## Load Response to a Source (Chart)

## A Supplementary Note to EEL3003, Lecture #4

The following log-log chart indicates how the load voltage  $v_L$ , load current  $i_L$ , and load power dissipation  $p_L$  vary as a function of load resistance  $R_L$  for any source having a equivalent resistance of  $R_{eq} = 10 \Omega$  (either a Thévenin series resistance  $R_T$  or Norton parallel resistance  $R_N$ ) and either a Thévenin equivalent voltage of  $V_T$ =10 V, or (equivalently) a Norton equivalent current of  $I_N$ =1 A.

Note that as the load resistance becomes large compared to the source equivalent resistance,  $R_L >> R_{eq}$ , the load voltage approaches the open-circuit or Thévenin equivalent voltage  $V_T$ , and as the load voltage becomes small,  $R_L << R_{eq}$ , the load current approaches the closed-circuit or Norton equivalent current  $I_N$ . Also, when  $R_L = R_{eq}$ , we have  $v_L = V_T/2$  (5V) and  $i_L = I_N/2$  (0.5A) – this is also the point at which there is maximum power transfer to the load.

For different values of  $R_{eq}$  or  $V_T/I_N$ , the curves shown here would shift horizontally or vertically relative to the axis labels, but their overall shapes would remain the same. This chart thus serves as a universal illustration of the i/v behavior of a linear (resistive) load when connected to a linear source.

