experimental detection of Berry-type phaseg,(see [32]), it seems highly
unlikely that our results will turn out to nullify all versions of the geometric phase
for all quantum evolutions. However, as of this writing, the correct resolution of
the apparent discrepancy between theory and experiment on this question is not
yet clear.

14 Conclusion

In this paper, we have shown that any continuous trajectory of a normalized state
vector can be measured by a real-valued quantity which we cadfiibit 7, which

is given by the line integral, along the trajectory, of the imaginary component of
the inner product between adjacent states along the trajectory. This quantity is
basis-independent, and is numerically equal to the probability-weighted average
phase angle accumulated by the basis state coefficients (in radians), and to twice
the area swept out by the coefficients in the complex plane, and also to the action
of the time-dependent Hamiltonian along the trajectory, in units. dthis notion

of effort can be easily extended to apply also to transformation trajectatigs

over time, as well as to an overall resulting unitary transférmvhere it measures

the difficulty D or minimum effort (over available trajectories) required to imple-
ment the desired transform in the worst case (maximizing over the possible initial
states). Our framework can be used to easily rederive a variety of related results
obtained by earlier papers for various more specialized cases.

The major implication of these results is that there is indeed a very definite
sense in which we can say that the physical concept of energy does indeed pre-
cisely correspond to the computational concept of the rate of computation, that is,
we can validly say that energy the rate of physical computing activity, defined
as the rate of change of the state vector, according to the measure that we have
described in this paper. Furthermore, we can validly say that physical ém
amount of) computation, defined as the total amount of change of the state vector,
in the sense we have defined.

What about different specific types of energy, and specific types of action?
Later papers along this line of research will survey how different types of en-
ergy and action can validly be identified with computational activity that is en-
gaged in different types of processes. For example, heat may be identified with
energy whose detailed configuration information is unknown (is entropy), rest
mass-energy can be identified with energy that is engaged in updating a system’s
internal state in its rest frame, potential energy with phase rotation due to emis-
sion/absorption of virtual particles, and so forth. As a preview, it turns out that we
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can even make our computational interpretation consistent with special relativity
by subdividing the energy of a moving body (in a given observer frame) into the
functionalenergy® that is associated with updating the body’s internal state (this
turns out to be just the negative Lagrangiah = H — pv) and amotionalpart
M = pv (related to but not quite the same as kinetic energy) that is associated with
conveying the body through space; relativistic momentum then turns out to be the
motional computational effort exerted per unit distance traversed. Future papers
will elaborate on these related themes in more depth.

It is hoped that the long-term outcome of this line of thought will be to even-
tually show howall physical concepts and quantities can be rigorously understood
in a well-defined mathematical framework that is also simultaneously well-suited
for describing physical implementations of desired computational processes. That
is, we seek an eventual unifying mathematical foundation that is appropriate for
not only physical science, but also for device-level computer engineering and
for physics-based computer science. We expect that such a unifying perspective
should greatly facilitate the future design and development of maximally efficient
computers constructed from nanoscale (and perhaps, someday, even smaller) com-
ponents, machines that attempt to harness the underlying computational resources
provided by physics in the most efficient possible fashion.
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