

Continue Chapter 3, Resistive Network Analysis

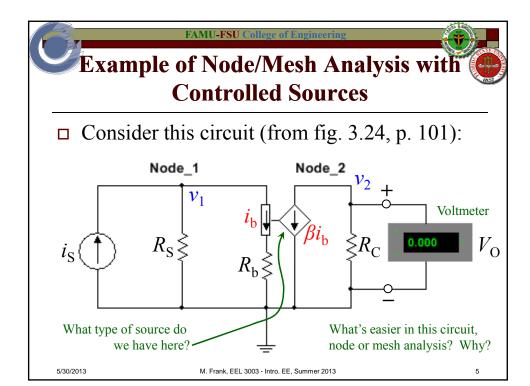
- □ §3.1 Network Analysis
- □ §3.2 The Node Voltage Method
- □ §3.3 The Mesh Current Method
 - See supplemental notes I posted after last lecture
- □ §3.4 Node & mesh analysis w. Controlled sources
- □ §3.5 Principle of Superposition
- □ §3.6 Norton/Thévenin Equivalent Circuits
- □ §3.7 Maximum Power Transfer Theorem
- □ §3.8 Nonlinear Circuit Elements covering lightly

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

3

FAMU-FSU College of Engineerin



§3.4 – Node & Mesh Analysis with Controlled Sources

- □ Each controlled source gives us a *constraint* equation which we plug into the analysis.
 - Gives controlled value of voltage or current in terms of controlling voltage or current.
 - Does not increase number of unknowns, since controlled value is completely determined by controlling value.
- □ Let's quickly go through the example in the textbook...

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

The locality of English and the Control of English and English and the Control of English and the Cont

Fig. 3.24 Example, continued

□ KCL equation for Node 1:

$$i_{\rm S} = v_1 \left(\frac{1}{R_{\rm S}} + \frac{1}{R_b} \right) \tag{eq. 1}$$

□ KCL equation for Node 2:

$$\beta i_{\rm b} + \frac{v_2}{R_{\rm C}} = 0 \tag{eq. 2}$$

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

Fig. 3.24 Example, continued

□ Next, use current-divider rule to express the controlling current i_b in terms of i_s :

$$i_{\rm b} = i_{\rm S} \frac{1/R_{\rm b}}{1/R_{\rm b} + 1/R_{\rm S}} = i_{\rm S} \frac{R_{\rm S}}{R_{\rm b} + R_{\rm S}}$$
 (eq. 3)

□ So, the controlled current is:

$$\beta i_{\rm b} = \beta i_{\rm S} \frac{R_{\rm S}}{R_{\rm b} + R_{\rm S}}$$
 Constraint equation (eq. 4)

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 201

7

FAMIJ-FSII College of Engineering

Fig. 3.24 example, cont.

□ Plug constraint equation back into the KCL equation that involved the controlled current source (eq. 2):

$$\beta i_{\rm S} \frac{R_{\rm S}}{R_{\rm b} + R_{\rm S}} + \frac{v_2}{R_{\rm C}} = 0$$
 (eq. 5)

 \square Thus, v_2 can be solved in terms of i_S :

$$v_2 = -\beta i_{\rm S} \frac{R_{\rm S} R_{\rm C}}{R_{\rm b} + R_{\rm S}}$$
 (eq. 6)

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

Fig. 3.24 example, cont.

 \square Here both $v_1 \& v_2$ are solved in terms of i_S :

$$v_1 = \frac{i_{\rm S}}{1/R_{\rm S} + 1/R_{\rm b}}$$
 (eq. 7)

$$v_2 = -\beta i_{\rm S} \frac{R_{\rm S} R_{\rm C}}{R_{\rm b} + R_{\rm S}}$$
 (eq. 6 again)

 \square So, if the independent source current i_S , the coefficient β , & the R's are given, we're done.

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

_

FAMU-FSU College of Engineering

§3.5 – The Principle of Superposition

- □ In a linear circuit,
 - which means, one containing only linear devices,
 - □ which are: resistors, capacitors, & inductors,
- □ the effects of multiple sources are additive,
 - which means, the solution with multiple sources is just the sum of solutions found with individual sources...
 - you just have to simplify the multi-source circuits to single-source circuits in the right way.

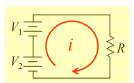
5/30/2013

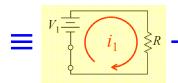
M. Frank, EEL 3003 - Intro. EE, Summer 2013

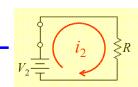
Rules for "Zeroing Out" Sources

- □ When simplifying a multiple-source circuit to a single-source circuit,
 - for purposes of later applying the Superposition Principle to combine your solutions,
- □ Set all of the *other* sources "equal to 0" in the following way:
 - Zero voltage source = closed (short) circuit.
 - Zero current source = open (disconnected) circuit.

5/30/2013


M. Frank, EEL 3003 - Intro. EE, Summer 2013

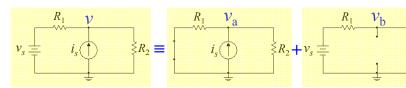

11


FAMU-FSU College of Engineering

Simple Example of the Superposition Principle (from fig. 3.27, p. 106)

□ Voltage sources in series, with a single-resistor load.

$$i = \frac{V_1 + V_2}{R} = \frac{V_1}{R} + \frac{V_2}{R} = i_1 + i_2$$


5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

Slightly More Complicated Superposition Example (Fig. 3.28)

□ Note current source gets replaced by an open circuit.

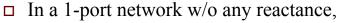
Currents on each branch of the circuit add (like in previous slide), therefore, because of Ohm's law, voltages on each node add as well, so:

$$v = v_{\rm a} + v_{\rm b}$$

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

13


FAMU-FSU College of Engineering

(any

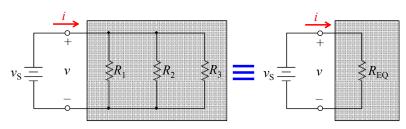
subcircuit)

§3.6 – One-Port Networks & Equivalent Circuits

- □ Recall that "one port" means "two terminals."
 - Thus, any subcircuit with exactly 2 terminals comprises a one-port network.

- which means, no capacitors or inductors,
 - □ only components like resistors/diodes,
- \Box the electrical properties of that network are completely described by its i/v characteristic,
 - and the network can be described using a simplified *equivalent circuit* model.

5/30/2013


M. Frank, EEL 3003 - Intro. EE, Summer 2013

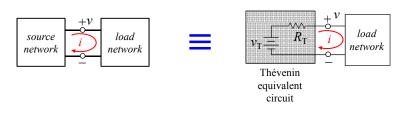
Equivalent Circuits Example

- ☐ Gray box on left is a 2-terminal subcircuit (one-port network)
 - It is equivalent to the simplified circuit on the right.

$$R_{\rm EQ} = 1/(1/R_1 + 1/R_2 + 1/R_3)$$

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

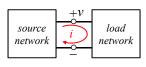

15

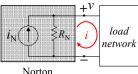
FAMU-FSU College of Engineer

Thévinin's Theorem

- Any 1-port network of ideal voltage & current sources & resistors is equivalent to a *single* ideal voltage source v_T in series with a *single* resistor R_T .
 - $v_{\rm T}$ is called the *Thévinin equivalent voltage* of the circuit.
 - Similarly, R_T is called the *Thévinin equivalent resistance*.

5/30/2013


M. Frank, EEL 3003 - Intro. EE, Summer 2013



Norton's Theorem

- \square Any 1-port network of ideal voltage & current sources & resistors is equivalent to a single ideal *current* source i_N in *parallel* with a single resistor R_N .
 - i_N is called the *Norton equivalent current* of the circuit.
 - Similarly, R_N is called the *Norton equivalent resistance*.

equivalent circuit

5/30/201

M. Frank, EEL 3003 - Intro. EE, Summer 2013

17

FAMII-FSII College of Engineerin

V

Finding Thévinin/Norton Equivalent Circuits

This is rather easy!!!

□ Step 1:

Set all sources equal to 0 and simplify to find the Thév./Norton equivalent resistance $R_T = R_N = R_{EO}$.

□ Step 2:

Thévenin voltage v_T = open-circuit voltage at output port (with load removed).

□ Step 3:

Norton current i_N = short-circuit current at output port (shorting over the load)

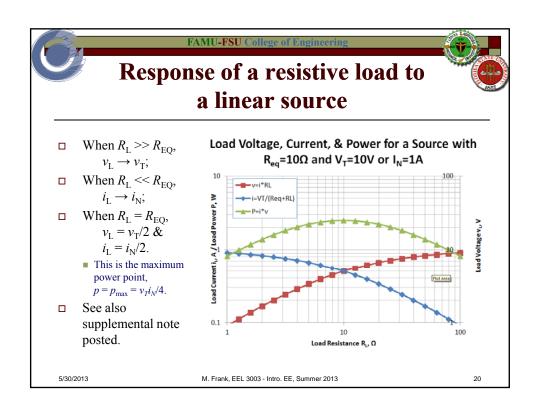
5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

Equivalence of Thévenin & Norton Equivalent Circuits

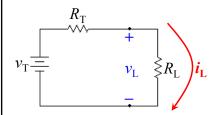
- ☐ Since any one-port network has a Thévenin circuit & a Norton circuit that are both ≡ to the original network,
 - Obviously, therefore, the Thévenin circuit = the Norton circuit.

$$v_{\rm T} = i_{\rm N} R_{\rm EQ} = \frac{v_{\rm T}}{R_{\rm EQ}}$$


$$i_{\rm N} = \frac{v_{\rm T}}{R_{\rm EQ}}$$

$$R_{\rm N} = R_{\rm EQ}$$

Thus', you can always transform a subcircuit that has only a voltage source & series resistor into one that has only a current source & parallel resistor, and vice-versa.


5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

§3.7 – Maximum Power Transfer Theorem

$$p_{L} = i_{L}^{2} R_{L} \qquad i_{L} = \frac{v_{T}}{R_{T} + R_{L}}$$

$$p_{L} = \frac{v_{T}^{2} R_{L}}{(R_{T} + R_{L})^{2}}$$

Let
$$\frac{dp_L}{dR_L} = 0$$
, (Steps on next slide) $R_L = R_T$.

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

21

FAMU-FSU College of Engineering

Full Derivation of MPTT Result

$$\frac{d}{dR_{L}} \frac{v_{T}^{2} R_{L}}{(R_{T} + R_{L})^{2}} = 0 \qquad \frac{d}{dR_{L}} \frac{R_{L}}{(R_{T} + R_{L})^{2}} = 0$$

$$\frac{d}{dR_{L}}R_{L}(R_{T}+R_{L})^{-2} = R_{L}\frac{d}{dR_{L}}(R_{T}+R_{L})^{-2} + (R_{T}+R_{L})^{-2}\frac{d}{dR_{L}}R_{L}$$

$$= R_{L}(-2)(R_{T}+R_{L})^{-3} + (R_{T}+R_{L})^{-2} = \frac{1-2R_{L}/(R_{T}+R_{L})}{(R_{T}+R_{L})^{2}} = 0$$

$$1 - 2R_{\rm L}/(R_{\rm T} + R_{\rm L}) = 0$$
 $2R_{\rm L} = R_{\rm T} + R_{\rm L}$ $R_{\rm L} = R_{\rm T}$

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

§3.8 – Nonlinear Circuit Elements

- 1. Description of Nonlinear Elements
 - Exponential *i-v* curve example (not yet covered)
- 2. Graphical (Load-Line) Analysis of Nonlinear Circuits
 - Discussed graphical method in class
 - □ (next slides)
 - Did not yet cover analytical solution examples
 - □ Homework problems optional
 - □ No quiz question on this topic this semester

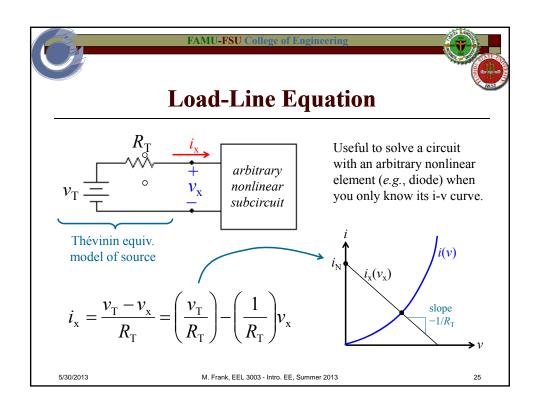
5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

23

FAMU-FSU College of Engineering

Equations to Calculate Source Loading


- \square Given any linear source (v_T, R_{EO}) or (i_N, R_{EO}) ,
 - To calculate the voltage v_L on the load given the current i_L through the load, or vice-versa:

$$v_{\rm L} = v_{\rm T} - i_{\rm L} R_{\rm EQ} = (i_{\rm N} - i_{\rm L}) R_{\rm EQ}$$

 $i_{\rm L} = i_{\rm N} - v_{\rm L} / R_{\rm EO} = (v_{\rm T} - v_{\rm L}) / R_{\rm EO}$

■ This can be helpful for taking measurements of an unknown load using a known source.

5/30/2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013

