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Administrative AnnouncementsAdministrative Announcements
 Outline of Today’s Lecture:

1 C i Ch 3 i i k A l i1. Continue Chapter 3, Resistive Network Analysis
 §3.4 – Node & mesh analysis w. Controlled sources
 §3.5 – Principle of Superposition
 §3.6 – Norton/Thevenin Equivalent Circuits
 §3.7 – Maximum Power Transfer Theorem
 §3.8 – Nonlinear Circuit Elements  light coverage

 Reminder: Current Homework Assignment: Reminder: Current Homework Assignment:
 Read Ch. 3 of Textbook (Rizzoni 5th ed.)
 Practice exercises:   

 3.6, 3.10, 3.17, 3.43, 3.60, 
3.72, 3.74*, 3.75, 3.76, 3.81  last 2 optional

 Quiz Tuesday (June 4th).
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Continue Chapter 3, Resistive Continue Chapter 3, Resistive 
Network Network AnalysisAnalysis

 §3.1 – Network Analysis§ y

 §3.2 – The Node Voltage Method

 §3.3 – The Mesh Current Method
 See supplemental notes I posted after last lecture

 §3.4 – Node & mesh analysis w. Controlled sources 

 §3 5 Principle of Superposition §3.5 – Principle of Superposition

 §3.6 – Norton/Thévenin Equivalent Circuits 

 §3.7 – Maximum Power Transfer Theorem

 §3.8 – Nonlinear Circuit Elements – covering lightly
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§§3.4 3.4 –– Node & Mesh Analysis Node & Mesh Analysis 
with Controlled Sourceswith Controlled Sources

 Each controlled source gives us a constraint g
equation which we plug into the analysis.
 Gives controlled value of voltage or current in 

terms of controlling voltage or current.
 Does not increase number of unknowns, since 

controlled value is completely determined by p y y
controlling value.

 Let’s quickly go through the example in the 
textbook…
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Example of Node/Mesh Analysis with Example of Node/Mesh Analysis with 
Controlled SourcesControlled Sources

 Consider this circuit (from fig. 3.24, p. 101):( g , p )

iS
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Voltmeter
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What type of source do 
we have here?

What’s easier in this circuit,
node or mesh analysis?  Why?
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Fig. 3.24 Example, continuedFig. 3.24 Example, continued

 KCL equation for Node 1:q

 KCL equation for Node 2:
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1S (eq. 1)

 KCL equation for Node 2:
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Fig. 3.24 Example, continuedFig. 3.24 Example, continued

 Next, use current-divider rule to express the , p
controlling current ib in terms of iS:

 So, the controlled current is:
Sb

S
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
 (eq. 3)

,
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(eq. 4)
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Fig. 3.24 example, cont.Fig. 3.24 example, cont.

 Plug constraint equation back into the KCL g q
equation that involved the controlled current 
source (eq. 2):

0
C

2

Sb

S
S 

 R

v

RR

R
i (eq. 5)

 Thus, v2 can be solved in terms of iS:
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Fig. 3.24 example, cont.Fig. 3.24 example, cont.

 Here both v1 & v2 are solved in terms of iS:1 2 S

CS
S2

RR
iv  

bS

S
1 11 RR

i
v


 (eq. 7)

(eq 6 again)

 So, if the independent source current iS, the 
coefficient β, & the R’s are given, we’re done.
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§§3.5 3.5 –– The Principle of SuperpositionThe Principle of Superposition

 In a linear circuit,,
 which means, one containing only linear devices,

 which are: resistors, capacitors, & inductors,

 the effects of multiple sources are additive,
 which means, the solution with multiple sources 

i j t th f l ti f d ith i di id lis just the sum of solutions found with individual 
sources…
 you just have to simplify the multi-source circuits to 

single-source circuits in the right way.

5/30/2013 M. Frank, EEL 3003 - Intro. EE, Summer 2013 10



5/30/2013

6

FAMU-FSU College of Engineering

Rules for “Zeroing Out” SourcesRules for “Zeroing Out” Sources

 When simplifying a multiple-source circuit to p y g p
a single-source circuit,
 for purposes of later applying the Superposition 

Principle to combine your solutions,

 Set all of the other sources “equal to 0” in the 
f ll ifollowing way:
 Zero voltage source = closed (short) circuit.

 Zero current source = open (disconnected) circuit.
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Simple Example of the Superposition Simple Example of the Superposition 
Principle (from fig. 3.27, p. 106)Principle (from fig. 3.27, p. 106)

 Voltage sources in series, with a single-resistor load.

≡V2

R +
V1 V1

V2

R Ri i1 i2

VVVV 
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Slightly More Complicated Slightly More Complicated 
Superposition Example (Fig. 3.28)Superposition Example (Fig. 3.28)

 Note current source gets replaced by an open circuit.

vs is

R1

R2 is

R1

R2 vs

R1

R2

v va vb

Currents on each branch of the circuit add (like in previous slide),

≡ +
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ba vvv 

( p ),
therefore, because of Ohm’s law, voltages on each node add as well, so:
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§§3.6 3.6 –– OneOne--Port Networks & Port Networks & 
Equivalent CircuitsEquivalent Circuits

 Recall that “one port” means 
(+

“two terminals.”
 Thus, any subcircuit with exactly 2 

terminals comprises a one-port network.

 In a 1-port network w/o any reactance,
 which means, no capacitors or inductors,

l t lik i t /di d

(any
sub-

circuit)
v
+

−

i

 only components like resistors/diodes,

 the electrical properties of that network are 
completely described by its i/v characteristic,
 and the network can be described using a simplified 

equivalent circuit model.
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Equivalent Circuits ExampleEquivalent Circuits Example
 Gray box on left is a 2-terminal subcircuit (one-

k)port network)
 It is equivalent to the simplified circuit on the right.

R1 R2 R3 REQ≡vS vS
v

+

i

v

+

i
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Thévinin’sThévinin’s TheoremTheorem

 Any 1-port network of ideal voltage & current sources 

+v

& resistors is equivalent to a single ideal voltage 
source vT in series with a single resistor RT.
 vT is called the Thévinin equivalent voltage of the circuit.
 Similarly, RT is called the Thévinin equivalent resistance.

v+

i

+v

−
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load
network ≡ load

networkvT
RT i

−
Thévenin
equivalent

circuit
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Norton’s TheoremNorton’s Theorem
 Any 1-port network of ideal voltage & current sources & 

resistors is equivalent to a single ideal current source i inresistors is equivalent to a single ideal current source iN in 
parallel with a single resistor RN.
 iN is called the Norton equivalent current of the circuit.
 Similarly, RN is called the Norton equivalent resistance.

+v +v
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i

+v

−

source
network

load
network ≡ iN RN

load
network

i

−
Norton

equivalent
circuit
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Finding Finding ThévininThévinin/Norton /Norton 
Equivalent CircuitsEquivalent Circuits

This is rather easy!!!
 Step 1:  

 Set all sources equal to 0 and simplify to find the 
Thév./Norton equivalent resistance RT = RN = REQ.

 Step 2:
 Thévenin voltage vT = open-circuit voltage at output 

( i h l d d)port (with load removed).

 Step 3:
 Norton current iN = short-circuit current at output port 

(shorting over the load)
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Equivalence of Equivalence of ThéveninThévenin & Norton& Norton
Equivalent CircuitsEquivalent Circuits

 Since any one-port network has a Thévenin circuit & a 
Norton circuit that are both ≡ to the original network,
 Obviously, therefore, the Thévenin circuit ≡ the Norton circuit.

vT = iNREQ
EQ

T
N R

v
i 

RT=REQ

RN=REQ≡

 Thus`, you can always transform a subcircuit that has only a 
voltage source & series resistor into one that has only a 
current source & parallel resistor, and vice-versa.
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Response of a resistive load to Response of a resistive load to 
a linear sourcea linear source

 When RL >> REQ, When RL >> REQ, 
vL → vT;

 When RL << REQ, 
iL → iN;

 When RL = REQ,
vL = vT/2 &
iL = iN/2.

 This is the maximum 
power point,
p = pmax = vTiN/4.

 See also 
supplemental note 
posted.
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§§3.7 3.7 –– Maximum Maximum Power Power 
Transfer TheoremTransfer Theorem

RT 2Rip  Tv
i 

vT RLvL

+

−

iL

LLL Rip 
LT

L RR
i




 2LT

L
2
T

L
RR

Rv
p



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Let ,0
d

d

L

L 
R

p .TL RR (Steps on next slide)
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Full Derivation of MPTT ResultFull Derivation of MPTT Result

d 2 R d R

 
0

d

d
2

LT

L
2
T

L


 RR

Rv

R  
0

d

d
2

LT

L

L


 RR

R

R

      L
L

2
LT

2
LT

L
L

2
LTL

L d

d

d

d

d

d
R

R
RRRR

R
RRRR

R
 

 /21 RRR
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§§3.8 3.8 –– Nonlinear Circuit ElementsNonlinear Circuit Elements

1. Description of Nonlinear Elementsp
 Exponential i-v curve example (not yet covered)

2. Graphical (Load-Line) Analysis of Nonlinear 
Circuits
 Discussed graphical method in class

 (next slides)

 Did not yet cover analytical solution examples
 Homework problems optional

 No quiz question on this topic this semester
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Equations to Equations to 
Calculate Source LoadingCalculate Source Loading

 Given any linear source (vT, REQ) or (iN, REQ),y ( T, EQ) ( N, EQ),
 To calculate the voltage vL on the load given the 

current iL through the load, or vice-versa:

EQLTEQLNL

EQLNEQLTL

/)(/

)(

RvvRvii

RiiRivv





 This can be helpful for taking measurements of 
an unknown load using a known source.
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LoadLoad--Line EquationLine Equation

RT i Useful to solve a circuit

+

−

arbitrary
nonlinear
subcircuit

vT

RT ix

vx

Useful to solve a circuit
with an arbitrary nonlinear
element (e.g., diode) when 
you only know its i-v curve.

i(v)
i

iN

Thévinin equiv.
model of source
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