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Abstract

We define the indefinite logarithm [log x] of a real number x > 0 to be
a mathematical object representing the abstract concept of the logarithm
of x with an indeterminate base (i.e., not specifically e, 10, 2, or any fixed
number). The resulting indefinite logarithmic quantities naturally play a
mathematical role that is closely analogous to that of dimensional physi-
cal quantities (such as length) in that, although these quantities have no
definite interpretation as ordinary numbers, nevertheless the ratio of two
of these entities is naturally well-defined as a specific, ordinary number,
just like the ratio of two lengths. As a result, indefinite logarithm objects
can serve as the basis for logarithmic spaces, which are natural systems
of logarithmic units suitable for measuring any quantity defined on a log-
arithmic scale. We illustrate how logarithmic units provide a convenient
language for explaining the complete conceptual unification of the dis-
parate systems of units that are presently used for a variety of quantities
that are conventionally considered distinct, such as, in particular, physical
entropy and information-theoretic entropy.

1 Introduction

The goal of this paper is to help clear up what is perceived to be a widespread
confusion that can found in many popular sources (websites, popular books, etc.)
regarding the proper mathematical status of a variety of physical quantities that
are conventionally defined on logarithmic scales.

As an example of a logarithmic quantity about which much confusion still
lingers, we focus on the quantity of thermodynamic entropy, and its close rela-
tionship to (and really, identity with) the concepts of entropy and information as
defined within the context of information theory. Although many physicists and
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information theorists have understood quite well the mathematical reasons for
the underlying unity between the entropy concepts in these two domains, many
others still do not, and continue to believe that the physical and information-
theoretic concepts of entropy are somehow fundamentally different from each
other.

Some (although not all) of the confusion that we have seen expressed in
this regard can be traced back to the historical accident that thermodynamic
entropy is most often measured in natural logarithm units, while information-
theoretic entropy is more frequently measured in units of the logarithm base
2 (i.e., in bits), or some multiple thereof. But of course, the choice of the
logarithm base in the definition of entropy is completely inessential, and amounts
merely to a choice of one’s unit of measurement, which went without saying in
Boltzmann’s era, and which Shannon himself pointed out in his seminal work
[1] on information theory.

Even further, the supposed distinction between the “physical” nature of
thermodynamic entropy (as measured in, say, Joules per Kelvin) and the al-
legedly more “mathematical” nature of information entropy (measured in bits)
can also be seen as a totally artificial distinction, one resulting from nothing
other than the fact that early thermodynamicists were not yet aware that phys-
ical entropy really is nothing other than a measurable manifestation of what is
at root merely a purely mathematical, statistical quantity.

In fact, as we will review, any given unit of physical entropy can be exactly
identified with a corresponding (purely abstract) mathematical unit, while still
remaining consistent with all observed empirical data. The fundamental scien-
tific principle of adopting the most parsimonious theory that explains the data
(a.k.a. Ockham’s razor) then demands that as good scientists we must indeed
adopt this identification between the physical and mathematical domains, and
take it seriously as holding the status of our best available model of reality, at
least until empirical evidence to the contrary is found.

Although these issues are already quite well understood in certain circles,
we nevertheless felt that, as a public service, it would be worthwhile to compose
a short paper that elaborates on the mathematical foundations of these issues
in some detail. Two fundamental mathematical concepts which I have to be
found rather useful in explaining these kinds of issues are concepts that I refer
to as the “indefinite logarithm” and “logarithmic units.” The definition and
discussion of these concepts will form the main mathematical core of this paper.

Although this material seems to be already essentially common (or intu-
itively obvious) knowledge among many of the leading researchers who deal ev-
ery day with the physics of information, I have found in my experience that mis-
understandings and confusion regarding these issues nevertheless still abound
in other communities.

The reader should please note that, since this material seems to hold the
status of being considered obvious or common knowledge in certain circles, this
paper is by no means intended to claim any kind of intellectual priority on these
issues. Rather, it is being written simply because the author is not presently
aware of an accessible reference on this subject that explicitly explains these
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issues with a sufficient degree of pedagogical detail to satisfy general audiences.
The author welcomes comments and feedback from readers that may help

point the author at seminal references or review articles in the mathematical
literature that may elucidate these same issues, though quite possibly using
different terminology.

2 The Indefinite Logarithm

We use the standard notation logb a for the logarithm, base b, of a. Of course,
this expression is well-defined for all real a, b > 0, and even for all complex
a, b 6= 0 as a multi-valued function. But, what if no particular base b is selected?

Of course, as a matter of notational convenience in mathematical literature,
log a is often defined to be simply a shorthand for the frequently-used natural
logarithm, ln a = loge a, or, in more everyday applied contexts, for the decimal-
based log10 a. But the topic of this paper is not situations such as these in
which some definite base really exists but is merely left implicit by the notation.
Rather, here we would like to discuss the concept of a ‘new’ kind of logarithm
function wherein no specific base is implied at all . We dub this the indefinite
logarithm, and we will give it a formal definition in a moment.

Of course, without a specific base, the result of the logarithm cannot be an
ordinary number, since any specific numeric result would imply some specific
base that must have been used. Instead, we can decare the output of the
indefinite logarithm to be a different (i.e., non-numeric) type of mathematical
object representing the result of performing this more abstract operation.

The form of this new type of object can be rigorously defined using standard
mathematical concepts. Of course, as with any type of mathematical object,
there is an infinite variety of ways in which we could satisfactorily represent
these new objects in terms of more standard mathematical objects. Here is the
representation that we find most convenient for purposes of this paper:

Definition 2.1 (Indefinite logarithm). For any given real number x > 0, the
indefinite logarithm L of x, written L = [log x], is a special type of mathematical
object called a “logarithmic quantity” object, which we define as follows:

L = [log x] :≡ λ(b > 0). logb x = {(b, y)|b > 0, y = logb x}. (1)

Here, :≡ denotes “is defined as,” and in the first expression after the :≡
we are using Church’s lambda-calculus notation for functions (see, for example,
[2]), which gives us a concise way of saying that the indefinite logarithm [log x]
for any given x is defined to be the unary function object L : R → R mapping
real numbers b > 0 to the logarithm y = logb x of the (given constant) x to the
(variable, function argument) base b. Meanwhile, on the right, we are merely
writing out the standard “graph representation” of this function object explicitly
as the set of all ordered pairs (b, y) consisting of a base b > 0, followed by the
ordinary (definite) logarithm y = logb x, of x to the base b.
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Clearly, the result of the indefinite logarithm, as defined above, does not
select any preferred base, yet it contains “all of the information” about the
logarithm of x taken to all possible bases. So, in this sense, it is not any less
descriptive than a definite logarithm.

Although the above definition is restricted to positive real numbers (since
this all that we need for our subsequent discussions), it could easily be extended
to non-zero complex numbers if desired.

We can define addition of indefinite logarithms by adding their corresponding
y values:

Definition 2.2 (Sum of indefinite logarithms). Given two indefinite log-
arithm objects L1 and L2, their sum L = L1 + L2 is defined by L(b) :≡
L1(b) + L2(b) for all b > 0. Or, stated a bit more formally using Lambda
calculus, L :≡ λb.L1(b) + L2(b).

We can similarly define negation of indefinite logarithms by simply negating
their y values:

Definition 2.3 (Negation of indefinite logarithms). Given an indefinite
logarithm object L, its negative L′ = −L is defined by L′(b) :≡ −L(b) for all
b > 0. Or, L′ :≡ λb.−L(b).

If we add any indefinite logarithm to its negation, or take the indefinite
logarithm of 1, we get a unique indefinite-logarithm object called the null or 0
indefinite logarithm, which returns 0 for all bases:

Definition 2.4 (Null indefinite logarithm). The indefinite logarithm of 1,
i.e. L0 = [log 1], is (by previous definitions) the function λb.0 over reals b > 0.
This L0 will be called the null indefinite logarithm and will sometimes be written
[0].

Of course, [0] is the identity element for the addition operation on natural
logarithms; that is, for any L, we have L + [0] = L.

Note that there is no corresponding concept of a unit indefinite logarithm,
i.e., a multiplicative identity. That is, indefinite logarithms are inherently scale-
free objects; that is, they are non-scalar quantities. Further, the space of in-
definite logarithms does not even need to be considered to be closed under
multiplication. A meaningful multiplication operation can be defined if a prod-
uct of two indefinite logarithms is considered to be a distinct type (similarly to
how the product of two lengths is an area), but we will not develop that here.

Consistently with all of the above definitions, and with the ordinary defi-
nition of multiplication as repeated addition, indefinite logarithms can also be
multiplied by arbitrary (positive, negative, or zero) real numbers:

Definition 2.5 (Indefinite logarithms multiplied by scalars). Given an
indefinite logarithm quantity L and real number r, define the product L′ =
rL = Lr of L times r by L′(b) :≡ r · L(b). That is, L′ = λb.rL(b).
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Finally, solving the preceding expression for r allows us to recognize and
define the result of the ratio of two indefinite logarithms as being an ordinary
number:

Definition 2.6 (Ratio of indefinite logarithms). Given two indefinite log-
arithms L1 and L2, their ratio r = L1/L2 is defined as the real number r :≡
L1(b)/L2(b), where b is any positive real number. (The value of r does not
depend on b.)

As an immediate consequence of the above definitions, the ratio of the indef-
inite logarithms of two numbers a and c is simply [log a]/[log c] = logc a, which
(note) is the same as the ratio logb a/ logb c of the definite logarithms of a and
c to any common base b. Thus, to emphasize, the ratio of two logarithms is
independent of what base we are working in, and thus remains well-defined even
for indefinite logarithms .

The above fact is important for our discussions in subsequent sections.
It is also worth noting that the indefinite logarithm shares all of the mathe-

matically important properties of the ordinary logarithm (aside from not being
a number), including the following useful identities:

• [log xy] = [log x] + [log y]

• [log x/y] = [log x] − [log y]

• [log xy ] = y[logx].

Finally, it is useful to also define an indefinite exponential function, which
maps a given indefinite logarithm object back to the unique real number of
which it is the indefinite logarithm.

Definition 2.7 (Indefinite exponential). For any indefinite logarithm object
L = [log x], let the indefinite exponential of L, written [expL], be given by simply
[expL] = x.

Another way to define [expL], which is helpful when we are not explicitly
given the x such that L = [log x], is simply to say that [expL] = bL(b), where
b > 0 is any positive real number; all such b give the same value for [exp L].

3 Logarithmic Quantities

In the above, we occasionally referred to the indefinite logarithm objects as
“quantities” in order to anticipate what we will now discuss, which is that in-
definite logarithmic quantities (which we defined as pure mathematical entities)
behave formally in a way that is exactly analogous to how dimensional physical
quantities (such as length, time, and mass) behave. Indeed, logarithmic quanti-
ties can be viewed as “natural” dimensional quantities that exist independently
of any particular models of physics.
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Even further, later we will argue that logarithmic quantities can be under-
stood as being the underlying essence behind certain quantities (in particular,
thermodynamic entropy and physical information) that are frequently perceived
as being “physical” rather than mathematical in nature. We will also argue that
the question of whether these quantities are “really” physical or mathematical
ones is an ill-posed one, being predicated on an entirely false dichotomy that
has no real meaning.

First, what do we mean by a quantity, in general? (Regardless, for now, of
whether it is supposed to be “mathematical” or “physical.”) For our purposes, a
quantity is an object selected from a set having a structure similar to that of the
real number system, but without any built-in unit, that is, with no pre-ordained
object to be designated “1.” In abstract algebra terms, a set of quantities forms
an (abstract) vector space over the reals, with a definite 0 quantity, an addition
operation, a negation operation, and the ability to multiply by reals, but without
a predefined unit quantity, and without necessarily any assigned meaning for a
product of quantities.

A bit more generally and formally, we can define:

Definition 3.1 (Quantity spaces). Given any field F (in the standard ab-
stract algebra [3] sense of “field,” i.e., a commutative division ring with unity),
a quantity space Q over F is simply a vector space over F , that is, an Abelian
group of objects to be called quantities , which is closed under the additional
operation of multiplication by the (scalar) elements of F .

Although quantity spaces, being vector spaces, may in general be many-
dimensional, in this article we will primarily work with examples of quantity
spaces that are only one-dimensional.

We can now define the concept of a logarithmic (quantity) space.

Definition 3.2 (Logarithmic spaces). A logarithmic space (or logarithmic
quantity space) is a quantity space Q over R in which each quantity q ∈ Q
is identified with an indefinite logarithm object L (as defined in the preceding
section), or with a series of indefinite logarithm objects, in the case of mul-
tidimensional logarithmic quantity spaces. The vector addition, negation, and
scalar multiplication operations are identified with the corresponding operations
on the indefinite logarithms. The null (0) vector comes from the null indefinite
logarithm.

Now, a logarithmic quantity q is simply a member of some logarithmic quan-
tity space Q. By a scalar logarithmic quantity or logarithmic scalar , we mean
a member of a one-dimensional logarithmic space. Members of n-dimensional
logarithmic quantity spaces will be called n-dimensional logarithmic quantities.

4 Logarithmic Units

Quantities in general (and logarithmic quantities in particular) have the prop-
erty that there is no natural, built-in unit quantity that is automatically pro-
vided by the quantity space itself. However, in any given quantity space Q, we

6



can always choose some arbitrary u ∈ Q to be designated as a provisional unit
quantity, and then all quantities in Q can be described in terms of scalar multi-
ples of that unit. (For elements of multidimensional quantity spaces, a series of
multiples is needed.) We may even have several different units u1, u2, . . . ∈ Q,
and express quantities sometimes as multiples of u1, sometimes as multiples of
u2, etc., and convert between expressions utilizing different units by multiplying
them by appropriate conversion factors.

Of course, we are already familiar with these properties of quantities from
their use in ordinary physics, in which (for example) spatial distances (and
multi-dimensional displacement vectors) are considered to be quantities, rather
than just pure numbers, and we can choose any number of units (meters, feet,
etc.) for expressing them. Space itself (in the traditional continuum description)
does not have any natural “unit length,” only arbitrary units that we chose by
convention.1 Other examples of commonly used physical quantities include time,
velocity, mass, and energy. (Of course, there are many others as well.)

Now, the primary observation of the previous section is that spaces of in-
definite logarithm objects (logarithmic spaces) provide exactly the structure of
quantity spaces; thus, we can represent all one-dimensional indefinite logarithm
objects as scalar multiples of some arbitrarily chosen “unit” indefinite logarithm
object. Indefinite logarithm objects thus naturally have the same mathematical
status, in this sense, as do physical quantities.

5 Logarithmic Scales

Logarithmic quantities and units, in one guise or another, are of course very
widely used today, for quantifying a wide variety of concepts in different fields
of study. Some examples include:

• Relative signal amplitudes or power levels, in physics and engineering.

• Earthquake strength (Richter scale) in seismology.

• Tonal intervals on a musical scale.

• Entropy (in, as we will see, both the thermodynamic and information-
theory senses).

• Information, in the information theory sense.

What is lacking presently, however, is the ubiquitous understanding that all
of these disparate types of quantities can be understood as dealing with what is
fundamentally the same underlying system of logarithmic units, as we defined
above. The various “different” logarithmic scales that are in use are really

1Emerging theories of quantum gravity suggest that the Planck length ℓP =
√

~G/c3 (or
some small multiple of it) may play the role of a “natural” unit length, in some sense which
is not yet fully understood. Nevertheless, we are still free, if we wish, to treat lengths as
quantities that can be represented in arbitrary units.

7



distinguished only by different choices of terminology for discussing logarithmic
quantities, different sizes and names of the logarithmic units used for expressing
them, and the application of these units in describing different domains of study.

To illustrate, let us now identify and name a variety of indefinite logarithm
objects that are popularly used as units in which logarithmic quantities of in-
terest are expressed in various fields. This list is ordered from the smallest
logarithmic unit to the largest, emphasizing that logarithmic units (like num-
bers) are comparable across domains.

• cent = [log 2]/1,200. In music theory, the cent is 1/100th of a minor
second, or 1/1,200th of an octave.

• m2 = [log 2]/12. In music theory, the minor second m2 is 100 cents or
1/12th of an octave.

• M2 = [log 2]/6. In music theory, the major second M2 is 200 cents or
1/6th of an octave.

• dB = 0.1[log 10]. The decibel. This is the smallest logarithmic unit in
widespread use outside music theory, usually for expressing the magnitude
of the ratio between signal strengths.

• b = [log 2]. In information theory, the binary digit or bit. This is the
smallest non-null logarithmic unit with an integer argument. In music
theory, the same logarithmic unit is called an octave P8.

• n = [log e]. The natural-log unit or nat. As we will explain in more detail
later, this mathematical unit can be exactly identified with the physical
unit kB known as Boltzmann’s constant. When used to express a ratio of
current or voltage levels, the nat is called a Neper or Np.

• Np = 2[log e]. The magnitude of the Neper of a ratio of currents or
voltages, when translated to a ratio of power levels. (It is doubled because
the power is the square of the current or voltage.)

• o = [log 8] = 3 b. The octal digit, which could be abbreviated oit (in
analogy with bit). It is equal to three bits. Used as an information unit
in computer engineering.

• d = [log 10]. The decimal digit, abbreviable as dit. In various contexts,
this unit is also known as Bel, power of ten, order of magnitude, Richter-
scale point, or decade.

• h = [log 16] = 4 b. In computer engineering, the hexadecimal digit is a
unit of information, which might be called a hit , but in practice, it is called
a nibble or nybble.

• B = [log 256] = 8 b = 2 h. The usual definition of a byte in computer
engineering; sometimes called an octet in network engineering.
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• kcal/mol/K ≈ 503.6 kB/molecule ≈ [log(4.9 × 10218)]/molecule. In chem-
istry, the kilocalorie per mole per degree Kelvin is a common intensive
unit of thermodynamic entropy, equivalent to about 503.6 kB (or nats or
Nepers) per molecule.

• kb = 1,000 b = [log 21000]. An information unit known as a kilobit in
telecommunications.

• kb = 1,024 b = [log 2210

]. An information unit called a kibibit, also known
as a kilobit in computer engineering.

• Multiplying the above definitions by 8 gives the standard definitions for
the kilobyte unit of information, in the telecommunication and computer-
engineering contexts respectively.

• Similarly for higher powers of 1,000 (or 1,024), with prefixes mega- (M),
giga- (G), tera- (T), peta- (P), exa- (E), zetta- (Z), and yotta- (Y).

• J/K ≈ 7.243× 1022kB ≈ 11 ZB ≈ [log 103.14558×1022

]. In thermodynamics,
the Joule per Kelvin is a common extensive unit of bulk thermodynamic
entropy. Converted into information units, it is about 11 zettabytes, mean-
ing 11 × 1,0247 B.

• kcal/K = 4186.8 J/K ≈ 3.03 × 1026kB ≈ 45.2 YB. In chemistry, the kilo-
calorie per degree Kelvin is a common extensive unit of bulk thermody-
namic entropy. In information units, it is about 45 yottabytes, meaning
45 × 1,0248 B.

Of course, one could systematically define and name still larger (or smaller)
logarithmic units by applying larger (or smaller) order-of-magnitude prefixes to
the above.

The point of this exercise is to emphasize that all of the supposed disparate
logarithmic scales that are in use in these various fields are ultimately all just dif-
ferent views of the same fundamental logarithmic scale. The various quantities
and units discussed on all of these logarithmic scales are all exactly comparable
with each other (with the exception of intensive units such as kcal/mol/K, which
are only comparable if specific quantity of material is chosen, e.g.1 molecule in
the above).

Among the logarithmic quantities that are in widespread use, perhaps the
quantity whose status as a logarithmic quantity is least widely appreciated in
some circles is the quantity known as thermodynamic entropy. Reviewing why
this “physical” quantity is indeed, at root, truly just a logarithmic quantity is
the subject of the next section.
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6 Logarithmic Units and Entropy

The original definition of the quantity known as entropy, first introduced by
Rudolph Clausius in the mid-1800s [4], was (in differential form)

dS = dQ/T (2)

where dQ represents an infinitesimal increment of heat energy added to or re-
moved from a system, and T is the temperature of the system. Although this is
only a differential definition, we can presume that a physical system has a prop-
erty called its total entropy S, changes of which correspond to the increments
dS. (However, the original definition did not specify the base value of S for any
particular cases.)

Clausius observed that in any thermodynamic process, the total entropy (as
he defined it) never decreased, since heat always moved spontaneously from
higher-temperature systems to lower-temperature ones, and never vice-versa.
He postulated that the principle of the non-decrease of entropy could be in-
troduced as a fundamental law of physics (“second law of thermodynamics”),
equivalent to the other (pre-existing) versions of the second law (impossibility
of perpetual motion machines, etc.).

Now, prima facie, Clausius’ entropy does not seem in any way to be a loga-
rithmic quantity. But, with the subsequent development of statistical mechanics
by Maxwell [5], Boltzmann (see [6]), and Gibbs [7] in the late 1800s, the ther-
modynamic entropy came to be understood as really being a statistical quantity
that is naturally defined on a logarithmic scale. The “Boltzman” form of the
definition of entropy (which evolved gradually from the H quantity originally
defined by Boltzmann in [8]) was expressed as

S = kB lnW, (3)

where W denoted the number of possible distinct microscopic ways of arranging
the system (consistently with its macroscopic description), and kB denoted a
fundamental entropy unit first used by Planck (according to [6]) which came to
be called Boltzmann’s constant , which had a value that (in conventional units
of heat over temperature) was found to be equal to about 1.38 × 10−23 J/K.

Now, the traditional stance as to the status of this equation, which is main-
tained today by many of the more traditional-minded thermodynamicists, is
that the entropy S is fundamentally a “physical” quantity, namely a ratio of
heat to temperature, and Boltzmann’s equation (3) predicts what the value of
this quantity will be as a multiple of the Boltzmann’s constant unit, where the
multiplier is the pure number obtained from lnW .

However, what is arguably the preferred (simpler and more modern) per-
spective on Boltzmann’s equation is that it is merely a way of rendering (in
traditional units) the more elegant and fundamental relation

S = [log W ], (4)

where now entropy is taken as being at root just an indefinite logarithmic quan-
tity, in the abstract sense that we outlined in the previous sections.
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The modern form (4) can be seen as being exactly equivalent to (3) if we
simply declare that

kB = [log e], (5)

since [log e] lnW = [log W ]. Note, in particular, that the choice of using [log e]
as the unit in the original equation (3) was a completely arbitrary one, and was
merely a consequence of the choice of using the base-e (“natural”) logarithm in
the formula. So, we could equally validly re-render eq. (3) in any of the following
ways:

S = kb log2 W (6)

S = ko log8 W (7)

S = kd log10 W, (8)

where kb = [log 2] = kB ln 2, ko = [log 8] = kB ln 8, and kd = [log 10] = kB ln 10
are respectively binary, octal, and decimal entropy units, corresponding to the
bases of the logarithms used. Of course, any of the other logarithmic units listed
in the previous section (and a continuum of other units as well) could also have
been used in Boltzmann’s relation, with a suitable choice of logarithm base.

Observe now that the relations kB = [log e] and kB ≈ 1.38 × 10−23 J/K
imply that 1 K ≈ 1.38 × 10−23 J/[log e], in other words, the Kelvin (or any
temperature unit) is fundamentally just an expression of an amount of energy
per logarithmic unit of some arbitrary size. Here it is expressed as energy per
nat or Neper, where this unit quantifies the increase in the indefinite logarithm
of the number of states when the state count is multiplied by e. Of course,
we could equally well express the Kelvin in terms of logarithmic units of other
sizes as well, for example, multiplying top and bottom by (ln 10) gives 1 K ≈
3.18× 10−23 J/[log 10], where we see we have now expressed the Kelvin in units
of Joules per decade (Bel, order of magnitude, power of ten etc.) of increase in
the number of states.

Indeed, the modern thermodynamic definition of temperature is indeed just

T = dQ/dS, (9)

where dQ is the amount of heat that must be added to a system in order to
increase its entropy S = [log W ] by a small amount dS, or in other words to
increase its number of states by the multiplicative factor [expdS], where note
we are using our indefinite exponential notation from earlier.

7 Logarithmic Units and Information

Just as with entropy, the amount of information content or information capacity
I of a system can be expressed very elegantly and generically as an indefinite
logarithmic quantity, that is, as

I = [log W ] (10)
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where W is again the number of ways of arranging the system, or a subsystem of
it whose state can be controlled, e.g., for purposes of storing or communicating
a message.

The only real distinction between entropy and information is a distinction
of epistemological status.

Entropy is usually taken to refer to that part of the physical information that
is unknown, or in other words is not included in the available overall description
of a physical situation; this information is not considered part of the so-called
“macrostate” of the system.

The word “information,” on the other hand, is sometimes reserved to implic-
itly connote information that is (or could be) explicitly known, although this
more restricted usage is becoming less common. More and more, physicists who
use the word “information” understand that physical information, in general,
could have the status of being either known information, or unknown informa-
tion (entropy). One word that has been proposed to indicate known information
as opposed to entropy, but which is not yet very popular, is extropy, which was
coined to serve as a complement to the word “entropy.”

Of course, due to the (historically dominant) use of binary codes in our mod-
ern digital systems, information has been traditionally measured in [log 2] units
(bits), or multiples thereof (such as bytes), rather than in [log e] units (nats) or
[log 10] units (decades). However, as we have been emphasizing, this difference
in the conventional choice of units does not at all imply that information is
fundamentally a different kind of quantity from the logarithmic quantities that
are used in other contexts.

In fact, we argue that the only distinction between information/entropy
and other types of logarithmic quantities is that information is a logarithmic
quantity derived from an absolute pure number that represents a “number of al-
ternatives” in some sense, while most other logarithmic quantities (e.g. octaves,
decibels, Richter scale points) are derived from pure numbers representing ra-
tios between physical quantities (pitch, signal power, Earthquake strength). But
fundamentally, although the sources of the pure numbers x in the two kinds of
cases are different, this does not matter; the values of [log x] are always still
fundamentally the very same type of mathematical object.

Thus, a bit of information is , mathematically, the very same kind of object
as an octave of pitch. A Boltzmann’s constant unit of entropy is the same
kind of object as a Naper of current ratio. A decimal-digit-sized quantity of
information is the same as a Richter-scale point of relative earthquake strength.
Fundamentally, the only import of the different names for these mathematical
objects is to connote their use in describing different types of situations.

Just as the number 2 is still a 2 whether we are talking about two giraffes
or two potatoes, likewise the indefinite-logarithm object [log 2] is still a [log 2]
unit whether we are talking about a [log 2] amount of information (called a bit)
or a [log 2] size of musical interval (called an octave). And a [log e] unit is still
a [log e] unit, whether we are talking about a [log e] unit of thermodynamic
entropy (called Boltzmann’s constant) or a [log e] unit of voltage ratios (called
a Neper). A [log 10] unit is still a [log 10] unit, whether we are talking about a
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[log 10] unit of signal power ratio (called a Bel) or a [log 10] unit of information
(called a decimal digit).

In other words, logarithmic units are logarithmic units, and logarithmic
quantities (expressed by a real number times a logarithmic unit) are mathemat-
ically always the very same kind of entity, no matter the domain. The only
differences are in the size of the standard units that are conventionally used in
a given context, the names that we call them, and how we apply them.

8 Discussion

Today, thanks to Boltzmann and his followers, we know that a certain quantity
that used to be thought of as “physical,” namely entropy, is really just a “math-
ematical” quantity, namely an indefinite logarithmic quantity derived from the
number of states, or in other words a kind of information. Since indefinite log-
arithmic units are scale-free, there is no natural unit or “atom” of entropy or
information that we must use, only units that we choose rather arbitrarily, by
convention or for mathematical or technological convenience, such as the nat
(Boltzmann’s constant) or the bit.

In the future, it is possible that we might discover that other quantities
that are currently thought of as “physical” could at root turn out to really be
logarithmic quantities as well. For example, Tommaso Toffoli has speculated [9]
that, just as entropy turned out to be equivalent to the logarithm of the number
of possible states that a system could (statically) be in, perhaps energy could be
shown in some way to really be equivalent a logarithm of the number of possible
computations that a system could carry out dynamically at the microscale. As
of this writing, this intriguing idea is still rather far from being substantiated,
but the history of how our understanding of the quantity of entropy has evolved
indeed makes Toffoli’s proposal seem like an idea worth exploring.

Besides entropy and (perhaps) energy, one wonders whether other kinds of
physical quantities such as distances and times might potentially be shown to
ultimately be logarithmic quantities as well. That this might be true is hinted
at by the Bekenstein-Hawking formula [10, 11] for the entropy of a black hole,
S = A/4, where A is the hole’s event horizon area in Planck units, and S is the
entropy in nats. Thus, for example, we could assign the Planck unit of length to
be the square root of a nat, ℓP = [log e]1/2, and then write A = [log W 4], where
W is the number of states of the black hole, and this would be consistent with
the Bekenstein relation as well as the entropy relation S = [log W ]. However,
in this line of thought, it remains obscure why the area should be the indefinite
logarithm of the fourth power of the number of states, and why the length unit
should have dimensions of a square root of a logarithmic unit. Still, this may
be an interesting line to pursue further.
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9 Conclusion

In this paper, we have reviewed a well-defined mathematical concept of an
indefinite logarithm function in which no particular logarithm base is selected,
and have shown that the entities returned by this function can be used as
the basis for a system of mathematical quantities that is exactly analogous
in its behavior to systems of dimensioned physical quantities. In fact, this
mathematical system of indefinite logarithmic quantities exactly corresponds
the physical quantity known as entropy, when the logarithms are applied to
the number of distinguishable physical states that are consistent with a given
abstract description of the system. This quantity (the indefinite logarithm of
the number of states) is also called “information” in a slightly broader context.

In other words, physical (thermodynamic) entropy really is nothing but
(unknown) information in the physical state, and its quantity really is nothing
other than the indefinite logarithm of the state count. Further, Boltzmann’s
constant kB is really nothing other than a representation (in conventional phys-
ical units of energy over temperature) of the specific (and arbitrarily chosen)
abstract indefinite-logarithm unit [log e], which is known as the nat or the Neper
in other contexts. And, thermodynamic temperature really is nothing but the
energy per logarithmic unit, for small increments in the indefinite logarithm of
the state count.

There are speculations that other quantities such as energy that we presently
think of as being fundamentally “physical” in nature (as opposed to mathemat-
ical) might (similarly to entropy) someday be revealed to be, at root, derived
from logarithmic quantities of some sort.

Of course, if physics can someday be exactly described by mathematics, as
most theoretical physicists believe (or at least hope), then ultimately, the entire
distinction between mathematical and physical quantities becomes somewhat of
an artificial and illusory one, since we cannot then rule out the possibility that
our physical universe may really be nothing but a particular (very elaborate)
mathematical structure, one in which we (and our thought processes) happen
to be embedded. What is a “physical” quantity then ultimately becomes only a
question of which mathematical quantities happen to arise naturally within the
context of the particular mathematical structures that make up our physical
universe.

To conclude, although there are probably no substantive ideas in this paper
that have not been said many times before, somewhere in the literature (though
perhaps in different terms), and although many of these ideas would likely be
considered self-evident to professional mathematicians, we nevertheless felt that
many of these ideas lack exposure at present within certain communities, and
that it would be worthwhile to present and explain them again, so as to facilitate
the more widespread understanding of these issues. We hope that this paper
serves that purpose, at least.

Note: The reference list below is still under construction. The author
would appreciate receiving from readers suggested references to appropriate
prior sources that discuss these or similar ideas, so that he can cite the sources
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in future versions of this paper, as well as in future papers on related topics.
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[4] Rudolph Clausius. Über verschiedene für die anwendung bequeme formen
der hauptgleichungen der mechanischen wärmetheorie. Poggendorff’s An-
nalen, 125:353.

[5] James Clerk Maxwell. Theory of heat. Longmans, Green, London, 1871.

[6] Carlo Cercignani. Ludwig Boltzmann: The Man Who Trusted Atoms. Ox-
ford University Press, 1998.

[7] H.A. Bumstead and R.G. Van Name, editors. The scientific papers of
J. Willard Gibbs. Longmans, Green, New York, 1906.

[8] Ludwig Boltzmann. Weitere studien über das wärmegleichgewicht unter
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