
Approaching the Physical Limits of Computing

Michael P. Frank
FAMU-FSU College of Engineering

Department of Electrical & Computer Engineering
mpf@eng.fsu.edu

Abstract

As logic device sizes shrink towards the nano-

meter scale, a number of important physical limits
threaten to soon halt further improvements in com-
puter performance per unit cost. However, the
near-term limits are not truly fundamental, and
may be avoided by making radical changes to the
physical and logical architecture of computers. In
particular, certain assumed limits to the energy
efficiency of computers have never been rigorously
proven, and may be circumvented using physical
mechanisms that recover and reuse signal energies
with efficiency approaching 100%. However, this
concept, called reversible computing, imposes tight
constraints on the design of the machine at all
levels from physics to algorithms. We review the
physical and architectural requirements that must
be met if real machines are to break through the
barriers preventing further progress, and approach
the true fundamental physical limits to computing.

1. Introduction

Computer scientists, engineers and futurists
alike enjoy citing “Moore’s Law,” the famous 1965
prediction by Intel co-founder Gordon Moore [1]
that the number of devices per chip would double
every year (later adjusted to every 18 months [2]),
with accompanying benefits in performance per
unit cost. Although the (revised) prediction has
held true for 40 years, it is of course only a techno-
logical trend, not a law of physics; in any direct
conflict between the two, we can be assured that
physics will win.

In fact, it is by now fairly common knowledge
among experts in the semiconductor industry (e.g.,
see [3]) that raw chip performance (if not bit densi-
ty) must level off within just a few years, as con-
ventional transistor circuits approach limits to their
performance at reasonable levels of power con-
sumption, limits that ultimately arise from quite
fundamental laws of statistical mechanics and ther-
modynamics. However, it is also true (but much
less widely recognized) that these limits have never

been validly proven to apply to all physically pos-
sible computing technologies. Rather, they are ap-
parently just a consequence of certain contingent
historical attributes of the presently-dominant para-
digm for digital logic, namely its reliance on the
use of irreversible (that is, many-to-one) operations
as the basic primitive logical events in computa-
tion, which in turn requires using physical mechan-
isms for logic that are also thermodynamically irre-
versible [4]; in present technology, logic signal en-
ergies are allowed to dissipate themselves (to the
form of heat) whenever those signals are manipula-
ted.

But in fact, the thermodynamic irreversibility of
logic can be avoided, but only if we abandon logi-
cal irreversibility and instead adopt reversible (one-
to-one) operations as our primitive events in comp-
uting, a fact that was first recognized in 1973 by
the famous IBM researcher Charles Bennett [5],
who, incidentally, later co-invented both quantum
cryptography and quantum teleportation, and who
remains today an active and widely-respected lead-
er in the growing fields of quantum information
and quantum communication.

Although the theoretical concept of reversible
computing has been known (at least to a small
community) for the last 32 years, and much pro-
gress has been made in the theory and engineering
of reversible machines in the meantime, the new
paradigm has not yet achieved a level of practicali-
ty that would foster extensive commercial applica-
tions. This is due primarily to two reasons: (1)
Developing a cost-effective technology for reversi-
ble computing that actually saves significant ener-
gy in practice is a far more complex and difficult
engineering problem than most computer science
theorists (even those within the field) tend to ima-
gine, and (2) during most of this period, the limits
to the energy efficiency of conventional technology
were still very far away from being reached, and
so, further refinement of the conventional technolo-
gy was a much easier and less disruptive path for
technological evolution to follow. However, rea-
son #2 is on the verge of going away, now that the
semiconductor industry is running out of ideas for
pushing the conventional technology much further,

and so, today the time is ripe for increasing num-
bers of physicists, engineers, and computer scien-
tists to turn increased attention towards solving the
difficult problems that today still prevent reversible
computing from being a marketable solution to the
imminent power-performance crisis.

In this paper, we review the present technologi-
cal situation as it stands, with an emphasis on the
physical and logical design requirements that must
be satisfied if we wish to overcome the near-term
limits to computer efficiency, which will require
making reversible computing technology practical.

The structure of this paper is as follows: Sec-
tion 2 reviews the thermodynamic foundations of
the near-term limits on computer performance.
Section 3 raises the possibility of surpassing these
limits by improving computer energy efficiency.
Section 4 discusses why reversible computing is an
absolute physical prerequisite for accomplishing
this to an extent that will get us very far beyond the
present limits. Section 5 summarizes the detailed
physical requirements for new reversible logic
technologies to exceed conventional logic perform-
ance, and reviews a few of the present efforts to
implement such technologies, and then reviews the
logical, architectural, and algorithmic requirements
for the design of efficient reversible systems. In
the long run, as we approach ever closer to 100%
energy efficiency, all of computer science will
eventually need to change in order to accommodate
the new reversible paradigm [6]. It is a great chal-
lenge, but also an exciting opportunity. Finally,
section 6 discusses some long-term implications of
this work, and concludes the paper.

2. Limits of conventional technology

Let us begin with a few basic definitions and
symbols, to be sure that we are all speaking the
same language. Power (P), in physics, refers to the
amount of energy that undergoes some transforma-
tional process (e.g., transmission between bodies or
dissipation to heat) per unit time (P = E/t), while
performance (G) in computing refers to the number
of standardized computational operations that are
dynamically performed per unit time (G = Nops/t).
Power-performance (GP) in computer engineering
[7] simply means performance per unit power dis-
sipated, GP = G/Pdiss, which (as a direct result of
the previous definitions) is also equal to Nops/Ediss,
the number of operations performed per unit of
available energy that gets dissipated to heat. In
realistic scenarios, the dissipation of a unit of en-
ergy to heat typically imposes non-negligible direct
and indirect economic costs, and so, power-per-
formance often sets a lower bound on the cost of

performing a computation having a given com-
plexity Nops, or in other words, an upper bound on
the complexity of a computation that can be
performed within a given energy budget. Thus, to
improve our practically- affordable computational
capabilities, we must continue to improve power-
performance, or in other words, reduce the energy
dissipated per operation.

How much energy must be dissipated in order to
perform a computational operation? Let us first
consider a very simple operation, such as changing
a bit from a 1 to a 0. If the 1 is represented by a
physical entity or signal (e.g., a high voltage on a
wire) that carries an amount of available energy
Esig, then one simple way to clear the bit would be
to allow this signal energy Esig to simply dissipate
away into the environment the form of heat. This
is in fact exactly what happens in digital circuits
today: a 1 is cleared by connecting a wire to
ground, and allowing its stored electrostatic energy
to dissipate away. (With this particular mechan-
ism, we see that Ediss = Esig; later, we will see that
in other mechanisms, Ediss can be made much less
than Esig.)

Now, what are the lower bounds on Esig? These
follow from reliability requirements and thermody-
namics. One of the most elementary textbook facts
about thermodynamics is that a small subsystem of
a system at temperature T has a probability propor-
tional to e−|∆E|/kT of being found to be in an accessi-
ble state having a free energy that is ∆E away from
the subsystem’s expected (average) free energy, as
a result of thermal fluctuations. In this formula, k
= 1.38×10−23 J/K is Boltzmann’s constant, which is
just the log e unit of entropy. This result is a
classical one, but the quantum corrections to it are
small when ∆E >> kT.

Thus, if we want our signal, when measured, to
have a probability perr << 1 of being found to be in
an incorrect state, and probability 1 − perr ≈ 1 of
being found in the correct state, then there must be
a difference of |∆E| ≥ (kT ln r), where r = perr

−1 is
the reliability factor, between the free energies of
the correct and incorrect states. Therefore, logic
signals that have only probability perr of being
invalid must involve this much energy, in the sense
that energy transfers of this magnitude are required
to transmit and transform those signals. As an ex-
ample, if we wish a signal to have an error probabi-
lity of only perr = 10−40, then the signal needs to in-
volve energies of at least 92.1 kT = 2.38 eV at
room temperature.

One may at first wonder whether the energy re-
quirements of signals could be lowered arbitrarily
by just decreasing the internal temperature Tint of
the system. Unfortunately, it turns out that this

strategy actually cannot help to reduce total system
energy dissipation, because the effective T when
considering total system energy dissipation is al-
ways that of the outside environment to which
waste heat is being released. This is because the
internal dissipation of energy ∆E results in an en-
tropy increase of ∆S = ∆E/Tint = (kTint ln r)/Tint = (k
ln r) which (note) is not temperature-dependent.
This entropy cannot be destroyed (by the 2nd law of
thermodynamics), and so it must ultimately be ex-
pelled into the outside environment at temperature
Tenv, resulting in a total energy dissipation to the
environment of Ediss = Tenv∆S = kTenv ln r. As long
as we must expel our waste heat to the atmosphere,
we are stuck with Tenv ≈ 300 K.

The use of error correcting codes does not really
help either, because the fundamental relationship
between error probability and bit energy is derived
in a way that does not depend on how the bit is en-
coded. A bit that is encoded using some fancy re-
dundant coding scheme that permits error correc-
tion would require exactly the same (if not more)
total energy to achieve a given level of reliability
as would an isolated bit. Thus, there is nothing that
can be done to improve reliability at higher levels
in the system design that is any more energy-effi-
cient than simply “bulking up” the energy content
of individual bits. For this reason, I don’t believe
that the energy per bit in practice will ever shrink
much below a room-temperature equivalent energy
on the order of 1 eV, since below that level, sys-
tems become too unreliable (perr > 1.6×10−17) to
carry out large-scale computations without error.

Even worse, in practice, this minimum energy
applies not only to entire logic bits, but also to the
individual particles (such as electrons) that make
up the signal. Logic signals today are typically en-
coded using relatively large numbers of electrons
(~104 in the smallest logic nodes in the latest tech-
nologies), and all of these electrons must be pre-
sented with energy barriers of this magnitude in or-
der for them not to experience “error” (e.g., by
jumping across the channel of a turned-off transis-
tor) and rapidly leak away, erasing the stored bit
and dissipating its energy. Thus, total logic signal
energies today are ~104 eV, or on the order of 1 fJ,
which translates to a power-performance level of
only about a million logic operations per nano-
second, per watt of power consumed. A million
logic operations within a GHz clock cycle may at
first sound large, but it is only sufficient for on the
order of perhaps 10 typical double-precision float-
ing-point operations, so this leads to a maximum
performance per watt for today’s technology of
only around 10 GFLOPS, even in an ideal special-

purpose architecture that imposed no further over-
heads beyond those of the arithmetic.

Further performance gains within the conven-
tional logic paradigm will thus require further redu-
cing the number of electrons per bit, which may yet
happen—researchers all over the world are experi-
menting today with techniques for manipulating
even single electrons, and using them in switching.
However, ordinary field-effect transistor technolo-
gy does not appear capable of being scaled to work
with much less than ~100 electrons (if that), which
only gets us a factor of ~100 beyond today’s pow-
er-performance levels, or a mere ~10 years (until
2015) on the historical performance trendlines.

Even if the number of electrons per bit can be
reduced all the way down to 1 by (most likely) ab-
andoning conventional MOSFET technology, if the
electrons’ energy is still thrown away with every
operation, as is done today, that still only gets us
another factor of 100, or to the year 2025.

It is important to note that the argument for the
energy limit at this point does not in any way dep-
end on the physical medium of the technology, for
example, as to whether it uses electrons or photons
or molecules to store information. The laws of
thermodynamics are universal, and so any informa-
tion storage medium must involve signal energies
(or energy barriers) of magnitude 40 kT ≈ 1 eV ≈
kT ln 1017 in order to function with a reasonable
level of reliability, and thus, energies of such mag-
nitudes must be manipulated whenever those sig-
nals are processed (moved or modified). If we
continue to insist on discarding the entire signal en-
ergy and dissipating it to heat every time we mani-
pulate a signal, then raw (gate-level) computer per-
formance is doomed to reach a plateau that is (at
most) 20 years in the future, at historical rates.

3. The need for energy efficiency

The one (and only) loop-hole in the above pessi-
mistic scenario is that it depended on the assump-
tion that energy of the same magnitude as the entire
signal energy gets dissipated to heat whenever a
logic signal is manipulated, or in other words that
Ediss ≈ Esig. However, there is no fundamental rea-
son why this must necessarily be so. Suppose in-
stead that Ediss < Esig. In other words, in perform-
ing a given digital operation, suppose that a frac-
tion f = 1 − Ediss/Esig of the signal energy (where 0
≤ f ≤ 1) is retained in an organized form that can
reused in performing subsequent operations. We
then refer to the fraction f of energy that is recov-
ered for later use as the energy efficiency of the op-
eration. (Like the energy efficiency of a trans-
former, it can be expressed as a percentage be-

tween 0% and 100%.) Present-day computation has
an energy efficiency of basically 0%, in other
words, essentially all of the signal energy is dissi-
pated to heat in each operation that changes the
logic value of the signal. However, perhaps surpri-
singly, this is not a necessary feature of computa-
tion; in fact, there is no proven absolute upper limit
on the energy efficiency of computation that is less
than 100%.

As a concrete example, to clear a voltage-coded
bit with arbitrarily low dissipation, one can connect
it to a changing reference signal that is initially at
the same voltage, and that goes to the ground level
at a steady rate over time t. The power dissipation
during this process is P = IV where I = Q/t is the
current and V = IR is the voltage drop along the
discharge path. The energy dissipated is E = Pt =
IVt = I2Rt = Q2R/t, which becomes arbitrarily small
(for a fixed charge Q and resistance R) as the char-
ging time t is made longer, with no lower limit.
This is an example of adiabatic switching, which is
the basis for many approaches to energy recovery.

Although there is no general lower limit on en-
ergy efficiency, if we are given a fixed level of reli-
ability r in the logic, the energy efficiency of com-
putation is at most f < (1 − r−1) = (1 − perr) = pok
(the probability that the bit value is correct), since
the occurrence of an error in a given bit essentially
represents the dissipation of that bit’s energy away
from the intended computational trajectory. How-
ever, recall that reliability itself can be increased
exponentially by simply increasing the bit energy,
since r = perr

−1 = exp[Esig/kT] for errors due to ther-
mal noise. Increasing reliability in this fashion in-
creases signal energy, but only logarithmically in
reliability, and so it reduces the reliability-related
lower limit on overall energy dissipation, since
Ediss = Esig(1 − f) > Esigr

−1 = Esigperr = (kT ln
r)exp[−Esig/kT] = (kT ln r)/r, which approaches 0 as
r→∞. So, we can have both arbitrarily high relia-
bility and arbitrarily low energy dissipation per op
in the face of thermal noise at a fixed temperature,
as long as we make the bit energy as large as ne-
cessary for this, and no other factors prevent the re-
liability r from approaching ∞, or the efficiency f
from approaching 1, or the dissipation Ediss per op-
eration from approaching 0.

There is good reason to think that f can indeed
approach 1 if we consider the “manipulation of in-
formation” to just be a way of interpreting a more
general class of physical processes, which is the
transformation of a physical system from one state
to a different (distinguishable) one. A wide variety
of physical systems involve the transformation of
the physical state from one form to another distinct
one with extremely high efficiency, that is, with an

extremely low fraction of the system’s energy be-
ing dissipated per transformation step. In cyclic
processes, the energy efficiency is commonly char-
acterized by the quality factor Q = f / (1 − f). Many
examples are known of physical systems (both ma-
cro-scale and nano-scale) having Q factors in the
billions or higher, corresponding to an energy effi-
ciency of ≥99.9999999%. For example, a crystal
or molecule vibrating in a vacuum, a planet or-
biting a star, and a precessing quantum spin are all
examples of systems that are known to carry out
large numbers of transitions between distinguish-
able states with extremely high energy efficiencies.

Also, in quantum mechanics, if we know the
laws of physics with high precision, and have
prepared an initial quantum state also very
precisely, and have well isolated it from undesired
interactions with its environment, the rate of entro-
py increase in that quantum system as it evolves
can theoretically be arbitrarily close to zero, corres-
ponding to arbitrarily little of the system’s energy
being dissipated away from the predicted trajectory
of the system. This is because the evolution of the
quantum state (wavefunction) of an isolated quan-
tum system is (contrary to widespread misunder-
standings) fully deterministic and non-chaotic (in
fact, it is linear); the apparent nondeterminism of
quantum mechanics only arises (emergently) when
a system interacts with and leaks information to an
uncontrolled outside environment.

As time goes by, and we characterize the funda-
mental constants of physics ever more precisely,
and we learn how to manufacture and simulate
quantum devices with ever more accuracy, there is
no reason to think we cannot get to the point where
we can eventually design and construct nanoscale
quantum systems that glide along complex trajecto-
ries that pass rapidly through large numbers of dis-
tinct quantum states with negligible entropy in-
crease. It is “simply” a matter of sufficiently ac-
curately characterizing and modeling the system’s
quantum dynamics.

Once we have attained this core capability of
high-precision, nanoscale quantum engineering, it
is then “simply” a matter of designing and building
particular systems whose natural (and entirely pre-
dictable) dynamics takes them through a sequence
of quantum states that corresponds exactly to a pre-
programmed sequence of computational states, in
other words, to a desired computation. There is no
reason from fundamental physics to think that this
capability cannot eventually be possible (and even
quite practical) to achieve. However, realizing it
imposes stringent constraints on the design of our
lowest-level physical devices and mechanisms for
performing digital state manipulations, and on the

logical and computational architecture of highly
energy-efficient computers based on such devices.

Energy efficiency well above 0% is already em-
pirically known to be possible, in fact, there al-
ready exists today in the chip-design community a
burgeoning community of engineers who are ex-
ploring energy-recovering logic techniques in
depth. In principle, these are (very roughly) analo-
gous to the regenerative braking systems on mod-
ern hybrid cars, which recover some of your car’s
kinetic energy when you step on the brake, and re-
turn it to the battery, rather than the conventional
approach of just dissipating it as heat in the brake
shoes. In a somewhat similar way, a good circuit
design can arrange for most of the energy stored in
a logic signal to be returned to the power supply
when that signal is erased, rather than being dissi-
pated to heat along some resistive discharge path.
However, the maximum energy efficiency of most
standard approaches to energy recovery is rather
limited, and the usual techniques for this do not ac-
tually get extremely close to 100% efficiency.

4. Requirements for sub-kT computing

We now ask, what is required in order for com-
puters to attain arbitrarily high levels of perform-
ance at fixed levels of power consumption? That
is, what is required in order for the energy efficien-
cy of computation to get arbitrarily close to 100%,
so that the energy dissipation of individual logic
operations can plunge from the >40 kT level of
conventional logic, to arbitrarily lower levels, even
to levels much less than kT? Quite rigorously, we
can show that what is absolutely necessary for this
is reversible logic. (This was already known to the
late Rolf Landauer of IBM as early as 1961 [4], al-
though at the time, he did not yet realize that a re-
versible solution was logically possible.)

To understand the connection between thermo-
dynamic reversibility (which means high energy
efficiency, low energy dissipation, low entropy in-
crease) and logical reversibility (which means the
use of 1-to-1 transition functions for computing),
we first need to step back and review some more
basic facts of physics.

We mentioned earlier that quantum dynamics,
when modeled precisely, is completely determinis-
tic. This is well-known among top quantum physi-
cists; indeed, it is etched into the very mathe-
matical core of quantum mechanics. The apparent
non-determinism of quantum phenomena is per-
fectly validly (and, arguably, by far most simply)
explained and interpreted as merely the expected
appearance that arises whenever a quantum system
interacts with and becomes “entangled” (correlated

in a quantum way) with any complex external envi-
ronment that won’t soon happen to act in a way
that would disentangle the state of the environment
from that of the system. The apparent non-determ-
inism of quantum events only arises because the
well-determined quantum correlations that persist
in the resulting state can’t be seen by local obser-
vers, who can only interact with the small fragment
of the quantum state that immediately surrounds
them in configuration space; this fragment appears
random to them, simply because it is an arbitrary
piece of a full ensemble. Nevertheless, the global
state evolution always remains fully deterministic,
and in principle, completely predictable.

All of our most successful physical theories en-
compass and reflect this underlying determinism,
including quantum electrodynamics, which predicts
details of atomic spectra to 9 digits of precision,
and general relativity, which predicts gravitional
energy emission rates in binary pulsars with
comparable accuracy. In essence, all of the vast,
overwhelming mountains of empirical evidence
collected by experimental physicists has so far
proved to be perfectly consistent with this modern
understanding of quantum physics. It is, mathe-
matically and conceptually, the simplest com-
prehensive and accurate theory that we have, so
Occam’s razor ought to convince all good scientists
that we should accept it at face value [8].

Now, a key element of the mathematical struc-
ture of all modern physical theories is the principle
of Hamiltonian dynamics, which says that the state
vector x evolves over time according to a differen-
tial equation that is first order in time, dx/dt = g(x),
where g is a function of the instantaneous state x.
The very form of this differential equation makes
the state evolution deterministic. But it is crucial
to note that it is also reverse-deterministic, that is,
deterministic in the negative time direction; this is
simply because dt in the Hamilton’s equation can
be equally well either positive or negative.

Consider now the transition function Ft,u(x) that
maps old states to the resulting new states between
two times t and u > t, that is, x(u) = Ft,u[x(t)]. Be-
cause the dynamics is reverse-deterministic, the
transition function Ft,u must be a one-to-one (inject-
ive) function over the state space X = {x}. To say
that the transition function is injective is the very
definition of a time-reversible (or just “reversible”
for short) dynamics. Since all successful theories
of fundamental physics admit a Hamiltonian form-
ulation, all of them share this core property of dyn-
amical reversibility.

Reversibility is thus one of the most fundamen-
tal, unavoidable, and universal characteristics of
modern physics. Without it, terrible things would

happen: the second law of thermodynamics would
not always hold, probabilities would not always
sum to 1, energy would not be conserved; etc.
Even the famous astrophysicist Stephen Hawking
recently conceded a bet he had made, and admitted
that even objects as extreme as black holes still de-
velop in an entirely time-reversible fashion. So,
we can be very confident that, no matter what new
developments may occur in theoretical physics in
the future, dynamical reversibility will always re-
main a fundamental cornerstone of physics.

Now, we will show why dynamical reversibility
immediately implies that logical reversibility is a
requirement for thermodynamic reversibility. We
will do this by showing that logical irreversibility
implies thermodynamic irreversibility.

Suppose a given computational operation that
we perform within a machine is logically irreversi-
ble. This means that the logical transition that
occurs within the machine is described by some
logical transition function L that takes “before”
(predecessor) states to “after” (successor) states
and which is not a one-to-one function. For exam-
ple, the operation of unconditionally clearing a bit
that could have been either 0 or 1 beforehand
means that L(0) = 0 and L(1) = 0. Since two
different operand values (0 and 1) produce the
same result (0), this transition function L is not
one-to-one, and so the operation that it carries out
is by definition not logically reversible.

Given that physical states always develop in a
one-to-one fashion, how can the bit-operation
“clear” be performed? Only by embedding this op-
eration within some larger physical process in
which the “erased” information is preserved in
some form. For example, suppose we conjoin our
bit (0 or 1) with some other system (the “environ-
ment”) whose initial state is S. The combined
states of the bit and the environment can then be la-
beled 0S and 1S. Now we wish to clear the bit.
We can do this by taking 0S→0S and 1S→0T,
where T is some other state of the environment.
Now the bit is unconditionally 0, but the environ-
ment has gone from being in a known state (S) to
being in an unknown state (either S or T).

In general, given the dynamic reversibility of
the laws that govern our physical universe, infor-
mation can never really be destroyed, it can only
be moved from one system (in this case, the 0 or 1
bit) to another (in this case, the environment).

If the system that we’re calling the environment
really is an uncontrolled physical environment (for
example, if we’re releasing the discarded informa-
tion in a flow of heat into the atmosphere), then we
can really never get the discarded information
back, because we can’t expect the outside environ-

ment to be so kind as to return the information to
us in pristine, undisturbed condition. Thus, the
known information that was originally contained in
the bit to be erased has been degraded to the form
of unknown information (i.e., entropy) in the envi-
ronment. Total entropy has thus increased, by the
amount of 1 bit, and entropy increase is the very
definition of thermodynamic irreversibility.

If the environment is at temperature T, then this
means (by the very thermodynamic definition of
temperature, 1/T = ∂S/∂E) that increasing its entro-
py by a small amount dS will require dissipating an
amount dE = T dS of energy to the form of heat in
that environment. To increase the entropy of our
environment by an amount 1 bit = log 2 = (log
e)(ln 2) = k ln 2 thus requires that we dissipate at
least Ediss = kT ln 2 energy into that environment.
This implies that the energy efficiency of a bit-
erasure operation, when the bit is lost, cannot be
greater than f = 1 − (kT ln 2)/Esig. For example, bit-
erasure efficiency can be at most 98% for signal
energies of ~40 kT that are sufficient to ensure reli-
ability in the face of thermal noise. (However, a-
chieving even this high a level of energy efficiency
will require aggressive energy recovery, well
beyond what is already being done today.)

Now, however, if the “environment” is instead
another controlled component of our system, then
there is no implication that entropy is increased in
the “bit erasure” (really, bit movement) process. In
this case, the process can be thermodynamically re-
versible. But, a controlled component that can
store a bit can also be considered to be part of the
logical state, and the joint logical state is then
updated injectively. Therefore, the physically re-
versible version of the bit movement process can
also be considered to be logically reversible.

One minor caveat to this discussion is that the
transition relation in a thermodynamically reversib-
le process may actually (more generally) be N-to-
N, not necessarily just 1-to-1. For example, see
Figure 1 above. On the left is a group of three
equally likely initial logical states, each with prob-
ability 1/3. This distribution has an entropy of log

Before After

Figure 1. Only nondeterministic processes
such as this one can be both non-injective
and thermodynamically reversible.

⅓

⅓

⅓

⅓

⅓

⅓

3, or about 1.1 k. The cloud represents a physical
process whose details are unknown, either because
the physical laws are uncertain, or because the sys-
tem is interacting with an unknown environment.
On the right are three possible final logical states
that the system can end up in. Thus, the logical dy-
namics here is not modeled as a one-to-one
function, but rather as a “3-to-3” nondeterministic
relation in which probabilities may be attached to
the transitions (arrows) between before and after
states. The equilibrium distribution over initial
states will be a stationary point of the dynamics as
long as the transition probabilities satisfy the
property of semi-detailed balance, which says that
∑b p(b→a) = 1, where a is a general after-state, b
ranges over before states, and p(b→a) is the proba-
bility that before-state b will transition to after-state
a. In this case, the after-states will remain equi-
probable, and the entropy will remain constant. So,
the process described need not generate entropy
and thus may be thermodynamically reversible,
even though the logical operation performed is not
an injective one. However, notice that if the num-
ber of possible after states was less than the num-
ber of before states, then the entropy in the logical
state could not remain the same, and so in that
case, logical state information would have to be ex-
pelled into the environment, where it would
become physical entropy and imply energy dissi-
pation into the environment.

Thus, the true logical requirement for thermody-
namically reversible computing is not really that
the logical operation performed must carry out a
deterministic 1-to-1 transformation of the logical
state, but only the somewhat weaker requirement
that the operation performed must not decrease the
number of possible logical states, while the transi-
tion function must have semi-detailed balance.
Thus, the operation performed may in fact be,
strictly speaking, logically irreversible, as long as it
is also nondeterministic (in the sense of a probabil-
istic or randomized computation). However, if it is
deterministic, then it must also be injective.

Also, in order for nondeterministic, non-injec-
tive N-to-N operations to be thermodynamically re-
versible, the initial state must be truly random (un-
known) already—if not, then its subsequent ran-
domization by this operation is a form of entropy
increase, and is itself thermodynamically irreversi-
ble. But if the state is already randomized, and it is
only being re-randomized by the N-to-N operation,
then it is unclear what the computational utility of
such an operation would be.

Incidentally, note that nondeterministic 1-to-N
operations (or more generally, N-to-M operations,
where N < M) actually increase the entropy of the

logical state, and thus, in principle, can be used to
(temporarily) reduce the entropy of the environ-
ment, and gain energy from it. (Essentially, the
part of the logical state that is being randomized
can be used as the cold reservoir in a heat engine.)
Later, an M-to-N operation can be used to reduce
the number of logical states again, and at this time
we will have to pay back the energy we have bor-
rowed from the environment. As long as the over-
all process is still N-to-N, it may still be thermody-
namically reversible. As a result, reversible com-
putations may freely utilize randomized (probabil-
istic) algorithms without paying any extra thermo-
dynamic penalty for doing so.

Although randomized algorithms are useful for
many purposes, for simplicity we will focus on the
use of deterministic, 1-to-1 operations below.

A second, more important caveat to the above
discussion is that thermodynamic reversibility does
not actually require the logic operation to be 1-to-1
over the set of all conceivable input states, but only
over the restricted subset of those input states that
can actually arise, given the architecture of the ma-
chine. We will say that such an operation is condi-
tionally reversibile, since it is reversible under the
condition that certain restrictions on its inputs are
satisfied. The concept of conditionally reversible
logic operations is a very useful one, because cond-
itionally reversible logic operations often turn out
to be easier to implement than fully reversible
ones. We will see examples in section 5.6 below.

Finally, although ordinary deterministic N-to-1
operations (such as bit erasure) are thermodynami-
cally irreversible, we can in fact emulate ordinary
computations that are composed of such operations
by embedding them within equivalent computa-
tions that are composed entirely of 1-to-1 opera-
tions. This was the key insight that was developed
by Landauer and Bennett, and it enables reversible
computers to remain computationally universal
(Turing-complete). We will discuss how this em-
bedding works in section 5.7.

5. Requirements for reversible logic

The previous section showed why achieving sig-
nificant performance improvements well beyond
the limits of conventional technology requires that
we move to a new computing paradigm that is pri-
marily based on logic operations that carry out 1-
to-1 transformations of the computational state.
(The only exception is for many-to-one operations
that are only used to erase random bits that were
previously obtained from the environment.)

In this section, we review the key engineering
requirements that are imposed on computer designs

by the need to use reversible logic. These require-
ments constrain the system design at every level,
from the modeling of physical processes used to
implement logic operations to (eventually) the
design of high-level software algorithms. We
divide these new requirements into constraints on:
(1) device physics modeling, (2) energy recovery
mechanisms, (3) logical state encodings, (4) logical
transition processes, (5) synchronization mechan-
isms, (6) logic gates, (7) functional unit designs,
(8) processor architectures, (9) hardware design
languages and software programming languages,
and (10) application algorithms. As we go through
these, we mention the progress that has been made
to date towards meeting these requirements.

5.1. Device physics modeling

In order to create reversible devices that dissi-
pate much less than kT energy per operation, nano-
science must progress to the point that we are able
with high accuracy, to track what happens to the
“cloud” of probable physical states representing a
given logical state over the course of a given stor-
age, communication, or logical transition event.
This breaks down into several requirements.

Thermodynamic reversibility requires that our
uncertainty about the state must not increase much
over time, that is, the “cloud” of probable quantum
states of the system must not spread out very much
over the course of the event. For example, in the
simple case of flat distributions over equally-likely
states, if there are N physical states in the cloud at
the start of the event, and M at the end of the event,
then the entropy increase is given by ∆S = [log
(M/N)]. For very small amounts of entropy
increase ∆S << log e = k, this relation approaches
∆S ≈ (M/N − 1)k. Thus, if we want the entropy
increase to be limited to, say, 0.01 k (for a quality
factor of 4,000 given a 40 kT signal energy, or an
energy efficiency of 99.975%), then this means that
M can be at most ~1% greater than N.

 Meanwhile, the reliability requirement means
that at the end of a given operation, the cloud of
physical states should be entirely or almost entirely
confined within the set of “allowed” representa-
tions of a specific logical state. If not, then the log-
ical state is in error and will have to be corrected.
As we discussed earlier, logic errors represent a
form of energy dissipation, and must be avoided in
an efficient design. Conservatively, to attain an
energy efficiency of f, the fraction of the cloud
situated within the correct logical state should be at
least f. In our example of .01 kT dissipation with a
signal energy of 40 kT, the error probability should
be no more than 0.025%.

Finally, of course our model’s prediction of how
the cloud of states develops must be physically ac-
curate. The average entropy increase from any in-
accuracy can be estimated from information theory
as ∆S = ∑(a−p) log p−1, where a is the actual prob-
ability of a given final state, p is the probability as-
signed to it in our model, and the sum ranges over
all final states having either a≠0 or p≠0. (Note the
average entropy increase may be unboundedly
large if our model assigns 0 probability to any
states that may actually occur.)

Despite the above stringent requirements on the
accuracy of our model of the device’s operations,
in several ways the modeling and engineering re-
quirements here are still much easier than in, say,
full coherent quantum computing [9]. For one
thing, our model does not need to predict exactly
which initial states of the device will be taken to
which final states; rather, we only need to
characterize the set of probable final states. We
also do not need to keep track of coherent quantum
phase information; the initial and final states may
both be highly decoherent, e.g., they may be
represented by near-diagonal density matrices,
which are effectively just probability distributions
over the system’s set of natural “pointer” eigen-
states.

5.2. Energy recovery mechanisms

It is important to realize that in reversible de-
sign, not only the flow of information through the
machine, but also the flow of energy must be care-
fully tracked. A given chunk of energy of magni-
tude E (in excess of what a given system’s energy
would be in its ground state, that is, at zero tem-
perature) is always carrying out transitions between
distinguishable quantum states at the rate 2E/h,
unless the energy happens to be trapped within a
cyclic process that is cycling among some small
number N of states, in which case the transitions
will proceed at the slightly faster rate 2(N−1)h/N
[10]. Even the energy of a stable quantum ground
state itself (relative to some lower reference level)
is still always “busy” rotating the quantum phase of
the system, at the angular frequency ω = E/h.

So, energy is, by definition, always actively do-
ing something. Thus, whenever we are finished us-
ing a given chunk of energy to carry out a desired
logic transition, we must then immediately find
some other job for that energy to do. For example,
we might immediately redirect it into performing
the next logic operation in a sequence. If there is
not enough computational work available to keep
the available signal energies occupied at a given
point in a computation, then if we are smart, we

will arrange for the energy to then keep itself busy
just “stirring” some part of the system’s state that is
already at its maximum entropy, since such activity
won’t increase entropy further. Or, we could ar-
range for the energy to participate in some more
structured cyclic process, or to be locked into the
ground state energy of some quasi-stable, newly-
constructed state, which is what happens in capaci-
tive and chemical energy storage systems.

If we don’t find something useful or at least
harmless for the energy to do, and we don’t take
pains to store it away, then the energy will busily
occupy itself in dissipating out into the form of
heat in the machine and/or its environment, result-
ing in entropy increase and a permanent consump-
tion of free energy. Thus it is imperative to care-
fully design one’s switching mechanisms so that
we always carefully track where the signal energies
go at all times, and make sure they are always
either redirected into other useful purposes, or are
carefully shepherded into some safe temporary
storage facility. Whatever our choice, our design
must carefully prearrange for it to occur automati-
cally in the normal course of events, as the system
propagates along through its natural sequence of
states, under its own generalized inertia.

To do this is perhaps even more difficult than it
sounds initially, since we not only have to store the
energy away somehow when it is not being used,
but we must also ensure that we don’t lose track of
its state (have an “expanding cloud” of possible
states) in the meantime. The precise arrangement
of energy among the various possible subsystems
of the machine is part and parcel of our knowledge
of the machine’s state. If the arrangement of some
energy ever becomes more uncertain than it was
previously, in any way whatsoever, then this im-
plies an increase of entropy, and the effective con-
version of a portion of the energy to heat.

Most research on reversible energy storage
mechanisms to date has focused on the design of
resonant oscillating “power-clock” supply subsys-
tems (e.g., [11]), which are intended to keep the
available energy occupied in a cyclic process of
oscillation in the state of the power-clock resonator
system. On each cycle, some of the energy of the
resonator is borrowed to carry out a desired logical
transition, where it is typically locked into place for
temporary signal storage until some later cycle,
when the transition is undone, and the borrowed
energy is returned to the resonator cycle.

We must be careful in such processes to avoid
leakage of information about the logical state of the
machine into the oscillator subsystem, where it
may pollute and corrupt the nominally “clean” os-
cillator signal, resulting in an increase in the entro-

py of this signal, and a significant dissipation of
energy. In order for a signal to be recirculated
around a cyclic path with a high quality factor (low
rate of energy dissipation), the signal must have a
low entropy bandwidth per quantum channel in the
recirculation path. If entropy is being injected into
the oscillator signal from the logic, then this will
no longer be the case.

The potential alternatives to resonant oscillators
for energy recovery, such as direct steering of sig-
nal energies into subsequent logic transitions, or
the storage of signal energies in temporary quasi-
ground states, have perhaps not yet been adequate-
ly explored.

5.3. Logical state encodings

A crucial question in the design of any logic
device technology is: What will be the physical
encoding of the logical states of the device? Of
course, the answer in most conventional logic is
that bits are represented by voltage levels (within
some noise margins) that are stored on circuit
nodes (wires and other capacitive elements). Re-
versible logic schemes using this encoding also
exist (e.g., see [12]).

However, we would be wise to also consider al-
ternatives. For example, many quantum computing
schemes use quantum spins (of electrons or atoms)
to store information; a spin is a natural two-state
system, so it is a convenient way to encode a bit.
In superconductive circuits, information can be
stored in the many forms, including the amount or
direction of current flow in a loop, the phase of a
macro-state wave function, or by current pulses
propagating near-ballistically down superconduc-
ting transmission lines.

Some researchers have explored using the me-
chanical configuration of nanoscale solid or mol-
ecular structures to encode information. In optical
computing, we can also encode information in
electromagnetic waves or cavity oscillations, and in
DNA computing, we encode information in the
chemical composition of a (fairly dilute) solution
of complex biomolecules.

Regardless of the physical medium, there are
some general requirements that all information en-
coding schemes must satisfy.

First, the devices must maintain their logical
state for long periods, at least, periods that are long
compared with the time between accesses to the
stored information. There are three basic ways to
do this:

(1) Provide an energy barrier in configuration
space that surrounds the set of physical states
encoding a given logical state, so that in order for

the system to leave the logical state, it must first
cross the energy barrier. Accidentally crossing the
barrier would require either quantum tunneling,
whose rate can be exponentially suppressed by
making the barrier higher or wider, or else some
form of thermal excitation, which can be exponen-
tially suppressed by either making the barrier
higher, or by lowering the temperature of the
region near the barrier. With the barrier scheme,
changing the logical state reversibly requires that at
some point we must lower the barrier along some
path between the old state and the desired new one.

(2) Don’t use an energy barrier, but arrange for
the spontaneous transition out of the logical state to
require that the system traverse a large expanse of
configuration space that is unlikely to be crossed
by accident quickly. (This is like trapping some-
one in a forest by blindfolding them so that they
will remain disoriented, and wander about at ran-
dom.) A random walk takes expected time Θ(r2) to
proceed a radius r from its starting point. We can
help our situation further if leaving the logical state
requires passing through a narrow valley that is un-
likely to be encountered. In the random-walk
scheme, intended transitions between logical states
are implemented by biasing the random walk in a
direction that will lead to the desired state. (In a
sense, an energy barrier can be considered a special
case of this scheme, in which the narrowness of the
“passage” is provided automatically by the rarity of
states that have energy fluctuations high enough to
get over the barrier. Similarly, the narrow passage
can be viewed as having a low entropy, and thus a
high free energy.)

(3) Don’t have an energy barrier between states,
or a barren expanse of intermediate states, but sim-
ply cool the system and isolate it from interactions
with its environment so effectively that there is no-
thing that would cause it to change state. This is
the approach used in spin-based quantum comput-
ing, in which the 0 and 1 states are right “next to
each other,” so to speak, with no energy barrier be-
tween them, but the states are stable unless per-
turbed, and interactions between the spin and the
outside world that might perturb the state are sup-
pressed. (Actually, it is possible to still view this
as a form of the energy-barrier scheme; the path
leading over the barrier is one where a large ran-
dom thermal excitation from the outside world hits
our system and causes it to change.)

Whichever of the three methods is used, we
must ensure that the stored bits are reliable, in the
sense that the probability of the system’s spontane-
ously changing the stored logical state to an incor-
rect value should be small. As we discussed ear-
lier, this implies that the energy difference (or more

generally, the free-energy difference) between cor-
rect states and incorrect states (or paths leading to
incorrect states) should be substantial compared to
kT, and thus, in order for overall dissipation during
logical transitions to be small compared to kT,
energy efficiency must be very high.

5.4. Logical transition processes

How can we carry out highly energy-efficient
transitions between logical states? Doing this re-
quires that we use high-quality adiabatic or ballis-
tic physical processes, which are processes in
which only a small fraction of the energy involved
in carrying out the transition is dissipated during
the process. The distinction between adiabatic and
ballistic processes is primarily just a difference in
our analytical scope: in characterizing a given pro-
cess as adiabatic, we are focusing on the energy
dissipation within some small part of a system as it
changes under the influence of external forces,
whereas in characterizing a process as ballistic, we
are focusing on the dissipation of an entire, well-
isolated system as it proceeds through its natural
evolution more or less autonomously.

Generally, any process that is overall ballistic
involves adiabatic interaction processes between its
subsystems. However, a system that includes adia-
batic interactions between some of its subsystems
may not be ballistic overall.

Given that what we care about in practice is us-
ually total system energy dissipation, and not just
the dissipation within an isolated subsystem, it
must generally be the case for energy-efficient
computing that the system as a whole proceeds for-
wards ballistically along the desired computational
trajectory. However, in analyzing the design of
such a system, it may be useful to pick out specific
subsystems, and analyze them in terms of their
adiabatic behavior under perturbations provided by
neighboring ballistically-evolving subsystems.

For the case of logical states that are maintained
reliably by the presence of potential-energy barri-
ers (or more generally, free-energy barriers) separ-
ating correct physical states from incorrect ones,
we can adiabatically change the logical state by

Figure 2. Adiabatic transitions between
logical states separated by energy barriers.

appropriately manipulating the energy surface, as
in Figure 2. The gray arrows in the figure show
adiabatic transitions between logical states that are
located at stable or meta-stable local energy mini-
ma. We can symbolically represent the various
logical states embedded in energy surfaces, and
transitions between them in the following notation,
which follows the cycle of states counter-clockwise
from the high-energy state in the upper-right region
of the figure: ↔ ↔ ↔ ↔ ↔ ↔

 ↔ ↔ .
Let us trace through this sequence verbally.

Suppose we are given an initial logical state that, at
first, has energy that is greater () than or equal to
() the desired new state, located to the right of
the current state, which is denoted with a dot. We
start by arranging for the energy of the initial state
to be biased to a point lower than the desired new
state (). Then we lower the barrier between the
two states; now there is just a monotonic energy
slope between them (). We now gradually slide
the minimum-energy point to the right (→ →

), and the logical state follows (while always
remaining at a local energy minimum) until the
logical state is in the correct configuration. Then,
the barrier is raised (), and, if desired, the state’s
energy can be boosted to some new default level,
which may be either equal to () or greater than
() the energy of old state. Then, the process can
be repeated along some other path joining the new
logical state to the next one after it in the desired
computational sequence. Every step in this process
merely involves energy transfer between the device
that is storing the logical state in question, and
some other device that is raising and lowering the
energies at various points in the energy surface; the
energy transferred need not be dissipated. Every
step in this process, if performed slowly relative to
the maximum transition speeds in the system, is
guaranteed by the quantum adiabatic theorem to
have an energy efficiency that can be made as large
as desired.

Logical transition processes that can never be a-
diabatic, and that must therefore be mostly avoided
in an energy-efficient design, include: (1) The
lowering of an energy barrier that is preventing a
higher-energy state from directly falling to a lower
energy one, i.e., the processes → and →

. This dissipates an amount of energy equal to
the energy difference between the two states. Also
forbidden is (2) the lowering of an energy barrier
that distinguishes a known state from its neighbor
when the two states have equal energy, i.e., →

 or → . Such a process loses 1 bit’s worth
of known logical information, and thus converts

that bit into the form of k ln 2 amount of new
entropy in the environment.

Conventional logic gates and memory cells per-
form the forbidden process (1) ubiquitously, for
example, by turning on a transistor, which removes
the potential energy barrier that prevents electrons
on a high-voltage node from falling to a low-volt-
age node on the other side.

In adiabatic logic using transistors, we must
never turn on a transistor when there is a signifi-
cant voltage difference between its source and
drain terminals.

General-purpose pipelined, sequential logic is
still possible despite this constraint, and circuits as
complex as complete microprocessors have been
designed using this style. However, transistors do
not have a particularly small value of their
adiabatic energy coefficient or energy-time con-
stant: this is the product cEt = Edissttr of the energy
dissipated Ediss in a given logic transition, and the
time ttr taken to perform that transition. For the
adiabatic transfer of charge Q through resistance R,
we have an energy coefficient of cEt = Q2R.

The energy-time constant is a particularly im-
portant figure of demerit for a device technology.
The smaller the value of this constant is for a given
device, the smaller is the number of those devices
that will required to achieve a given level of per-
formance within fixed power dissipation con-
straints. Intuitively, this is because a smaller value
of this constant means that each device can run
faster at a given level of power dissipation.

Analytically, given that c = Et (suppressing the
subscripts), and that the performance of the device
(transitions per unit time) is G = 1/t, and that the
device’s power dissipation is P = E/t, solving for G
in terms of c and P yields G = (P/c)1/2. Thus, as the
adiabatic energy coefficient decreases, and the
allowable power P per-device remains fixed, the
performance G of the device increases with c−1/2.

Alternatively, if we have system-level power
and performance requirements Ptot = nP and Gtot =
nG, in a system consisting of n devices of energy
coefficient c, then solving for n gives the relation
n = cGtot

2/Ptot, or in other words, the number of de-
vices required to simultaneously meet system-level
power and performance constraints goes up linear-
ly with c, and quadratically with performance! So,
to scale up system-level performance by a given
factor given a fixed number of devices n and a
fixed power constraint Ptot requires a quadratically
reduced value of c, given by nPtot/Gtot

2. So, a cru-
cial requirement for energy-efficient computing is
to find alternative devices with a very low energy
coefficient c, which requires low resistance in the

case of adiabatic transfer of a fixed charge.
Superconductive devices seem very promising.

5.5. Synchronization mechanisms

Any computing scheme requires some mech-
anism for synchronization, to ensure that the inputs
to some step in the calculation are available before
the calculation is performed. The need for energy
efficiency turns out to impose stringent require-
ments on synchronization mechanisms.

Essentially, the machine must be precisely engi-
neered so that the delays along every calculational
path are accurately known and predictable, and the
expected arrival time of those signals must be built
into the design of the components receiving those
signals. This is because the accumulation of un-
certainty in timing information is itself a form of
entropy, and so it must be avoided in an energeti-
cally efficient machine.

Thermodynamically reversible asynchronous
(self-timed) logic is likely to be impossible. Con-
sider an element that is designed to wait until two
input signals have both arrived, and then perform
an operation. The information contained in the ar-
rival time of the first input has nowhere to go, since
the device is not supposed to respond at that time
yet! The timing information contained in the first
signal can therefore only be dissipated as entropy.

Thus, energy-efficient machines must be care-
fully, thoroughly clocked and controlled, and de-
lays along all signal paths must be carefully
matched. The normal scheme of driving adiabatic
transistions using periodic oscillations of a power-
clock resonator is one way to ensure that all logic
remains synchronous.

5.6. Logic gates

A reversible logic gate is a device that can per-
form a logically reversible operation on the logical
state of the subsystems accessed by that gate, and
that (for energy efficiency) can do this in a nearly
thermodynamically reversible fashion. As we said
earlier, a logically reversible operation carries the
set of possible “before” states one-to-one onto the
set of possible “after” states.

Contrary to widespread misleading claims in the
reversible computing literature, it is not necessary
that (1) the gate hardware can perform only one
operation, (2) we divide the subsystems accessed
by the gate into fixed “input” and “output” signals,
(3) we require the number of output signals to be
equal to the number of input signals, (4) that the
input signals must be consumed, (5) that the truth
table of a gate with n input bits contain an output

column that is a permutation of all 2n input cases.
In fact, all of these conditions only apply to special
restricted families of reversible gates.

More generally, a reversible logic gate (1) can
perform any of several operations, depending on
the control signals applied to it, (2) it can access
signals differently in the course of carrying out dif-
ferent operations (sometimes it can ignore a signal
and use it as neither an input or an output, and
sometimes it can use a signal as both an input and
an output), (3) the number of signals modified
(outputs) does not have to have any particular rela-
tionship to the number of signals measured (in-
puts), (4) the information present in the input sig-
nals need not be consumed, but may remain present
on the input feeds after the operation is completed,
and (5) the operation need not permute 1-to-1 all
“before” cases, but only the subset consisting of
those that will actually arise in the context of a par-
ticular design. Also, “gates” may, in general,
contain some internal state information.

Thus, the design of reversible logic gates is ac-
tually much less tightly constrained than most of
the reversible computing literature would have you
believe. As a result, the literature is replete with
sub-optimal hardware designs based on people
taking the traditionally stated constraints too
seriously, and failing to “think outside the box” and
figure out the true requirement for reversibility.

The true requirement that must be imposed on
the logical functionality of a reversible logic gate is
simply this: that for each distinct operation that the
gate can be directed to perform, no two initial log-
ical states (local states of the device and the signals
it accesses) that can possibly arise in the normal
course of the machine’s operation (given its
design) can be transformed to the same final state.

Here are some examples of reversible logic
operations that you won’t find described in most
reversible computing literature, but that are actual-
ly some of the easiest reversible logic operations to
implement in practice:

rSET(x) – Reversible SET. Given the precon-
dition that signal x is initially logic 0, change it to
1. This is conditionally reversible (on the condi-
tion that the precondition is satisfied). It can be
implemented very easily in a way that is thermody-
namically reversible when this condition is met.
For example, in the energy-barrier picture, a con-
trol sequence that carries out the steps → →

 → implements rSET; a gate supporting rSET
can be implemented with just two transistors in
standard CMOS technology.

rCLR(x) – Reversible CLEAR. Given the pre-
condition that signal x is initially 1, change it to 0.
Conditionally reversible. Can be implemented as

simply the time-reversal of rSET. One can build
reversible storage elements out of gates that
support just rSET and rCLR operations.

crSET(c, d) – Conditional reversible SET.
Given the prediction that the initial state is not c =
d = 1; if c = 1, perform rSET(d), else leave d un-
changed. Conditionally reversible. crSET can be
implemented in adiabatic CMOS using just two
transistors, by a manipulation that performs either
the sequence → → (d unchanged) or →
→ (d taken from 0→1) on the output node d,
conditionally on the input signal (which sets the
barrier height).

crCLR(c, d) – Conditional reversible CLEAR.
Given the prediction that the initial state is not c =
1, d = 0; if c = 1, perform rCLR(d), else, leave d
unchanged. Conditionally reversible. Can be im-
plemented in a way that mirrors crSET.

Gates that can perform just crSET and crCLR
operations are easy to implement in CMOS and in
many other technologies, and they are universal;
they can be composed together into networks that
reversibly implement any arbitrary combinational
and sequential reversible logic! (Unfortunately,
nearly all of the reversible computing literature ig-
nores this very useful fact.)

rCOPY(s, d) – Reversible COPY. Given that
initially d = 0, set d := s. Can be implemented in
CMOS using four transistors, essentially by operat-
ing a crSET and crCLR in parallel, with the crSET
controlled by s and crCLR controlled by ¬s.

un-rCOPY(x,y) – Given that initially y = x, set
y = 0. Can be implemented as the time-reversal of
rCOPY within the same gate hardware.

rMOVE(x,y) – Given that y = 0, set y = x and
set x = 0. Can be implemented by the operation se-
quence rCOPY(x,y), un-rCOPY(y, x).

SWAP(x,y) – Swap x and y. Can be implement-
ed given an internal signal t that is initially 0, by
the operation sequence rMOVE(y,t), rMOVE(x,y),
rMOVE(t,x).

Here are the reversible operations that are most
frequently seen in the reversible computing litera-
ture, although they are usually misnamed as
“gates.” But they are really just operations.

NOT(x) – Toggle the logic value of signal x.
This is often conceived as a gate having two sig-
nals x and y, where x is the input, y is the output, x
is consumed, and y is produced. However, that is a
more complex conception than necessary. The op-
eration performed by such a gate would be more
fully described as CONSUMING-NOT(x,y), which
(on the precondition that y is initially a null value),
sets y to the logical inverse of x, and then nulls x.
But, the NOT(x) operation itself, strictly speaking,
just flips the value of a single signal in-place.

Notice the above NOT(x) operation is distinct
from an ordinary NOT gate or inverter, as it exists
in conventional hardware today. The operation of
an inverter would be best described as INVERT(x,
y), which irreversibly overwrites y with the logical
inverse of x, while leaving x itself unchanged. This
operation is logically irreversible. Often you see
the statement, “NOT is logically reversible,” but
this is misleading, since normally today NOT is
implemented using the INVERT(x,y) operation,
which is logically irreversible in its semantics.

cNOT(x, y) – Conditional NOT. Set y := x⊕y,
where ⊕ denotes the Boolean exclusive-OR opera-
tor. Again, this is often misconstrued to mean that
there must actually be four signals xin, yin, xout, yout,
with the semantics being that xin and yin are con-
sumed and xout and yout are produced. But again,
this is more complex than necessary; instead a sin-
gle signal y can be manipulated in place and used
for both input and output, while x is a single signal
used for input which is unmodified. Unfortunately,
cNOT is not simple to implement in most technolo-
gies, so it is actually not a very good primitive ope-
ration for reversible logic in practice.

ccNOT(x, y, z) – Set z := xy⊕z, where xy is the
Boolean AND of x and y. This is also called the
“Toffoli gate” after its inventor [13]. Like cNOT,
it is not easy to implement. However, it is widely
discussed, since it is tied for simplest universal gate
that is fully (as opposed to conditionally) reversi-
ble. (However, crSET and crCLR together are uni-
versal, they are easy to implement, and the condi-
tionality of their reversibility does not preclude us
from building thermodynamically reversible de-
signs out of them.) Like NOT and cNOT, ccNOT
is frequently misconstrued to require 3 consumed
input signals and 3 separate output signals, when
all that is really required are 3 total signals, where z
is an in-out signal that is modified in-place, and the
others are used as inputs only.

cSWAP(x,y,z) – Conditional SWAP. Swap y
and z, if x = 1. This is also called the Fredkin gate
after its inventor [13]. It is universal. Like the pre-
vious operations, in can be implemented by manip-
ulation of two signals conditioned on a third, rather
than by consuming 3 input signals and producing a
separate output signal.

Multi-valued logics. Some (but not all) reversi-
ble logic schemes utilize three logic values, name-
ly, 0, 1, and a third value “N” meaning “null” or
“no information.” The N state turns out to be use-
ful because of the behavior of CMOS transistors.
These schemes actually provide some of the sim-
plest known transistor-based implementations of
reversible logic [12]. For example, in 3-valued

logic, the following operations can both be imple-
mented in a single gate using just two transistors:

rINVERT(x,y) – Reversibly invert. Given the
precondition that y is initially N, set y := ¬ x. Con-
ditionally reversible. Implemented similarly to a
simultaneous crSET and crCLR.

un-rINVERT(x,y) – Undo reversible inversion.
Given the precondition that y = ¬x, set y := N. Im-
plemented as the time-reversal of rINVERT(x, y).

And, using only five transistors, we can con-
struct a gate that implements both:

rAND(x,y,z) – Reversible AND. Given the pre-
condition that z = N, set z := xy. Conditionally re-
versible.

un-rAND(x,y,z) – Undo reversible AND. Giv-
en the precondition that z = xy, set z := N. Condi-
tionally reversible.

rAND and de-rAND, together with some simple
latches, are universal for reversible logic. And, we
can similarly implement 5-transistor reversible OR
and un-OR.

Logic design using gates such as rINVERT,
rAND, rOR, and their time-reversed versions is
very similar to design using conventional logic,
and is fairly efficient in terms of the number of
transistors required.

5.7. Functional unit designs

Once one has a good library of primitive rev-
ersible logic gates, the design of higher-level func-
tional units (such as registers, adders, decoders,
multiplexers, etc.) is fairly straightforward and not
too dissimilar from conventional logic design.
However, we must keep in mind that we cannot
just erase or overwrite information without suffer-
ing a thermodynamic penalty; rather, we must de-
sign our hardware algorithms to always just revers-
ibly transform information in-place, using only the
reversible operations such as rSET, rCLR, rCOPY
and un-rCOPY, SWAP, NOT, rAND and un-
rAND, cNOT, ccNOT, cSWAP, etc. For opera-
tions that are only conditionally reversible, we
must be sure that their preconditions are met.

Generally, some complexity overhead is re-
quired in reversible designs in order to avoid infor-
mation erasure. The usual strategy is use some ini-
tial information A to compute some needed inter-
mediate information B, use B for some required
purpose (such as computing further results C), and
then “un-compute” or “de-compute” the intermedi-
ate information B in order to free up the space that
it occupies, once it is no longer needed, so it can be
reused to hold some new data. In order to decom-
pute B reversibly, we have to be able to reconstruct
what it is. One way that we can always do this, if

the data A is still around, is to simply perform the
time-reverse of the sequence of reversible steps by
which B was computed from A to begin with.
However, this approach requires us to keep A
around until we are finished decomputing B, or to
re-compute A from some previous information
when it is needed to decompute B.

Another way to decompute B that is often more
efficient when it is possible is to decompute B
based on the information C that was subsequently
derived from it. For this to work, C has to imply
complete knowledge of B, that is, the Boolean
function f that was used to compute C from B orig-
inally, C = f(B), must be an invertible function. If
it is, then we can reconstruct B using B = f−1(C),
and thus we can decompute B by performing the
time-reversal of this means of calculating B. The
advantage of this approach is that A can be decom-
puted before B is and does not need to be recompu-
ted; this can end up saving us a lot of space and/or
time in long computations.

However, this approach is sometimes intractable
even when it is possible in principle. For example,
suppose B consists of a pair of large prime num-
bers p, q with p ≤ q, and suppose C = f(B) = f(p, q)
= pq, the product of p and q. In principle, p and q
are uniquely determined by their product pq, and so
the function f is actually invertible (given the con-
straint that p ≤ q). However, it is not known to be
tractable to invert this particular function f, unless
we have a quantum computer, since there is no
known fast classical algorithm for factoring.
Therefore, although decomputing B from C is pos-
sible in principle in this case, it cannot be done ef-
ficiently without a quantum computer (as far as we
know). We note f is an example of what is known
as a trapdoor or one-way function, an easy-to-com-
pute function that, although it is invertible in princ-
iple, is not known to have an efficient algorithm for
computing its inverse. Although it has never been
proven that any one-way functions actually exist,
many functions (such as the f above) are widely
conjectured to be one-way.

The problem of iterating a one-way function is
conjectured to be a problem for which reversible
algorithms have strictly greater spacetime com-
plexity (number of “device-cycles” occupied) than
irreversible algorithms [14].

Because of the complexity overheads of reversi-
ble logic in cases such as this, the most cost-effici-
ent hardware designs in practice in many cases will
be hardware that is not fully reversible, but only re-
versible to a limited extent, determined by the level
of energy efficiency we are trying to achieve. In
general, we must perform a systems-engineering
optimization over the design parameters (such as

was done in [15]) in order to find the solution that
is overall most cost-efficient. However, as energy
coefficients and device costs decrease, the optimal
designs will be reversible to greater and greater de-
grees (approaching ever closer to 100%). This is
true despite the algorithmic overheads of highly
reversible design.

5.8. Processor architectures

In the near term, there will be little advantage to
be gained from applying reversible logic above the
level of the design of small functional units. But,
as our desired level of energy efficiency becomes
ever closer to 100% (for ever-greater performance
within fixed power constraints), designs will have
to be made reversible throughout larger and larger
blocks of computational work, up to the level of
even complete CPU cores. Eventually, there will
even be a need for the programmable architecture
itself to reflect the underlying reversibility of the
logic. This is because the algorithmic overheads of
reversible computing imply that we cannot expect
the machine or the compiler to automatically find a
good reversible algorithm for implementing a com-
putation that the programmer has specified in a
non-reversible fashion. In general, the most effi-
cient reversible algorithm for performing a given
task may be structured very differently from the
most efficient irreversible algorithm for performing
the same task [6].

Thus, microprocessor and DSP instruction set
architectures and FPGA architectures will eventu-
ally need to change to allow the programmer to
specify his software and hardware algorithms dir-
ectly in terms of underlying reversible primitives.
A number of designs for reversible instruction-set
architectures already exist (e.g., 16), which include
instruction-set level analogs of reversible logic
gates, and special reversible branch instructions to
enable reversible control flow. Other than that,
these instruction sets are fairly ordinary. Many
common instructions (such as one-operand NEG
and two-operand ADD) are already logically rever-
sible. Others can be replaced with reversible vari-
ants.

5.9. Design languages

By the phrase “design languages” I mean to
include both hardware description languages (such
as VHDL and Verilog) and high-level software
programming languages (such as C and Fortran),
since both types of languages can be used to de-
scribe Turing-complete computational algorithms.

For the reasons described in the previous sec-
tion, design languages will eventually need to
adapt to allow programmers to craft reversible alg-
orithms directly in terms of reversible language
primitives. Purely automatic substitution of revers-
ible constructs for irreversible ones will in general
lead to sub-optimal efficiency. A few high-level
reversible programming languages exist (see [6]),
and I have recently begun working on the design of
a reversible hardware description language. How-
ever, these languages are not yet very sophistica-
ted, and as well their development is somewhat
premature, given that we are still quite a long way
away from having a high-quality reversible device
technology that would create significant demand
for such languages.

For the most part, reversible languages can look
fairly conventional, but there are some differences:

(1.) Assignment to variables is deprecated, in
favor of binding and operations like +=.

(2.) Control-flow constructs are time-symmetric.
(3.) Subroutines can be called in reverse!
(4.) Automatic garbage collection is deprecated,

because it necessarily creates entropy.

5.10. Application algorithms

Finally, once the need for something like
99.9999999% energy efficiency has (probably
many decades from now) forced us to migrate to
“reversibility-aware” computer architectures and
design languages, we (that is, programmers and
special-purpose hardware designers, as well as
mathematical algorithmicists) will have to get
accustomed to crafting our high-level application
algorithms (or at least, their most power-hungry
portions) in terms of the reversible paradigm. Re-
versible algorithm design is not particularly diffi-
cult, and one can always fall back on applying
known general transforms that map arbitrary irrev-
ersible algorithms to equivalent reversible ones.
But reversible design will be initially unfamiliar to
most computer engineers and programmers, who,
ever since the days of Ada Lovelace, have trained
themselves to think in terms of primitive operations
that are logically irreversible. However, I am con-
fident that as soon as reversible design actually be-
comes demonstrably useful for dramatically im-
proving computer energy efficiency and applica-
tion performance, designers (at least of high-end
applications) will rapidly proceed to learn and
adopt it.

6. Conclusion

Computer performance, at realistic levels of
power consumption, is fundamentally limited by
the energy efficiency of the low-level operations
within the machine. The magnitude of signal ener-
gies is soon reaching firm thermodynamic limits,
but what is not so widely recognized is that the
magnitude of signal energy itself does not mean
that this energy must necessarily be dissipated
when performing operations. Instead, we can in
principle recover and reuse a fraction of the signal
energy that, as far as we know, can be made to
approach 100% as closely as we like, given suffi-
ciently aggressive engineering. This, in turn, can
theoretically enable computers to run as fast as we
like (in terms of overall parallel performance) at a
given level of power dissipation, with total perfor-
mance being fundamentally limited only by the to-
tal amount of energy that we invest in our comput-
ing mechanisms. As far as we know, approaching
the physical limits of computing ultimately means
just (1) harnessing larger and larger total quantities
of energy in the service of computing, and (2) us-
ing that energy with greater and greater efficiency,
so that waste heat still remains manageable.

However, we have seen in this document that
increasing the energy efficiency of computers to
values close to 100% is actually quite a challenging
proposition, requiring us to break new ground in
high-precision engineering of the machine at every
level, from how we model its nanoscale physics to
the way we organize and clock the logic, and to
how we structure our algorithms. As of today,
electrical engineers have not even yet attained the
level of energy efficiency that would be needed to
circumvent the eV-scale reliability barrier on signal
energies and bring dissipation close to the room-
temperature kT level where reversible logic would
be required for further progress. And, sub-kT com-
puting with reversible logic itself requires incredib-
ly precise modeling, manufacturing, characteriza-
tion, and control of devices and clocking systems,
long before we get to the point where reversible
logic design and programming starts to begin to
become very helpful.

So given all this, why should we study rever-
sible computing? Why not instead just give up on
it, and resign ourselves to the conventional logic
paradigm, and just tackle the conventional goal of
reducing dissipation per op (and increasing per-
formance-per-power) by a factor of 10,000 or so,
from today’s ~fJ/op levels down to the neighbor-
hood of 1 eV? In principle, none of the complex
set of requirements discussed in the previous sec-
tion are required to reach this level.

Well, this is a good point, but there are three
main reasons why I think that we should at least
not forget about reversible computing, and ideally
devote a reasonable amount of resources to its
study even today, enough to keep the field alive.

(1) Research into reversible computing, if it yields

demonstrated successful systems, offers the
possibility of jumping ahead of the technology
curve that we are on today, and achieving
higher levels of performance even sooner than
the 20-year timeline on which conventional
technology must stall.

(2) Twenty years is, after all, not so far away, and

we will find ourselves there before we know it.
If, in the meantime, reversible computing re-
search hasn’t been pursued aggressively, then
solutions won’t be available and computer per-
formance will definitely stall. This could even
happen much sooner than we think, in 10 years
or perhaps sooner, if technical difficulties in
scaling the conventional approach prevent us
from getting all the way down to the 1 eV/op
dissipation level. If computer technology
stalls, and we become used to a state of stagna-
tion rather than progress, then it may take a
long time to restart the engine of technological
innovation. In contrast, if reversible technolo-
gies are ready to be put into place by around
20 years from now, then the trend of progress
in computer performance will experience bare-
ly a bump, and will continue indefinitely far
onwards into the future. This would be a boon
for the high-tech economy, and for the world
overall.

(3) Finally, I think it is really important that we

don’t completely drop reversible computing
and forget about it, however challenging and
difficult it may be. In fact, remembering and
pursuing reversible computing may be the
most important thing that we can possibly do.
This is because in the long run, it may literally
have infinite value, in the sense that it may
make the difference between a finite and an in-
finite future for our entire civilization, or more
generally, for all life in the universe!

This last claim needs some elaboration. Noted

astrophysicists Krass and Starkman [17] have ar-
gued that, even if our civilization someday coloni-
zes distant stars, the total amount of energy that we
can harvest in the universe (before the rest expands
to be forever beyond our reach) is finite. Even the
maximum entropy of the entire observable universe

itself is finite if (as present observations suggest)
Einstein’s cosmological constant has a fixed non-
zero value. Therefore, if there is any fixed lower
bound greater than zero on the energy dissipated or
entropy generated by a computational operation,
then our civilization (and all life) will necessarily
eventually run out of free energy (entropy will
reach a maximum) and all interesting activity will
then cease. All civilization and life will only have
performed a finite number of organized operations
that could be construed as “thoughts” or “computa-
tions.”

But, in contrast, suppose that Landauer and
Bennett are correct, and there really is no lower
limit on entropy generation per operation. Then,
suppose that sometime before half of our available
energy is used up, we figure out how to use the re-
maining half twice as efficiently as before (that is,
with half the entropy increase per operation).
Then, before half of the remaining half is used up,
we figure out how to use the rest twice as efficient-
ly again. And so on. With each half of the remain-
ing energy, we accomplish an equal number of
computational operations. Thus in principle, we
(or our postulated machine “descendants”) could
perform literally an infinite number of computa-
tional operations (i.e., have an “infinite number of
thoughts”) using only a finite supply of energy.

Reversible computing is, in fact, the one and on-
ly possible way to “save the universe” from
doomsday scenarios like Krauss and Starkman’s
that is both (1) consistent with known fundamental
physics, and (2) doesn’t depend on the existence of
improbable new hypothetical phenomena such as
wormholes to other universes, etc. Fundamentally,
this plan only depends on our ability to model the
laws of physics ever more precisely over time, and
to isolate subsystems from the unknown external
environment more and more thoroughly, neither of
which seems particularly implausible. But, this
kind of plan can only work if we (1) achieve highly
efficient reversible computing, and (2) make it
more and more energy-efficient over time.

And further, to be a bit more down-to-earth, if
one can judge by the price of gas these days, and
by the declining rate of world oil production, we
might face an energy shortage within the next few
decades, and not necessarily only billions of years
from now. As world oil supplies dwindle, it might
be smart for us to have a viable research program
aimed at continuing to improve our computational
capabilities without suffering proportional increas-
es in the rate at which we use up our limited supply
of fossil fuels, and other finite energy sources.

Therefore, it just might be a very wise idea for
us to seriously get started on reversible computing

research today, and try to figure out exactly how to
engineer the new nanodevices, clocking systems,
and architectures that are required by this one and
only possible way to circumvent the limits of the
conventional digital logic paradigm, and produce
computers that are ever more energy-efficient, so
that we can approach the true fundamental limits of
computing, however far away they may be.

For all we know today, the ultimate fundamental
limits of computing may only be the cosmological
ones that will be met in a distant future, billions of
years hence, after we have (potentially) converted
all visible galaxies into a single, giant 99.999(lots
more 9’s)% reversible supercomputer, running
some sort of enormous virtual “Matrix” for our up-
loaded minds to work and play in virtually forever,
until eventually we run out of new states to
explore, new things to do, new thoughts to think.

Although this picture is only a fantasy today, we
cannot know whether such a future is scientifically
possible unless we work seriously to try to achieve
it, and we aren’t going to come anywhere close to
achieving anything like this unless we seriously
and aggressively pursue the technological possibili-
ties that reversible computing offers us.

Which future will it be? Overheated computers,
technological stagnation, and possible economic
decline? Or, ever more energy-efficient, cool-run-
ning, ballistic reversible computers, leading to a lit-
erally unbounded possible future of growth and
prosperity? The answer may depend on what fields
we researchers choose to devote our skills and
efforts to today.

I implore my audience: Study physics. Help in-
vent new kinds of nanodevices with high adiabatic
energy coefficients. Design, build, and empirically
test high-quality ballistic oscillators, interacting
with quasi-static logical states, driving adiabatic
transitions between them. Systematically find and
eliminate sources of dissipation in your prototypes,
one by one. Extend your designs to larger and
larger scales of complexity, with larger and larger
logic blocks ever more tightly and precisely
synchronized. Design fully-reversible architec-
tures, languages, and algorithms.

It is only through intense efforts roughly along
these lines that we can possibly avoid approaching
firm limits on the raw, low-level energy efficiency
of computers within our lifetimes. And, if we do
not create reversible computing ourselves, there is
no guarantee that someone else will do it for us.
Since high-quality reversible computing is so dif-
ficult to achieve at the lowest level of devices and
oscillators, many researchers who have studied the
field in the past have abandoned it, to turn to easier
pursuits. Many have tried to justify this choice by

dismissing reversible computing as impossible, but
no logically valid justification for this impossibility
claim has ever been offered. But if people contin-
ue giving up on reversible computing too easily,
we’ll never know if it can be done.

It is only by letting ourselves admit the physical
possibility of reversible computing, while bravely
and persistently tackling the difficult physics and
engineering challenges associated with realizing it
in practice, that we may hope to achieve significant
progress in computer performance beyond the next
decade or two. I urge all readers of this paper to
take upon themselves some small part of the res-
ponsibility for helping to meet this great 21st-
century engineering challenge, to open up grand,
unbounded new vistas for the future of computing.

References

[1] Gordon E. Moore, “Cramming more
components onto integrated circuits,” Electronics,
April 19, 1965, pp. 114-117.

[2] G. E. Moore, “Progress in digital integrated
electronics,” Technical Digest 1975 International
Electron Devices Meeting, IEEE, 1975, pp. 11-13.

[3] D. J. Frank, “Power constrained CMOS
scaling limits,” IBM J. Res. Dev., 46, 2/3, 2002, pp.
235-244.

[4] R. Landauer, “Irreversibility and heat
generation in the computing process,” IBM J. Res.
Dev., 5, 1961, pp. 183-191.

[5] C. H. Bennett, “Logical reversibility of
computation,” IBM J. Res. Dev., 17, 6, 1973, pp.
525-532.

[6] M. P. Frank, Reversibility for Efficient
Computing, Ph.D. thesis, Massachusetts Institute of
Technology, 1999.

[7] J. L. Hennessy, D. A. Patterson, and D.
Goldberg, Computer Architecture: A Quantitative
Approach, 3rd ed., Morgan-Kaufmann, 2002.

[8] D. Deutsch, The Fabric of Reality, Penguin
Books, 1998.

[9] M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information,
Cambridge, 2000.

[10] N. H. Margolus and L. B. Levitin, “The
maximum speed of dynamical evolution,” Physica
D, 120, 1998, pp. 188-195.

[11] V. Anantharam, M. He, K. Natarajan, H. Xie,
and M. P. Frank, “Driving fully-adiabatic logic
circuits using custom high-Q MEMS resonators,”
in Proc. Int. Conf. on Embedded Systems &
Applications, CSREA, 2004, pp. 5-11.

[12] S. G. Younis and T. F. Knight, Jr.,
“Asymptotically zero energy split-level charge
recovery logic,” in Int. Wkshp. on Low Power
Design, 1994, pp. 177-182.

[13] E. F. Fredkin and T. Toffoli, “Conservative
logic,” Int. J. Theo. Phys., 21, 3/4, 1982, pp. 219-
253.

[14] M. P. Frank and M. J. Ammer, “Relativized
Separation of Reversible and Irreversible Space-
Time Complexity Classes,” manuscript submitted
to Information and Computation, May 2001.

[15] M. P. Frank, “Nanocomputer systems
engineering,” in Nanotech 2003: Tech. Proc. of the
2003 Nanotechnology Conf. and Trade Show, vol.
2, Computational Publications, 2003, 182-185.

[16] C. Vieri, Reversible Computer Engineering
and Architecture, Ph.D. thesis, Massachusetts
Institute of Technology, 1999.

[17] L. Krauss and G. Starkman, “Life, The
Universe and Nothing: Life and Death in an Ever
Expanding Universe,” Astrophysical Journal, 531,
2000, p. 22.

