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Abstract 
 
As logic device sizes shrink towards the nano-

meter scale, a number of important physical limits 
threaten to soon halt further improvements in com-
puter performance per unit cost.  However, the 
near-term limits are not truly fundamental, and 
may be avoided by making radical changes to the 
physical and logical architecture of computers.  In 
particular, certain assumed limits to the energy 
efficiency of computers have never been rigorously 
proven, and may be circumvented using physical 
mechanisms that recover and reuse signal energies 
with efficiency approaching 100%.  However, this 
concept, called reversible computing, imposes tight 
constraints on the design of the machine at all 
levels from physics to algorithms.  We review the 
physical and architectural requirements that must 
be met if real machines are to break through the 
barriers preventing further progress, and approach 
the true fundamental physical limits to computing. 
 

1.  Introduction 

Computer scientists, engineers and futurists 
alike enjoy citing “Moore’s Law,” the famous 1965 
prediction by Intel co-founder Gordon Moore [1] 
that the number of devices per chip would double 
every year (later adjusted to every 18 months [2]), 
with accompanying benefits in performance per 
unit cost.  Although the (revised) prediction has 
held true for 40 years, it is of course only a techno-
logical trend, not a law of physics; in any direct 
conflict between the two, we can be assured that 
physics will win. 

In fact, it is by now fairly common knowledge 
among experts in the semiconductor industry (e.g., 
see [3]) that raw chip performance (if not bit densi-
ty) must level off within just a few years, as con-
ventional transistor circuits approach limits to their 
performance at reasonable levels of power con-
sumption, limits that ultimately arise from quite 
fundamental laws of statistical mechanics and ther-
modynamics.  However, it is also true (but much 
less widely recognized) that these limits have never 

been validly proven to apply to all physically pos-
sible computing technologies.  Rather, they are ap-
parently just a consequence of certain contingent 
historical attributes of the presently-dominant para-
digm for digital logic, namely its reliance on the 
use of irreversible (that is, many-to-one) operations 
as the basic primitive logical events in computa-
tion, which in turn requires using physical mechan-
isms for logic that are also thermodynamically irre-
versible [4]; in present technology, logic signal en-
ergies are allowed to dissipate themselves (to the 
form of heat) whenever those signals are manipula-
ted. 

But in fact, the thermodynamic irreversibility of 
logic can be avoided, but only if we abandon logi-
cal irreversibility and instead adopt reversible (one-
to-one) operations as our primitive events in comp-
uting, a fact that was first recognized in 1973 by 
the famous IBM researcher Charles Bennett [5], 
who, incidentally, later co-invented both quantum 
cryptography and quantum teleportation, and who 
remains today an active and widely-respected lead-
er in the growing fields of quantum information 
and quantum communication. 

Although the theoretical concept of reversible 
computing has been known (at least to a small 
community) for the last 32 years, and much pro-
gress has been made in the theory and engineering 
of reversible machines in the meantime, the new 
paradigm has not yet achieved a level of practicali-
ty that would foster extensive commercial applica-
tions.  This is due primarily to two reasons:  (1) 
Developing a cost-effective technology for reversi-
ble computing that actually saves significant ener-
gy in practice is a far more complex and difficult 
engineering problem than most computer science 
theorists (even those within the field) tend to ima-
gine, and (2) during most of this period, the limits 
to the energy efficiency of conventional technology 
were still very far away from being reached, and 
so, further refinement of the conventional technolo-
gy was a much easier and less disruptive path for 
technological evolution to follow.  However, rea-
son #2 is on the verge of going away, now that the 
semiconductor industry is running out of ideas for 
pushing the conventional technology much further, 



and so, today the time is ripe for increasing num-
bers of physicists, engineers, and computer scien-
tists to turn increased attention towards solving the 
difficult problems that today still prevent reversible 
computing from being a marketable solution to the 
imminent power-performance crisis. 

In this paper, we review the present technologi-
cal situation as it stands, with an emphasis on the 
physical and logical design requirements that must 
be satisfied if we wish to overcome the near-term 
limits to computer efficiency, which will require 
making reversible computing technology practical. 

The structure of this paper is as follows:  Sec-
tion 2 reviews the thermodynamic foundations of 
the near-term limits on computer performance.  
Section 3 raises the possibility of surpassing these 
limits by improving computer energy efficiency.  
Section 4 discusses why reversible computing is an 
absolute physical prerequisite for accomplishing 
this to an extent that will get us very far beyond the 
present limits.  Section 5 summarizes the detailed 
physical requirements for new reversible logic 
technologies to exceed conventional logic perform-
ance, and reviews a few of the present efforts to 
implement such technologies, and then reviews the 
logical, architectural, and algorithmic requirements 
for the design of efficient reversible systems.  In 
the long run, as we approach ever closer to 100% 
energy efficiency, all of computer science will 
eventually need to change in order to accommodate 
the new reversible paradigm [6].  It is a great chal-
lenge, but also an exciting opportunity.  Finally, 
section 6 discusses some long-term implications of 
this work, and concludes the paper. 

2.  Limits of conventional technology 

Let us begin with a few basic definitions and 
symbols, to be sure that we are all speaking the 
same language.  Power (P), in physics, refers to the 
amount of energy that undergoes some transforma-
tional process (e.g., transmission between bodies or 
dissipation to heat) per unit time (P = E/t), while 
performance (G) in computing refers to the number 
of standardized computational operations that are 
dynamically performed per unit time (G = Nops/t).  
Power-performance (GP) in computer engineering 
[7] simply means performance per unit power dis-
sipated, GP = G/Pdiss, which (as a direct result of 
the previous definitions) is also equal to Nops/Ediss, 
the number of operations performed per unit of 
available energy that gets dissipated to heat.  In 
realistic scenarios, the dissipation of a unit of en-
ergy to heat typically imposes non-negligible direct 
and indirect economic costs, and so, power-per-
formance often sets a lower bound on the cost of 

performing a computation having a given com-
plexity Nops, or in other words, an upper bound on 
the complexity of a computation that can be 
performed within a given energy budget.  Thus, to 
improve our practically- affordable computational 
capabilities, we must continue to improve power-
performance, or in other words, reduce the energy 
dissipated per operation. 

How much energy must be dissipated in order to 
perform a computational operation?  Let us first 
consider a very simple operation, such as changing 
a bit from a 1 to a 0.  If the 1 is represented by a 
physical entity or signal (e.g., a high voltage on a 
wire) that carries an amount of available energy 
Esig, then one simple way to clear the bit would be 
to allow this signal energy Esig to simply dissipate 
away into the environment the form of heat.  This 
is in fact exactly what happens in digital circuits 
today: a 1 is cleared by connecting a wire to 
ground, and allowing its stored electrostatic energy 
to dissipate away.  (With this particular mechan-
ism, we see that Ediss = Esig;  later, we will see that 
in other mechanisms, Ediss can be made much less 
than Esig.) 

Now, what are the lower bounds on Esig?  These 
follow from reliability requirements and thermody-
namics.  One of the most elementary textbook facts 
about thermodynamics is that a small subsystem of 
a system at temperature T has a probability propor-
tional to e−|∆E|/kT of being found to be in an accessi-
ble state having a free energy that is ∆E away from 
the subsystem’s expected (average) free energy, as 
a result of thermal fluctuations.  In this formula, k 
= 1.38×10−23 J/K is Boltzmann’s constant, which is 
just the log e unit of entropy.  This result is a 
classical one, but the quantum corrections to it are 
small when ∆E >> kT.   

Thus, if we want our signal, when measured, to 
have a probability perr << 1 of being found to be in 
an incorrect state, and probability 1 − perr ≈ 1 of 
being found in the correct state, then there must be 
a difference of |∆E| ≥ (kT ln r), where r = perr

−1 is 
the reliability factor, between the free energies of 
the correct and incorrect states.  Therefore, logic 
signals that have only probability perr of being 
invalid must involve this much energy, in the sense 
that energy transfers of this magnitude are required 
to transmit and transform those signals.  As an ex-
ample, if we wish a signal to have an error probabi-
lity of only perr = 10−40, then the signal needs to in-
volve energies of at least 92.1 kT = 2.38 eV at 
room temperature. 

One may at first wonder whether the energy re-
quirements of signals could be lowered arbitrarily 
by just decreasing the internal temperature Tint of 
the system.  Unfortunately, it turns out that this 



strategy actually cannot help to reduce total system 
energy dissipation, because the effective T when 
considering total system energy dissipation is al-
ways that of the outside environment to which 
waste heat is being released.  This is because the 
internal dissipation of energy ∆E results in an en-
tropy increase of ∆S = ∆E/Tint = (kTint ln r)/Tint = (k 
ln r) which (note) is not temperature-dependent.  
This entropy cannot be destroyed (by the 2nd law of 
thermodynamics), and so it must ultimately be ex-
pelled into the outside environment at temperature 
Tenv, resulting in a total energy dissipation to the 
environment of Ediss = Tenv∆S = kTenv ln r.  As long 
as we must expel our waste heat to the atmosphere, 
we are stuck with Tenv ≈ 300 K. 

The use of error correcting codes does not really 
help either, because the fundamental relationship 
between error probability and bit energy is derived 
in a way that does not depend on how the bit is en-
coded.  A bit that is encoded using some fancy re-
dundant coding scheme that permits error correc-
tion would require exactly the same (if not more) 
total energy to achieve a given level of reliability 
as would an isolated bit.  Thus, there is nothing that 
can be done to improve reliability at higher levels 
in the system design that is any more energy-effi-
cient than simply “bulking up” the energy content 
of individual bits.  For this reason, I don’t believe 
that the energy per bit in practice will ever shrink 
much below a room-temperature equivalent energy 
on the order of 1 eV, since below that level, sys-
tems become too unreliable (perr > 1.6×10−17) to 
carry out large-scale computations without error. 

Even worse, in practice, this minimum energy 
applies not only to entire logic bits, but also to the 
individual particles (such as electrons) that make 
up the signal.  Logic signals today are typically en-
coded using relatively large numbers of electrons 
(~104 in the smallest logic nodes in the latest tech-
nologies), and all of these electrons must be pre-
sented with energy barriers of this magnitude in or-
der for them not to experience “error” (e.g., by 
jumping across the channel of a turned-off transis-
tor) and rapidly leak away, erasing the stored bit 
and dissipating its energy.  Thus, total logic signal 
energies today are ~104 eV, or on the order of 1 fJ, 
which translates to a power-performance level of 
only about a million logic operations per nano-
second, per watt of power consumed.  A million 
logic operations within a GHz clock cycle may at 
first sound large, but it is only sufficient for on the 
order of perhaps 10 typical double-precision float-
ing-point operations, so this leads to a maximum 
performance per watt for today’s technology of 
only around 10 GFLOPS, even in an ideal special-

purpose architecture that imposed no further over-
heads beyond those of the arithmetic. 

Further performance gains within the conven-
tional logic paradigm will thus require further redu-
cing the number of electrons per bit, which may yet 
happen—researchers all over the world are experi-
menting today with techniques for manipulating 
even single electrons, and using them in switching.  
However, ordinary field-effect transistor technolo-
gy does not appear capable of being scaled to work 
with much less than ~100 electrons (if that), which 
only gets us a factor of ~100 beyond today’s pow-
er-performance levels, or a mere ~10 years (until 
2015) on the historical performance trendlines. 

Even if the number of electrons per bit can be 
reduced all the way down to 1 by (most likely) ab-
andoning conventional MOSFET technology, if the 
electrons’ energy is still thrown away with every 
operation, as is done today, that still only gets us 
another factor of 100, or to the year 2025. 

It is important to note that the argument for the 
energy limit at this point does not in any way dep-
end on the physical medium of the technology, for 
example, as to whether it uses electrons or photons 
or molecules to store information.  The laws of 
thermodynamics are universal, and so any informa-
tion storage medium must involve signal energies 
(or energy barriers) of magnitude 40 kT ≈ 1 eV ≈ 
kT ln 1017 in order to function with a reasonable 
level of reliability, and thus, energies of such mag-
nitudes must be manipulated whenever those sig-
nals are processed (moved or modified).  If we 
continue to insist on discarding the entire signal en-
ergy and dissipating it to heat every time we mani-
pulate a signal, then raw (gate-level) computer per-
formance is doomed to reach a plateau that is (at 
most) 20 years in the future, at historical rates. 

3.  The need for energy efficiency 

The one (and only) loop-hole in the above pessi-
mistic scenario is that it depended on the assump-
tion that energy of the same magnitude as the entire 
signal energy gets dissipated to heat whenever a 
logic signal is manipulated, or in other words that 
Ediss ≈ Esig.  However, there is no fundamental rea-
son why this must necessarily be so.  Suppose in-
stead that Ediss < Esig.  In other words, in perform-
ing a given digital operation, suppose that a frac-
tion f = 1 − Ediss/Esig of the signal energy (where 0 
≤ f ≤ 1) is retained in an organized form that can 
reused in performing subsequent operations.  We 
then refer to the fraction f of energy that is recov-
ered for later use as the energy efficiency of the op-
eration.  (Like the energy efficiency of a trans-
former, it can be expressed as a percentage be-



tween 0% and 100%.) Present-day computation has 
an energy efficiency of basically 0%, in other 
words, essentially all of the signal energy is dissi-
pated to heat in each operation that changes the 
logic value of the signal.  However, perhaps surpri-
singly, this is not a necessary feature of computa-
tion; in fact, there is no proven absolute upper limit 
on the energy efficiency of computation that is less 
than 100%. 

As a concrete example, to clear a voltage-coded 
bit with arbitrarily low dissipation, one can connect 
it to a changing reference signal that is initially at 
the same voltage, and that goes to the ground level 
at a steady rate over time t.  The power dissipation 
during this process is P = IV where I = Q/t is the 
current and V = IR is the voltage drop along the 
discharge path.  The energy dissipated is E = Pt = 
IVt = I2Rt = Q2R/t, which becomes arbitrarily small 
(for a fixed charge Q and resistance R) as the char-
ging time t is made longer, with no lower limit.  
This is an example of adiabatic switching, which is 
the basis for many approaches to energy recovery. 

Although there is no general lower limit on en-
ergy efficiency, if we are given a fixed level of reli-
ability r in the logic, the energy efficiency of com-
putation is at most f < (1 − r−1) = (1 − perr) = pok 
(the probability that the bit value is correct), since 
the occurrence of an error in a given bit essentially 
represents the dissipation of that bit’s energy away 
from the intended computational trajectory.  How-
ever, recall that reliability itself can be increased 
exponentially by simply increasing the bit energy, 
since r = perr

−1 = exp[Esig/kT] for errors due to ther-
mal noise.  Increasing reliability in this fashion in-
creases signal energy, but only logarithmically in 
reliability, and so it reduces the reliability-related 
lower limit on overall energy dissipation, since 
Ediss = Esig(1 − f ) > Esigr

−1 = Esigperr = (kT ln 
r)exp[−Esig/kT] = (kT ln r)/r, which approaches 0 as 
r→∞.  So, we can have both arbitrarily high relia-
bility and arbitrarily low energy dissipation per op 
in the face of thermal noise at a fixed temperature, 
as long as we make the bit energy as large as ne-
cessary for this, and no other factors prevent the re-
liability r from approaching ∞, or the efficiency f 
from approaching 1, or the dissipation Ediss per op-
eration from approaching 0. 

There is good reason to think that f can indeed 
approach 1 if we consider the “manipulation of in-
formation” to just be a way of interpreting a more 
general class of physical processes, which is the 
transformation of a physical system from one state 
to a different (distinguishable) one.  A wide variety 
of physical systems involve the transformation of 
the physical state from one form to another distinct 
one with extremely high efficiency, that is, with an 

extremely low fraction of the system’s energy be-
ing dissipated per transformation step.  In cyclic 
processes, the energy efficiency is commonly char-
acterized by the quality factor Q = f / (1 − f).  Many 
examples are known of physical systems (both ma-
cro-scale and nano-scale) having Q factors in the 
billions or higher, corresponding to an energy effi-
ciency of ≥99.9999999%.  For example, a crystal 
or molecule vibrating in a vacuum, a planet or-
biting a star, and a precessing quantum spin are all 
examples of systems that are known to carry out 
large numbers of transitions between distinguish-
able states with extremely high energy efficiencies.   

Also, in quantum mechanics, if we know the 
laws of physics with high precision, and have 
prepared an initial quantum state also very 
precisely, and have well isolated it from undesired 
interactions with its environment, the rate of entro-
py increase in that quantum system as it evolves 
can theoretically be arbitrarily close to zero, corres-
ponding to arbitrarily little of the system’s energy 
being dissipated away from the predicted trajectory 
of the system.  This is because the evolution of the 
quantum state (wavefunction) of an isolated quan-
tum system is (contrary to widespread misunder-
standings) fully deterministic and non-chaotic (in 
fact, it is linear); the apparent nondeterminism of 
quantum mechanics only arises (emergently) when 
a system interacts with and leaks information to an 
uncontrolled outside environment. 

As time goes by, and we characterize the funda-
mental constants of physics ever more precisely, 
and we learn how to manufacture and simulate 
quantum devices with ever more accuracy, there is 
no reason to think we cannot get to the point where 
we can eventually design and construct nanoscale 
quantum systems that glide along complex trajecto-
ries that pass rapidly through large numbers of dis-
tinct quantum states with negligible entropy in-
crease.  It is “simply” a matter of sufficiently ac-
curately characterizing and modeling the system’s 
quantum dynamics. 

Once we have attained this core capability of 
high-precision, nanoscale quantum engineering, it 
is then “simply” a matter of designing and building 
particular systems whose natural (and entirely pre-
dictable) dynamics takes them through a sequence 
of quantum states that corresponds exactly to a pre-
programmed sequence of computational states, in 
other words, to a desired computation.  There is no 
reason from fundamental physics to think that this 
capability cannot eventually be possible (and even 
quite practical) to achieve.  However, realizing it 
imposes stringent constraints on the design of our 
lowest-level physical devices and mechanisms for 
performing digital state manipulations, and on the 



logical and computational architecture of highly 
energy-efficient computers based on such devices. 

Energy efficiency well above 0% is already em-
pirically known to be possible, in fact, there al-
ready exists today in the chip-design community a 
burgeoning community of engineers who are ex-
ploring energy-recovering logic techniques in 
depth.  In principle, these are (very roughly) analo-
gous to the regenerative braking systems on mod-
ern hybrid cars, which recover some of your car’s 
kinetic energy when you step on the brake, and re-
turn it to the battery, rather than the conventional 
approach of just dissipating it as heat in the brake 
shoes.  In a somewhat similar way, a good circuit 
design can arrange for most of the energy stored in 
a logic signal to be returned to the power supply 
when that signal is erased, rather than being dissi-
pated to heat along some resistive discharge path.  
However, the maximum energy efficiency of most 
standard approaches to energy recovery is rather 
limited, and the usual techniques for this do not ac-
tually get extremely close to 100% efficiency. 

4.  Requirements for sub-kT computing 

We now ask, what is required in order for com-
puters to attain arbitrarily high levels of perform-
ance at fixed levels of power consumption?  That 
is, what is required in order for the energy efficien-
cy of computation to get arbitrarily close to 100%, 
so that the energy dissipation of individual logic 
operations can plunge from the >40 kT level of 
conventional logic, to arbitrarily lower levels, even 
to levels much less than kT?  Quite rigorously, we 
can show that what is absolutely necessary for this 
is reversible logic.  (This was already known to the 
late Rolf Landauer of IBM as early as 1961 [4], al-
though at the time, he did not yet realize that a re-
versible solution was logically possible.) 

To understand the connection between thermo-
dynamic reversibility (which means high energy 
efficiency, low energy dissipation, low entropy in-
crease) and logical reversibility (which means the 
use of 1-to-1 transition functions for computing), 
we first need to step back and review some more 
basic facts of physics. 

We mentioned earlier that quantum dynamics, 
when modeled precisely, is completely determinis-
tic.  This is well-known among top quantum physi-
cists; indeed, it is etched into the very mathe-
matical core of quantum mechanics.  The apparent 
non-determinism of quantum phenomena is per-
fectly validly (and, arguably, by far most simply) 
explained and interpreted as merely the expected 
appearance that arises whenever a quantum system 
interacts with and becomes “entangled” (correlated 

in a quantum way) with any complex external envi-
ronment that won’t soon happen to act in a way 
that would disentangle the state of the environment 
from that of the system.  The apparent non-determ-
inism of quantum events only arises because the 
well-determined quantum correlations that persist 
in the resulting state can’t be seen by local obser-
vers, who can only interact with the small fragment 
of the quantum state that immediately surrounds 
them in configuration space; this fragment appears 
random to them, simply because it is an arbitrary 
piece of a full ensemble.  Nevertheless, the global 
state evolution always remains fully deterministic, 
and in principle, completely predictable. 

All of our most successful physical theories en-
compass and reflect this underlying determinism, 
including quantum electrodynamics, which predicts 
details of atomic spectra to 9 digits of precision, 
and general relativity, which predicts gravitional 
energy emission rates in binary pulsars with 
comparable accuracy.  In essence, all of the vast, 
overwhelming mountains of empirical evidence 
collected by experimental physicists has so far 
proved to be perfectly consistent with this modern 
understanding of quantum physics.  It is, mathe-
matically and conceptually, the simplest com-
prehensive and accurate theory that we have, so 
Occam’s razor ought to convince all good scientists 
that we should accept it at face value [8]. 

Now, a key element of the mathematical struc-
ture of all modern physical theories is the principle 
of Hamiltonian dynamics, which says that the state 
vector x evolves over time according to a differen-
tial equation that is first order in time, dx/dt = g(x), 
where g is a function of the instantaneous state x.  
The very form of this differential equation makes 
the state evolution deterministic.  But it is crucial 
to note that it is also reverse-deterministic, that is, 
deterministic in the negative time direction; this is 
simply because dt in the Hamilton’s equation can 
be equally well either positive or negative.   

Consider now the transition function Ft,u(x) that 
maps old states to the resulting new states between 
two times t and u > t, that is, x(u) = Ft,u[x(t)].  Be-
cause the dynamics is reverse-deterministic, the 
transition function Ft,u must be a one-to-one (inject-
ive) function over the state space X = {x}.  To say 
that the transition function is injective is the very 
definition of a time-reversible (or just “reversible” 
for short) dynamics.  Since all successful theories 
of fundamental physics admit a Hamiltonian form-
ulation, all of them share this core property of dyn-
amical reversibility.   

Reversibility is thus one of the most fundamen-
tal, unavoidable, and universal characteristics of 
modern physics.  Without it, terrible things would 



happen:  the second law of thermodynamics would 
not always hold, probabilities would not always 
sum to 1, energy would not be conserved; etc.  
Even the famous astrophysicist Stephen Hawking 
recently conceded a bet he had made, and admitted 
that even objects as extreme as black holes still de-
velop in an entirely time-reversible fashion.  So, 
we can be very confident that, no matter what new 
developments may occur in theoretical physics in 
the future, dynamical reversibility will always re-
main a fundamental cornerstone of physics. 

Now, we will show why dynamical reversibility 
immediately implies that logical reversibility is a 
requirement for thermodynamic reversibility.  We 
will do this by showing that logical irreversibility 
implies thermodynamic irreversibility.   

Suppose a given computational operation that 
we perform within a machine is logically irreversi-
ble.  This means that the logical transition that 
occurs within the machine is described by some 
logical transition function L that takes “before” 
(predecessor) states to “after” (successor) states 
and which is not a one-to-one function.  For exam-
ple, the operation of unconditionally clearing a bit 
that could have been either 0 or 1 beforehand 
means that L(0) = 0 and L(1) = 0.  Since two 
different operand values (0 and 1) produce the 
same result (0), this transition function L is not 
one-to-one, and so the operation that it carries out 
is by definition not logically reversible. 

Given that physical states always develop in a 
one-to-one fashion, how can the bit-operation 
“clear” be performed?  Only by embedding this op-
eration within some larger physical process in 
which the “erased” information is preserved in 
some form.  For example, suppose we conjoin our 
bit (0 or 1) with some other system (the “environ-
ment”) whose initial state is S.  The combined 
states of the bit and the environment can then be la-
beled 0S and 1S.  Now we wish to clear the bit.  
We can do this by taking 0S→0S and 1S→0T, 
where T is some other state of the environment.  
Now the bit is unconditionally 0, but the environ-
ment has gone from being in a known state (S) to 
being in an unknown state (either S or T).   

In general, given the dynamic reversibility of 
the laws that govern our physical universe, infor-
mation can never really be destroyed, it can only 
be moved from one system (in this case, the 0 or 1 
bit) to another (in this case, the environment). 

If the system that we’re calling the environment 
really is an uncontrolled physical environment (for 
example, if we’re releasing the discarded informa-
tion in a flow of heat into the atmosphere), then we 
can really never get the discarded information 
back, because we can’t expect the outside environ-

ment to be so kind as to return the information to 
us in pristine, undisturbed condition.  Thus, the 
known information that was originally contained in 
the bit to be erased has been degraded to the form 
of unknown information (i.e., entropy) in the envi-
ronment.  Total entropy has thus increased, by the 
amount of 1 bit, and entropy increase is the very 
definition of thermodynamic irreversibility. 

If the environment is at temperature T, then this 
means (by the very thermodynamic definition of 
temperature, 1/T = ∂S/∂E) that increasing its entro-
py by a small amount dS will require dissipating an 
amount dE = T dS of energy to the form of heat in 
that environment.  To increase the entropy of our 
environment by an amount 1 bit = log 2 = (log 
e)(ln 2) = k ln 2 thus requires that we dissipate at 
least Ediss = kT ln 2 energy into that environment.  
This implies that the energy efficiency of a bit-
erasure operation, when the bit is lost, cannot be 
greater than f = 1 − (kT ln 2)/Esig. For example, bit-
erasure efficiency can be at most 98% for signal 
energies of ~40 kT that are sufficient to ensure reli-
ability in the face of thermal noise.  (However, a-
chieving even this high a level of energy efficiency 
will require aggressive energy recovery, well 
beyond what is already being done today.) 

Now, however, if the “environment” is instead 
another controlled component of our system, then 
there is no implication that entropy is increased in 
the “bit erasure” (really, bit movement) process.  In 
this case, the process can be thermodynamically re-
versible.  But, a controlled component that can 
store a bit can also be considered to be part of the 
logical state, and the joint logical state is then 
updated injectively.  Therefore, the physically re-
versible version of the bit movement process can 
also be considered to be logically reversible. 

One minor caveat to this discussion is that the 
transition relation in a thermodynamically reversib-
le process may actually (more generally) be N-to-
N, not necessarily just 1-to-1.  For example, see 
Figure 1 above.  On the left is a group of three 
equally likely initial logical states, each with prob-
ability 1/3.  This distribution has an entropy of log 
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Figure 1.  Only nondeterministic processes 
such as this one can be both non-injective 
and thermodynamically reversible. 
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3, or about 1.1 k.  The cloud represents a physical 
process whose details are unknown, either because 
the physical laws are uncertain, or because the sys-
tem is interacting with an unknown environment.  
On the right are three possible final logical states 
that the system can end up in.  Thus, the logical dy-
namics here is not modeled as a one-to-one 
function, but rather as a “3-to-3” nondeterministic 
relation in which probabilities may be attached to 
the transitions (arrows) between before and after 
states.  The equilibrium distribution over initial 
states will be a stationary point of the dynamics as 
long as the transition probabilities satisfy the 
property of semi-detailed balance, which says that 
∑b p(b→a) = 1, where a is a general after-state, b 
ranges over before states, and p(b→a) is the proba-
bility that before-state b will transition to after-state 
a.  In this case, the after-states will remain equi-
probable, and the entropy will remain constant.  So, 
the process described need not generate entropy 
and thus may be thermodynamically reversible, 
even though the logical operation performed is not 
an injective one.  However, notice that if the num-
ber of possible after states was less than the num-
ber of before states, then the entropy in the logical 
state could not remain the same, and so in that 
case, logical state information would have to be ex-
pelled into the environment, where it would 
become physical entropy and imply energy dissi-
pation into the environment. 

Thus, the true logical requirement for thermody-
namically reversible computing is not really that 
the logical operation performed must carry out a 
deterministic 1-to-1 transformation of the logical 
state, but only the somewhat weaker requirement 
that the operation performed must not decrease the 
number of possible logical states, while the transi-
tion function must have semi-detailed balance.  
Thus, the operation performed may in fact be, 
strictly speaking, logically irreversible, as long as it 
is also nondeterministic (in the sense of a probabil-
istic or randomized computation).  However, if it is 
deterministic, then it must also be injective.   

Also, in order for nondeterministic, non-injec-
tive N-to-N operations to be thermodynamically re-
versible, the initial state must be truly random (un-
known) already—if not, then its subsequent ran-
domization by this operation is a form of entropy 
increase, and is itself thermodynamically irreversi-
ble.  But if the state is already randomized, and it is 
only being re-randomized by the N-to-N operation, 
then it is unclear what the computational utility of 
such an operation would be. 

Incidentally, note that nondeterministic 1-to-N 
operations (or more generally, N-to-M operations, 
where N < M) actually increase the entropy of the 

logical state, and thus, in principle, can be used to 
(temporarily) reduce the entropy of the environ-
ment, and gain energy from it.  (Essentially, the 
part of the logical state that is being randomized 
can be used as the cold reservoir in a heat engine.)  
Later, an M-to-N operation can be used to reduce 
the number of logical states again, and at this time 
we will have to pay back the energy we have bor-
rowed from the environment.  As long as the over-
all process is still N-to-N, it may still be thermody-
namically reversible.  As a result, reversible com-
putations may freely utilize randomized (probabil-
istic) algorithms without paying any extra thermo-
dynamic penalty for doing so. 

Although randomized algorithms are useful for 
many purposes, for simplicity we will focus on the 
use of deterministic, 1-to-1 operations below. 

A second, more important caveat to the above 
discussion is that thermodynamic reversibility does 
not actually require the logic operation to be 1-to-1 
over the set of all conceivable input states, but only 
over the restricted subset of those input states that 
can actually arise, given the architecture of the ma-
chine.  We will say that such an operation is condi-
tionally reversibile, since it is reversible under the 
condition that certain restrictions on its inputs are 
satisfied.  The concept of conditionally reversible 
logic operations is a very useful one, because cond-
itionally reversible logic operations often turn out 
to be easier to implement than fully reversible 
ones.  We will see examples in section 5.6 below. 

Finally, although ordinary deterministic N-to-1 
operations (such as bit erasure) are thermodynami-
cally irreversible, we can in fact emulate ordinary 
computations that are composed of such operations 
by embedding them within equivalent computa-
tions that are composed entirely of 1-to-1 opera-
tions.  This was the key insight that was developed 
by Landauer and Bennett, and it enables reversible 
computers to remain computationally universal 
(Turing-complete).  We will discuss how this em-
bedding works in section 5.7. 

5.  Requirements for reversible logic 

The previous section showed why achieving sig-
nificant performance improvements well beyond 
the limits of conventional technology requires that 
we move to a new computing paradigm that is pri-
marily based on logic operations that carry out 1-
to-1 transformations of the computational state.  
(The only exception is for many-to-one operations 
that are only used to erase random bits that were 
previously obtained from the environment.) 

In this section, we review the key engineering 
requirements that are imposed on computer designs 



by the need to use reversible logic.  These require-
ments constrain the system design at every level, 
from the modeling of physical processes used to 
implement logic operations to (eventually) the 
design of high-level software algorithms.  We 
divide these new requirements into constraints on: 
(1) device physics modeling, (2) energy recovery 
mechanisms, (3) logical state encodings, (4) logical 
transition processes, (5) synchronization mechan-
isms, (6) logic gates, (7) functional unit designs, 
(8) processor architectures, (9) hardware design 
languages and software programming languages, 
and (10) application algorithms.  As we go through 
these, we mention the progress that has been made 
to date towards meeting these requirements. 

5.1.  Device physics modeling 

In order to create reversible devices that dissi-
pate much less than kT energy per operation, nano-
science must progress to the point that we are able 
with high accuracy, to track what happens to the 
“cloud” of probable physical states representing a 
given logical state over the course of a given stor-
age, communication, or logical transition event.  
This breaks down into several requirements.  

Thermodynamic reversibility requires that our 
uncertainty about the state must not increase much 
over time, that is, the “cloud” of probable quantum 
states of the system must not spread out very much 
over the course of the event.  For example, in the 
simple case of flat distributions over equally-likely 
states, if there are N physical states in the cloud at 
the start of the event, and M at the end of the event, 
then the entropy increase is given by ∆S = [log 
(M/N)].  For very small amounts of entropy 
increase ∆S << log e = k, this relation approaches 
∆S ≈ (M/N − 1)k.  Thus, if we want the entropy 
increase to be limited to, say, 0.01 k (for a quality 
factor of 4,000 given a 40 kT signal energy, or an 
energy efficiency of 99.975%), then this means that 
M can be at most ~1% greater than N. 

  Meanwhile, the reliability requirement means 
that at the end of a given operation, the cloud of 
physical states should be entirely or almost entirely 
confined within the set of “allowed” representa-
tions of a specific logical state.  If not, then the log-
ical state is in error and will have to be corrected.  
As we discussed earlier, logic errors represent a 
form of energy dissipation, and must be avoided in 
an efficient design.  Conservatively, to attain an 
energy efficiency of f, the fraction of the cloud 
situated within the correct logical state should be at 
least f.  In our example of .01 kT dissipation with a 
signal energy of 40 kT, the error probability should 
be no more than 0.025%. 

Finally, of course our model’s prediction of how 
the cloud of states develops must be physically ac-
curate.  The average entropy increase from any in-
accuracy can be estimated from information theory 
as ∆S = ∑(a−p) log p−1, where a is the actual prob-
ability of a given final state, p is the probability as-
signed to it in our model, and the sum ranges over 
all final states having either a≠0 or p≠0.  (Note the 
average entropy increase may be unboundedly 
large if our model assigns 0 probability to any 
states that may actually occur.) 

Despite the above stringent requirements on the 
accuracy of our model of the device’s operations, 
in several ways the modeling and engineering re-
quirements here are still much easier than in, say, 
full coherent quantum computing [9].  For one 
thing, our model does not need to predict exactly 
which initial states of the device will be taken to 
which final states; rather, we only need to 
characterize the set of probable final states.  We 
also do not need to keep track of coherent quantum 
phase information; the initial and final states may 
both be highly decoherent, e.g., they may be 
represented by near-diagonal density matrices, 
which are effectively just probability distributions 
over the system’s set of natural “pointer” eigen-
states. 

5.2.  Energy recovery mechanisms 

It is important to realize that in reversible de-
sign, not only the flow of information through the 
machine, but also the flow of energy must be care-
fully tracked.  A given chunk of energy of magni-
tude E (in excess of what a given system’s energy 
would be in its ground state, that is, at zero tem-
perature) is always carrying out transitions between 
distinguishable quantum states at the rate 2E/h, 
unless the energy happens to be trapped within a 
cyclic process that is cycling among some small 
number N of states, in which case the transitions 
will proceed at the slightly faster rate 2(N−1)h/N 
[10].  Even the energy of a stable quantum ground 
state itself (relative to some lower reference level) 
is still always “busy” rotating the quantum phase of 
the system, at the angular frequency ω = E/h. 

So, energy is, by definition, always actively do-
ing something.  Thus, whenever we are finished us-
ing a given chunk of energy to carry out a desired 
logic transition, we must then immediately find 
some other job for that energy to do.  For example, 
we might immediately redirect it into performing 
the next logic operation in a sequence.  If there is 
not enough computational work available to keep 
the available signal energies occupied at a given 
point in a computation, then if we are smart, we 



will arrange for the energy to then keep itself busy 
just “stirring” some part of the system’s state that is 
already at its maximum entropy, since such activity 
won’t increase entropy further.  Or, we could ar-
range for the energy to participate in some more 
structured cyclic process, or to be locked into the 
ground state energy of some quasi-stable, newly-
constructed state, which is what happens in capaci-
tive and chemical energy storage systems. 

If we don’t find something useful or at least 
harmless for the energy to do, and we don’t take 
pains to store it away, then the energy will busily 
occupy itself in dissipating out into the form of 
heat in the machine and/or its environment, result-
ing in entropy increase and a permanent consump-
tion of free energy.  Thus it is imperative to care-
fully design one’s switching mechanisms so that 
we always carefully track where the signal energies 
go at all times, and make sure they are always 
either redirected into other useful purposes, or are 
carefully shepherded into some safe temporary 
storage facility.  Whatever our choice, our design 
must carefully prearrange for it to occur automati-
cally in the normal course of events, as the system 
propagates along through its natural sequence of 
states, under its own generalized inertia. 

To do this is perhaps even more difficult than it 
sounds initially, since we not only have to store the 
energy away somehow when it is not being used, 
but we must also ensure that we don’t lose track of 
its state (have an “expanding cloud” of possible 
states) in the meantime.  The precise arrangement 
of energy among the various possible subsystems 
of the machine is part and parcel of our knowledge 
of the machine’s state.  If the arrangement of some 
energy ever becomes more uncertain than it was 
previously, in any way whatsoever, then this im-
plies an increase of entropy, and the effective con-
version of a portion of the energy to heat. 

Most research on reversible energy storage 
mechanisms to date has focused on the design of 
resonant oscillating “power-clock” supply subsys-
tems (e.g., [11]), which are intended to keep the 
available energy occupied in a cyclic process of 
oscillation in the state of the power-clock resonator 
system.  On each cycle, some of the energy of the 
resonator is borrowed to carry out a desired logical 
transition, where it is typically locked into place for 
temporary signal storage until some later cycle, 
when the transition is undone, and the borrowed 
energy is returned to the resonator cycle. 

We must be careful in such processes to avoid 
leakage of information about the logical state of the 
machine into the oscillator subsystem, where it 
may pollute and corrupt the nominally “clean” os-
cillator signal, resulting in an increase in the entro-

py of this signal, and a significant dissipation of 
energy.  In order for a signal to be recirculated 
around a cyclic path with a high quality factor (low 
rate of energy dissipation), the signal must have a 
low entropy bandwidth per quantum channel in the 
recirculation path.  If entropy is being injected into 
the oscillator signal from the logic, then this will 
no longer be the case. 

The potential alternatives to resonant oscillators 
for energy recovery, such as direct steering of sig-
nal energies into subsequent logic transitions, or 
the storage of signal energies in temporary quasi- 
ground states, have perhaps not yet been adequate-
ly explored. 

5.3.  Logical state encodings 

A crucial question in the design of any logic 
device technology is:  What will be the physical 
encoding of the logical states of the device?  Of 
course, the answer in most conventional logic is 
that bits are represented by voltage levels (within 
some noise margins) that are stored on circuit 
nodes (wires and other capacitive elements).  Re-
versible logic schemes using this encoding also 
exist (e.g., see [12]). 

However, we would be wise to also consider al-
ternatives.  For example, many quantum computing 
schemes use quantum spins (of electrons or atoms) 
to store information; a spin is a natural two-state 
system, so it is a convenient way to encode a bit.  
In superconductive circuits, information can be 
stored in the many forms, including the amount or 
direction of current flow in a loop, the phase of a 
macro-state wave function, or by current pulses 
propagating near-ballistically down superconduc-
ting transmission lines. 

Some researchers have explored using the me-
chanical configuration of nanoscale solid or mol-
ecular structures to encode information.  In optical 
computing, we can also encode information in 
electromagnetic waves or cavity oscillations, and in 
DNA computing, we encode information in the 
chemical composition of a (fairly dilute) solution 
of complex biomolecules. 

Regardless of the physical medium, there are 
some general requirements that all information en-
coding schemes must satisfy.   

First, the devices must maintain their logical 
state for long periods, at least, periods that are long 
compared with the time between accesses to the 
stored information.  There are three basic ways to 
do this: 

(1) Provide an energy barrier in configuration 
space that surrounds the set of physical states 
encoding a given logical state, so that in order for 



the system to leave the logical state, it must first 
cross the energy barrier.  Accidentally crossing the 
barrier would require either quantum tunneling, 
whose rate can be exponentially suppressed by 
making the barrier higher or wider, or else some 
form of thermal excitation, which can be exponen-
tially suppressed by either making the barrier 
higher, or by lowering the temperature of the 
region near the barrier.  With the barrier scheme, 
changing the logical state reversibly requires that at 
some point we must lower the barrier along some 
path between the old state and the desired new one. 

(2) Don’t use an energy barrier, but arrange for 
the spontaneous transition out of the logical state to 
require that the system traverse a large expanse of 
configuration space that is unlikely to be crossed 
by accident quickly.  (This is like trapping some-
one in a forest by blindfolding them so that they 
will remain disoriented, and wander about at ran-
dom.)  A random walk takes expected time Θ(r2) to 
proceed a radius r from its starting point.  We can 
help our situation further if leaving the logical state 
requires passing through a narrow valley that is un-
likely to be encountered.  In the random-walk 
scheme, intended transitions between logical states 
are implemented by biasing the random walk in a 
direction that will lead to the desired state.  (In a 
sense, an energy barrier can be considered a special 
case of this scheme, in which the narrowness of the 
“passage” is provided automatically by the rarity of 
states that have energy fluctuations high enough to 
get over the barrier.  Similarly, the narrow passage 
can be viewed as having a low entropy, and thus a 
high free energy.)   

(3) Don’t have an energy barrier between states, 
or a barren expanse of intermediate states, but sim-
ply cool the system and isolate it from interactions 
with its environment so effectively that there is no-
thing that would cause it to change state.  This is 
the approach used in spin-based quantum comput-
ing, in which the 0 and 1 states are right “next to 
each other,” so to speak, with no energy barrier be-
tween them, but the states are stable unless per-
turbed, and interactions between the spin and the 
outside world that might perturb the state are sup-
pressed.  (Actually, it is possible to still view this 
as a form of the energy-barrier scheme; the path 
leading over the barrier is one where a large ran-
dom thermal excitation from the outside world hits 
our system and causes it to change.) 

Whichever of the three methods is used, we 
must ensure that the stored bits are reliable, in the 
sense that the probability of the system’s spontane-
ously changing the stored logical state to an incor-
rect value should be small.  As we discussed ear-
lier, this implies that the energy difference (or more 

generally, the free-energy difference) between cor-
rect states and incorrect states (or paths leading to 
incorrect states) should be substantial compared to 
kT, and thus, in order for overall dissipation during 
logical transitions to be small compared to kT, 
energy efficiency must be very high. 

5.4.  Logical transition processes 

How can we carry out highly energy-efficient 
transitions between logical states?  Doing this re-
quires that we use high-quality adiabatic or ballis-
tic physical processes, which are processes in 
which only a small fraction of the energy involved 
in carrying out the transition is dissipated during 
the process.  The distinction between adiabatic and 
ballistic processes is primarily just a difference in 
our analytical scope:  in characterizing a given pro-
cess as adiabatic, we are focusing on the energy 
dissipation within some small part of a system as it 
changes under the influence of external forces, 
whereas in characterizing a process as ballistic, we 
are focusing on the dissipation of an entire, well-
isolated system as it proceeds through its natural 
evolution more or less autonomously. 

Generally, any process that is overall ballistic 
involves adiabatic interaction processes between its 
subsystems.  However, a system that includes adia-
batic interactions between some of its subsystems 
may not be ballistic overall. 

Given that what we care about in practice is us-
ually total system energy dissipation, and not just 
the dissipation within an isolated subsystem, it 
must generally be the case for energy-efficient 
computing that the system as a whole proceeds for-
wards ballistically along the desired computational 
trajectory.  However, in analyzing the design of 
such a system, it may be useful to pick out specific 
subsystems, and analyze them in terms of their 
adiabatic behavior under perturbations provided by 
neighboring ballistically-evolving subsystems. 

For the case of logical states that are maintained 
reliably by the presence of potential-energy barri-
ers (or more generally, free-energy barriers) separ-
ating correct physical states from incorrect ones, 
we can adiabatically change the logical state by 

Figure 2.  Adiabatic transitions between 
logical states separated by energy barriers. 



appropriately manipulating the energy surface, as 
in Figure 2.  The gray arrows in the figure show 
adiabatic transitions between logical states that are 
located at stable or meta-stable local energy mini-
ma.  We can symbolically represent the various 
logical states embedded in energy surfaces, and 
transitions between them in the following notation, 
which follows the cycle of states counter-clockwise 
from the high-energy state in the upper-right region 
of the figure:   ↔  ↔  ↔  ↔  ↔  ↔ 

 ↔  ↔ .   
Let us trace through this sequence verbally.  

Suppose we are given an initial logical state that, at 
first, has energy that is greater ( ) than or equal to 
( ) the desired new state, located to the right of 
the current state, which is denoted with a dot.  We 
start by arranging for the energy of the initial state 
to be biased to a point lower than the desired new 
state ( ).  Then we lower the barrier between the 
two states; now there is just a monotonic energy 
slope between them ( ).  We now gradually slide 
the minimum-energy point to the right (  →  → 

), and the logical state follows (while always 
remaining at a local energy minimum) until the 
logical state is in the correct configuration.  Then, 
the barrier is raised ( ), and, if desired, the state’s 
energy can be boosted to some new default level, 
which may be either equal to ( ) or greater than 
( ) the energy of old state.  Then, the process can 
be repeated along some other path joining the new 
logical state to the next one after it in the desired 
computational sequence.  Every step in this process 
merely involves energy transfer between the device 
that is storing the logical state in question, and 
some other device that is raising and lowering the 
energies at various points in the energy surface; the 
energy transferred need not be dissipated.  Every 
step in this process, if performed slowly relative to 
the maximum transition speeds in the system, is 
guaranteed by the quantum adiabatic theorem to 
have an energy efficiency that can be made as large 
as desired. 

Logical transition processes that can never be a-
diabatic, and that must therefore be mostly avoided 
in an energy-efficient design, include: (1) The 
lowering of an energy barrier that is preventing a 
higher-energy state from directly falling to a lower 
energy one, i.e.,  the processes  →  and   → 

.  This dissipates an amount of energy equal to 
the energy difference between the two states.  Also 
forbidden is (2) the lowering of an energy barrier 
that distinguishes a known state from its neighbor 
when the two states have equal energy, i.e.,  → 

 or   → .  Such a process loses 1 bit’s worth 
of known logical information, and thus converts 

that bit into the form of k ln 2 amount of new 
entropy in the environment. 

Conventional logic gates and memory cells per-
form the forbidden process (1) ubiquitously, for 
example, by turning on a transistor, which removes 
the potential energy barrier that prevents electrons 
on a high-voltage node from falling to a low-volt-
age node on the other side. 

In adiabatic logic using transistors, we must 
never turn on a transistor when there is a signifi-
cant voltage difference between its source and 
drain terminals. 

General-purpose pipelined, sequential logic is 
still possible despite this constraint, and circuits as 
complex as complete microprocessors have been 
designed using this style.  However, transistors do 
not have a particularly small value of their 
adiabatic energy coefficient or energy-time con-
stant: this is the product cEt = Edissttr of the energy 
dissipated Ediss in a given logic transition, and the 
time ttr taken to perform that transition.  For the 
adiabatic transfer of charge Q through resistance R, 
we have an energy coefficient of cEt = Q2R. 

The energy-time constant is a particularly im-
portant figure of demerit for a device technology.  
The smaller the value of this constant is for a given 
device, the smaller is the number of those devices 
that will required to achieve a given level of per-
formance within fixed power dissipation con-
straints.  Intuitively, this is because a smaller value 
of this constant means that each device can run 
faster at a given level of power dissipation. 

Analytically, given that c = Et (suppressing the 
subscripts), and that the performance of the device 
(transitions per unit time) is G = 1/t, and that the 
device’s power dissipation is P = E/t, solving for G 
in terms of c and P yields G = (P/c)1/2.  Thus, as the 
adiabatic energy coefficient decreases, and the 
allowable power P per-device remains fixed, the 
performance G of the device increases with c−1/2. 

Alternatively, if we have system-level power 
and performance requirements Ptot = nP and Gtot = 
nG, in a system consisting of n devices of energy 
coefficient c, then solving for n gives the relation  
n = cGtot

2/Ptot, or in other words, the number of de-
vices required to simultaneously meet system-level 
power and performance constraints goes up linear-
ly with c, and quadratically with performance!  So, 
to scale up system-level performance by a given 
factor given a fixed number of devices n and a 
fixed power constraint Ptot requires a quadratically 
reduced value of c, given by nPtot/Gtot

2.  So, a cru-
cial requirement for energy-efficient computing is 
to find alternative devices with a very low energy 
coefficient c, which requires low resistance in the 



case of adiabatic transfer of a fixed charge.  
Superconductive devices seem very promising. 

5.5.  Synchronization mechanisms 

Any computing scheme requires some mech-
anism for synchronization, to ensure that the inputs 
to some step in the calculation are available before 
the calculation is performed.  The need for energy 
efficiency turns out to impose stringent require-
ments on synchronization mechanisms.   

Essentially, the machine must be precisely engi-
neered so that the delays along every calculational 
path are accurately known and predictable, and the 
expected arrival time of those signals must be built 
into the design of the components receiving those 
signals.  This is because the accumulation of un-
certainty in timing information is itself a form of 
entropy, and so it must be avoided in an energeti-
cally efficient machine. 

Thermodynamically reversible asynchronous 
(self-timed) logic is likely to be impossible.  Con-
sider an element that is designed to wait until two 
input signals have both arrived, and then perform 
an operation.  The information contained in the ar-
rival time of the first input has nowhere to go, since 
the device is not supposed to respond at that time 
yet!  The timing information contained in the first 
signal can therefore only be dissipated as entropy. 

Thus, energy-efficient machines must be care-
fully, thoroughly clocked and controlled, and de-
lays along all signal paths must be carefully 
matched.  The normal scheme of driving adiabatic 
transistions using periodic oscillations of a power-
clock resonator is one way to ensure that all logic 
remains synchronous. 

5.6.  Logic gates 

A reversible logic gate is a device that can per-
form a logically reversible operation on the logical 
state of the subsystems accessed by that gate, and 
that (for energy efficiency) can do this in a nearly 
thermodynamically reversible fashion.  As we said 
earlier, a logically reversible operation carries the 
set of possible “before” states one-to-one onto the 
set of possible “after” states.   

Contrary to widespread misleading claims in the 
reversible computing literature, it is not necessary 
that (1) the gate hardware can perform only one 
operation, (2) we divide the subsystems accessed 
by the gate into fixed “input” and “output” signals, 
(3) we require the number of output signals to be 
equal to the number of input signals, (4) that the 
input signals must be consumed, (5) that the truth 
table of a gate with n input bits contain an output 

column that is a permutation of all 2n input cases.  
In fact, all of these conditions only apply to special 
restricted families of reversible gates. 

More generally, a reversible logic gate (1) can 
perform any of several operations, depending on 
the control signals applied to it, (2) it can access 
signals differently in the course of carrying out dif-
ferent operations (sometimes it can ignore a signal 
and use it as neither an input or an output, and 
sometimes it can use a signal as both an input and 
an output), (3) the number of signals modified 
(outputs) does not have to have any particular rela-
tionship to the number of signals measured (in-
puts), (4) the information present in the input sig-
nals need not be consumed, but may remain present 
on the input feeds after the operation is completed, 
and (5) the operation need not permute 1-to-1 all 
“before” cases, but only the subset consisting of 
those that will actually arise in the context of a par-
ticular design.  Also, “gates” may, in general, 
contain some internal state information. 

Thus, the design of reversible logic gates is ac-
tually much less tightly constrained than most of 
the reversible computing literature would have you 
believe.  As a result, the literature is replete with 
sub-optimal hardware designs based on people 
taking the traditionally stated constraints too 
seriously, and failing to “think outside the box” and 
figure out the true requirement for reversibility. 

The true requirement that must be imposed on 
the logical functionality of a reversible logic gate is 
simply this:  that for each distinct operation that the 
gate can be directed to perform, no two initial log-
ical states (local states of the device and the signals 
it accesses) that can possibly arise in the normal 
course of the machine’s operation (given its 
design) can be transformed to the same final state. 

Here are some examples of reversible logic 
operations that you won’t find described in most 
reversible computing literature, but that are actual-
ly some of the easiest reversible logic operations to 
implement in practice: 

rSET(x) – Reversible SET.  Given the precon-
dition that signal x is initially logic 0, change it to 
1.  This is conditionally reversible (on the condi-
tion that the precondition is satisfied).  It can be 
implemented very easily in a way that is thermody-
namically reversible when this condition is met.  
For example, in the energy-barrier picture, a con-
trol sequence that carries out the steps   →  → 

 →  implements rSET; a gate supporting rSET 
can be implemented with just two transistors in 
standard CMOS technology. 

rCLR( x) – Reversible CLEAR.  Given the pre-
condition that signal x is initially 1, change it to 0.  
Conditionally reversible.  Can be implemented as 



simply the time-reversal of rSET.  One can build 
reversible storage elements out of gates that 
support just rSET and rCLR operations. 

crSET(c, d) – Conditional reversible SET.  
Given the prediction that the initial state is not c = 
d = 1; if c = 1, perform rSET(d), else leave d un-
changed.  Conditionally reversible.  crSET can be 
implemented in adiabatic CMOS using just two 
transistors, by a manipulation that performs either 
the sequence → →  (d unchanged) or →
→  (d taken from 0→1) on the output node d, 
conditionally on the input signal (which sets the 
barrier height).    

crCLR( c, d) – Conditional reversible CLEAR.  
Given the prediction that the initial state is not c = 
1, d = 0; if c = 1, perform rCLR(d), else, leave d 
unchanged.  Conditionally reversible.  Can be im-
plemented in a way that mirrors crSET.   

Gates that can perform just crSET and crCLR 
operations are easy to implement in CMOS and in 
many other technologies, and they are universal; 
they can be composed together into networks that 
reversibly implement any arbitrary combinational 
and sequential reversible logic!  (Unfortunately, 
nearly all of the reversible computing literature ig-
nores this very useful fact.) 

rCOPY(s, d) – Reversible COPY.  Given that 
initially d = 0, set d := s.  Can be implemented in 
CMOS using four transistors, essentially by operat-
ing a crSET and crCLR in parallel, with the crSET 
controlled by s and crCLR controlled by ¬s. 

un-rCOPY(x,y) – Given that initially y = x, set 
y = 0.  Can be implemented as the time-reversal of 
rCOPY within the same gate hardware. 

rMOVE( x,y) – Given that y = 0, set y = x and 
set x = 0.  Can be implemented by the operation se-
quence rCOPY(x,y), un-rCOPY(y, x). 

SWAP(x,y) – Swap x and y.  Can be implement-
ed given an internal signal t that is initially 0, by 
the operation sequence rMOVE(y,t), rMOVE(x,y), 
rMOVE(t,x). 

Here are the reversible operations that are most 
frequently seen in the reversible computing litera-
ture, although they are usually misnamed as 
“gates.”  But they are really just operations. 

NOT(x) – Toggle the logic value of signal x.  
This is often conceived as a gate having two sig-
nals x and y, where x is the input, y is the output, x 
is consumed, and y is produced.  However, that is a 
more complex conception than necessary.  The op-
eration performed by such a gate would be more 
fully described as CONSUMING-NOT(x,y), which 
(on the precondition that y is initially a null value), 
sets y to the logical inverse of x, and then nulls x.  
But, the NOT(x) operation itself, strictly speaking, 
just flips the value of a single signal in-place. 

Notice the above NOT(x) operation is distinct 
from an ordinary NOT gate or inverter, as it exists 
in conventional hardware today.  The operation of 
an inverter would be best described as INVERT(x, 
y), which irreversibly overwrites y with the logical 
inverse of x, while leaving x itself unchanged.  This 
operation is logically irreversible.  Often you see 
the statement, “NOT is logically reversible,” but 
this is misleading, since normally today NOT is 
implemented using the INVERT(x,y) operation, 
which is logically irreversible in its semantics. 

cNOT(x, y) – Conditional NOT.  Set y := x⊕y, 
where ⊕ denotes the Boolean exclusive-OR opera-
tor.  Again, this is often misconstrued to mean that 
there must actually be four signals xin, yin, xout, yout, 
with the semantics being that xin and yin are con-
sumed and xout and yout are produced.  But again, 
this is more complex than necessary; instead a sin-
gle signal y can be manipulated in place and used 
for both input and output, while x is a single signal 
used for input which is unmodified.  Unfortunately, 
cNOT is not simple to implement in most technolo-
gies, so it is actually not a very good primitive ope-
ration for reversible logic in practice. 

ccNOT(x, y, z) – Set z := xy⊕z, where xy is the 
Boolean AND of x and y.  This is also called the 
“Toffoli gate” after its inventor [13].  Like cNOT, 
it is not easy to implement.  However, it is widely 
discussed, since it is tied for simplest universal gate 
that is fully (as opposed to conditionally) reversi-
ble.  (However, crSET and crCLR together are uni-
versal, they are easy to implement, and the condi-
tionality of their reversibility does not preclude us 
from building thermodynamically reversible de-
signs out of them.)  Like NOT and cNOT, ccNOT 
is frequently misconstrued to require 3 consumed 
input signals and 3 separate output signals, when 
all that is really required are 3 total signals, where z 
is an in-out signal that is modified in-place, and the 
others are used as inputs only. 

cSWAP(x,y,z) – Conditional SWAP.  Swap y 
and z, if x = 1.  This is also called the Fredkin gate 
after its inventor [13].  It is universal.  Like the pre-
vious operations, in can be implemented by manip-
ulation of two signals conditioned on a third, rather 
than by consuming 3 input signals and producing a 
separate output signal. 

Multi-valued logics.  Some (but not all) reversi-
ble logic schemes utilize three logic values, name-
ly, 0, 1, and a third value “N” meaning “null” or 
“no information.”  The N state turns out to be use-
ful because of the behavior of CMOS transistors.  
These schemes actually provide some of the sim-
plest known transistor-based implementations of 
reversible logic [12].  For example, in 3-valued 



logic, the following operations can both be imple-
mented in a single gate using just two transistors: 

rINVERT( x,y) – Reversibly invert.  Given the 
precondition that y is initially N, set y := ¬ x.  Con-
ditionally reversible.  Implemented similarly to a 
simultaneous crSET and crCLR. 

un-rINVERT( x,y) – Undo reversible inversion.  
Given the precondition that y = ¬x, set y := N.  Im-
plemented as the time-reversal of rINVERT(x, y). 

And, using only five transistors, we can con-
struct a gate that implements both: 

rAND( x,y,z) – Reversible AND.  Given the pre-
condition that z = N, set z := xy.  Conditionally re-
versible. 

un-rAND( x,y,z) – Undo reversible AND.  Giv-
en the precondition that z = xy, set z := N.  Condi-
tionally reversible. 

rAND and de-rAND, together with some simple 
latches, are universal for reversible logic.  And, we 
can similarly implement 5-transistor reversible OR 
and un-OR.   

Logic design using gates such as rINVERT, 
rAND, rOR, and their time-reversed versions is 
very similar to design using conventional logic, 
and is fairly efficient in terms of the number of 
transistors required. 

5.7.  Functional unit designs 

Once one has a good library of primitive rev-
ersible logic gates, the design of higher-level func-
tional units (such as registers, adders, decoders, 
multiplexers, etc.) is fairly straightforward and not 
too dissimilar from conventional logic design.  
However, we must keep in mind that we cannot 
just erase or overwrite information without suffer-
ing a thermodynamic penalty; rather, we must de-
sign our hardware algorithms to always just revers-
ibly transform information in-place, using only the 
reversible operations such as rSET, rCLR, rCOPY 
and un-rCOPY, SWAP, NOT, rAND and un-
rAND, cNOT, ccNOT, cSWAP, etc.  For opera-
tions that are only conditionally reversible, we 
must be sure that their preconditions are met. 

Generally, some complexity overhead is re-
quired in reversible designs in order to avoid infor-
mation erasure.  The usual strategy is use some ini-
tial information A to compute some needed inter-
mediate information B, use B for some required 
purpose (such as computing further results C), and 
then “un-compute” or “de-compute” the intermedi-
ate information B in order to free up the space that 
it occupies, once it is no longer needed, so it can be 
reused to hold some new data.  In order to decom-
pute B reversibly, we have to be able to reconstruct 
what it is.  One way that we can always do this, if 

the data A is still around, is to simply perform the 
time-reverse of the sequence of reversible steps by 
which B was computed from A to begin with.  
However, this approach requires us to keep A 
around until we are finished decomputing B, or to 
re-compute A from some previous information 
when it is needed to decompute B.   

Another way to decompute B that is often more 
efficient when it is possible is to decompute B 
based on the information C that was subsequently 
derived from it.  For this to work, C has to imply 
complete knowledge of B, that is, the Boolean 
function f that was used to compute C from B orig-
inally, C = f(B), must be an invertible function.  If 
it is, then we can reconstruct B using B = f−1(C), 
and thus we can decompute B by performing the 
time-reversal of this means of calculating B.  The 
advantage of this approach is that A can be decom-
puted before B is and does not need to be recompu-
ted; this can end up saving us a lot of space and/or 
time in long computations. 

However, this approach is sometimes intractable 
even when it is possible in principle.  For example, 
suppose B consists of a pair of large prime num-
bers p, q with p ≤ q, and suppose C = f(B) = f(p, q) 
= pq, the product of p and q.  In principle, p and q 
are uniquely determined by their product pq, and so 
the function f is actually invertible (given the con-
straint that p ≤ q).  However, it is not known to be 
tractable to invert this particular function f, unless 
we have a quantum computer, since there is no 
known fast classical algorithm for factoring.  
Therefore, although decomputing B from C is pos-
sible in principle in this case, it cannot be done ef-
ficiently without a quantum computer (as far as we 
know).  We note f is an example of what is known 
as a trapdoor or one-way function, an easy-to-com-
pute function that, although it is invertible in princ-
iple, is not known to have an efficient algorithm for 
computing its inverse.  Although it has never been 
proven that any one-way functions actually exist, 
many functions (such as the f above) are widely 
conjectured to be one-way. 

The problem of iterating a one-way function is 
conjectured to be a problem for which reversible 
algorithms have strictly greater spacetime com-
plexity (number of “device-cycles” occupied) than 
irreversible algorithms [14]. 

Because of the complexity overheads of reversi-
ble logic in cases such as this, the most cost-effici-
ent hardware designs in practice in many cases will 
be hardware that is not fully reversible, but only re-
versible to a limited extent, determined by the level 
of energy efficiency we are trying to achieve.  In 
general, we must perform a systems-engineering 
optimization over the design parameters (such as 



was done in [15]) in order to find the solution that 
is overall most cost-efficient.  However, as energy 
coefficients and device costs decrease, the optimal 
designs will be reversible to greater and greater de-
grees (approaching ever closer to 100%).  This is 
true despite the algorithmic overheads of highly 
reversible design. 

5.8.  Processor architectures 

In the near term, there will be little advantage to 
be gained from applying reversible logic above the 
level of the design of small functional units.  But, 
as our desired level of energy efficiency becomes 
ever closer to 100% (for ever-greater performance 
within fixed power constraints), designs will have 
to be made reversible throughout larger and larger 
blocks of computational work, up to the level of 
even complete CPU cores.  Eventually, there will 
even be a need for the programmable architecture 
itself to reflect the underlying reversibility of the 
logic.  This is because the algorithmic overheads of 
reversible computing imply that we cannot expect 
the machine or the compiler to automatically find a 
good reversible algorithm for implementing a com-
putation that the programmer has specified in a 
non-reversible fashion.  In general, the most effi-
cient reversible algorithm for performing a given 
task may be structured very differently from the 
most efficient irreversible algorithm for performing 
the same task [6]. 

Thus, microprocessor and DSP instruction set 
architectures and FPGA architectures will eventu-
ally need to change to allow the programmer to 
specify his software and hardware algorithms dir-
ectly in terms of underlying reversible primitives.  
A number of designs for reversible instruction-set 
architectures already exist (e.g., 16), which include 
instruction-set level analogs of reversible logic 
gates, and special reversible branch instructions to 
enable reversible control flow.  Other than that, 
these instruction sets are fairly ordinary.  Many 
common instructions (such as one-operand NEG 
and two-operand ADD) are already logically rever-
sible.  Others can be replaced with reversible vari-
ants. 

5.9.  Design languages 

By the phrase “design languages” I mean to 
include both hardware description languages (such 
as VHDL and Verilog) and high-level software 
programming languages (such as C and Fortran), 
since both types of languages can be used to de-
scribe Turing-complete computational algorithms. 

For the reasons described in the previous sec-
tion, design languages will eventually need to 
adapt to allow programmers to craft reversible alg-
orithms directly in terms of reversible language 
primitives.  Purely automatic substitution of revers-
ible constructs for irreversible ones will in general 
lead to sub-optimal efficiency.  A few high-level 
reversible programming languages exist (see [6]), 
and I have recently begun working on the design of 
a reversible hardware description language.  How-
ever, these languages are not yet very sophistica-
ted, and as well their development is somewhat 
premature, given that we are still quite a long way 
away from having a high-quality reversible device 
technology that would create significant demand 
for such languages. 

For the most part, reversible languages can look 
fairly conventional, but there are some differences: 

(1.) Assignment to variables is deprecated, in 
favor of binding and operations like +=. 

(2.) Control-flow constructs are time-symmetric. 
(3.) Subroutines can be called in reverse! 
(4.) Automatic garbage collection is deprecated, 

because it necessarily creates entropy. 

5.10.  Application algorithms 

Finally, once the need for something like 
99.9999999% energy efficiency has (probably 
many decades from now) forced us to migrate to 
“reversibility-aware” computer architectures and 
design languages, we (that is, programmers and 
special-purpose hardware designers, as well as 
mathematical algorithmicists) will have to get 
accustomed to crafting our high-level application 
algorithms (or at least, their most power-hungry 
portions) in terms of the reversible paradigm.  Re-
versible algorithm design is not particularly diffi-
cult, and one can always fall back on applying 
known general transforms that map arbitrary irrev-
ersible algorithms to equivalent reversible ones.  
But reversible design will be initially unfamiliar to 
most computer engineers and programmers, who, 
ever since the days of Ada Lovelace, have trained 
themselves to think in terms of primitive operations 
that are logically irreversible.  However, I am con-
fident that as soon as reversible design actually be-
comes demonstrably useful for dramatically im-
proving computer energy efficiency and applica-
tion performance, designers (at least of high-end 
applications) will rapidly proceed to learn and 
adopt it. 



6. Conclusion 

Computer performance, at realistic levels of 
power consumption, is fundamentally limited by 
the energy efficiency of the low-level operations 
within the machine.  The magnitude of signal ener-
gies is soon reaching firm thermodynamic limits, 
but what is not so widely recognized is that the 
magnitude of signal energy itself does not mean 
that this energy must necessarily be dissipated 
when performing operations.  Instead, we can in 
principle recover and reuse a fraction of the signal 
energy that, as far as we know, can be made to 
approach 100% as closely as we like, given suffi-
ciently aggressive engineering.  This, in turn, can 
theoretically enable computers to run as fast as we 
like (in terms of overall parallel performance) at a 
given level of power dissipation, with total perfor-
mance being fundamentally limited only by the to-
tal amount of energy that we invest in our comput-
ing mechanisms.  As far as we know, approaching 
the physical limits of computing ultimately means 
just (1) harnessing larger and larger total quantities 
of energy in the service of computing, and (2) us-
ing that energy with greater and greater efficiency, 
so that waste heat still remains manageable. 

However, we have seen in this document that 
increasing the energy efficiency of computers to 
values close to 100% is actually quite a challenging 
proposition, requiring us to break new ground in 
high-precision engineering of the machine at every 
level, from how we model its nanoscale physics to 
the way we organize and clock the logic, and to 
how we structure our algorithms.  As of today, 
electrical engineers have not even yet attained the 
level of energy efficiency that would be needed to 
circumvent the eV-scale reliability barrier on signal 
energies and bring dissipation close to the room-
temperature kT level where reversible logic would 
be required for further progress.  And, sub-kT com-
puting with reversible logic itself requires incredib-
ly precise modeling, manufacturing, characteriza-
tion, and control of devices and clocking systems, 
long before we get to the point where reversible 
logic design and programming starts to begin to 
become very helpful. 

So given all this, why should we study rever-
sible computing?  Why not instead just give up on 
it, and resign ourselves to the conventional logic 
paradigm, and just tackle the conventional goal of 
reducing dissipation per op (and increasing per-
formance-per-power) by a factor of 10,000 or so, 
from today’s ~fJ/op levels down to the neighbor-
hood of 1 eV?  In principle, none of the complex 
set of requirements discussed in the previous sec-
tion are required to reach this level. 

Well, this is a good point, but there are three 
main reasons why I think that we should at least 
not forget about reversible computing, and ideally 
devote a reasonable amount of resources to its 
study even today, enough to keep the field alive. 

 
(1) Research into reversible computing, if it yields 

demonstrated successful systems, offers the 
possibility of jumping ahead of the technology 
curve that we are on today, and achieving 
higher levels of performance even sooner than 
the 20-year timeline on which conventional 
technology must stall. 

 
(2) Twenty years is, after all, not so far away, and 

we will find ourselves there before we know it.  
If, in the meantime, reversible computing re-
search hasn’t been pursued aggressively, then 
solutions won’t be available and computer per-
formance will definitely stall.  This could even 
happen much sooner than we think, in 10 years 
or perhaps sooner, if technical difficulties in 
scaling the conventional approach prevent us 
from getting all the way down to the 1 eV/op 
dissipation level.  If computer technology 
stalls, and we become used to a state of stagna-
tion rather than progress, then it may take a 
long time to restart the engine of technological 
innovation.  In contrast, if reversible technolo-
gies are ready to be put into place by around 
20 years from now, then the trend of progress 
in computer performance will experience bare-
ly a bump, and will continue indefinitely far 
onwards into the future.  This would be a boon 
for the high-tech economy, and for the world 
overall. 

 
(3) Finally, I think it is really important that we 

don’t completely drop reversible computing 
and forget about it, however challenging and 
difficult it may be.  In fact, remembering and 
pursuing reversible computing may be the 
most important thing that we can possibly do. 
This is because in the long run, it may literally 
have infinite value, in the sense that it may 
make the difference between a finite and an in-
finite future for our entire civilization, or more 
generally, for all life in the universe!   

 
This last claim needs some elaboration.  Noted 

astrophysicists Krass and Starkman [17] have ar-
gued that, even if our civilization someday coloni-
zes distant stars, the total amount of energy that we 
can harvest in the universe (before the rest expands 
to be forever beyond our reach) is finite.  Even the 
maximum entropy of the entire observable universe 



itself is finite if (as present observations suggest) 
Einstein’s cosmological constant has a fixed non-
zero value.  Therefore, if there is any fixed lower 
bound greater than zero on the energy dissipated or 
entropy generated by a computational operation, 
then our civilization (and all life) will necessarily 
eventually run out of free energy (entropy will 
reach a maximum) and all interesting activity will 
then cease.  All civilization and life will only have 
performed a finite number of organized operations 
that could be construed as “thoughts” or “computa-
tions.” 

But, in contrast, suppose that Landauer and 
Bennett are correct, and there really is no lower 
limit on entropy generation per operation.  Then, 
suppose that sometime before half of our available 
energy is used up, we figure out how to use the re-
maining half twice as efficiently as before (that is, 
with half the entropy increase per operation).  
Then, before half of the remaining half is used up, 
we figure out how to use the rest twice as efficient-
ly again.  And so on.  With each half of the remain-
ing energy, we accomplish an equal number of 
computational operations.  Thus in principle, we 
(or our postulated machine “descendants”) could 
perform literally an infinite number of computa-
tional operations (i.e., have an “infinite number of 
thoughts”) using only a finite supply of energy.  

Reversible computing is, in fact, the one and on-
ly possible way to “save the universe” from 
doomsday scenarios like Krauss and Starkman’s 
that is both (1) consistent with known fundamental 
physics, and (2) doesn’t depend on the existence of 
improbable new hypothetical phenomena such as 
wormholes to other universes, etc.  Fundamentally, 
this plan only depends on our ability to model the 
laws of physics ever more precisely over time, and 
to isolate subsystems from the unknown external 
environment more and more thoroughly, neither of 
which seems particularly implausible.  But, this 
kind of plan can only work if we (1) achieve highly 
efficient reversible computing, and (2) make it 
more and more energy-efficient over time.   

And further, to be a bit more down-to-earth, if 
one can judge by the price of gas these days, and 
by the declining rate of world oil production, we 
might face an energy shortage within the next few 
decades, and not necessarily only billions of years 
from now.  As world oil supplies dwindle, it might 
be smart for us to have a viable research program 
aimed at continuing to improve our computational 
capabilities without suffering proportional increas-
es in the rate at which we use up our limited supply 
of fossil fuels, and other finite energy sources. 

Therefore, it just might be a very wise idea for 
us to seriously get started on reversible computing 

research today, and try to figure out exactly how to 
engineer the new nanodevices, clocking systems, 
and architectures that are required by this one and 
only possible way to circumvent the limits of the 
conventional digital logic paradigm, and produce 
computers that are ever more energy-efficient, so 
that we can approach the true fundamental limits of 
computing, however far away they may be. 

For all we know today, the ultimate fundamental 
limits of computing may only be the cosmological 
ones that will be met in a distant future, billions of 
years hence, after we have (potentially) converted 
all visible galaxies into a single, giant 99.999(lots 
more 9’s)% reversible supercomputer, running 
some sort of enormous virtual “Matrix” for our up-
loaded minds to work and play in virtually forever, 
until eventually we run out of new states to 
explore, new things to do, new thoughts to think.  

Although this picture is only a fantasy today, we 
cannot know whether such a future is scientifically 
possible unless we work seriously to try to achieve 
it, and we aren’t going to come anywhere close to 
achieving anything like this unless we seriously 
and aggressively pursue the technological possibili-
ties that reversible computing offers us. 

Which future will it be?  Overheated computers, 
technological stagnation, and possible economic 
decline?  Or, ever more energy-efficient, cool-run-
ning, ballistic reversible computers, leading to a lit-
erally unbounded possible future of growth and 
prosperity?  The answer may depend on what fields 
we researchers choose to devote our skills and 
efforts to today. 

I implore my audience:  Study physics.  Help in-
vent new kinds of nanodevices with high adiabatic 
energy coefficients.  Design, build, and empirically 
test high-quality ballistic oscillators, interacting 
with quasi-static logical states, driving adiabatic 
transitions between them.  Systematically find and 
eliminate sources of dissipation in your prototypes, 
one by one.  Extend your designs to larger and 
larger scales of complexity, with larger and larger 
logic blocks ever more tightly and precisely 
synchronized.  Design fully-reversible architec-
tures, languages, and algorithms. 

It is only through intense efforts roughly along 
these lines that we can possibly avoid approaching 
firm limits on the raw, low-level energy efficiency 
of computers within our lifetimes.  And, if we do 
not create reversible computing ourselves, there is 
no guarantee that someone else will do it for us.  
Since high-quality reversible computing is so dif-
ficult to achieve at the lowest level of devices and 
oscillators, many researchers who have studied the 
field in the past have abandoned it, to turn to easier 
pursuits.  Many have tried to justify this choice by 



dismissing reversible computing as impossible, but 
no logically valid justification for this impossibility 
claim has ever been offered.  But if people contin-
ue giving up on reversible computing too easily, 
we’ll never know if it can be done. 

It is only by letting ourselves admit the physical 
possibility of reversible computing, while bravely 
and persistently tackling the difficult physics and 
engineering challenges associated with realizing it 
in practice, that we may hope to achieve significant 
progress in computer performance beyond the next 
decade or two.  I urge all readers of this paper to 
take upon themselves some small part of the res-
ponsibility for helping to meet this great 21st-
century engineering challenge, to open up grand, 
unbounded new vistas for the future of computing. 
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