

- Outline of Today's Class Session:
 - Quiz #2 on Chapter 3, Resistive Network Analysis 2.

 - Quiz #2 on Chapter 3, Resistive Network Analysis Start Chapter 4, AC Network Analysis § \$4.1 Energy Storage (Dynamic) Circuit Elements \$ \$4.2 Time-dependent Signal Sources \$ \$4.3 Solution of Circuits Containing Energy Storage Elements (Dynamic Circuits) \$ \$4.4 Phasor Solution of Circuits with Sinusoidal Excitation \$ \$4.5 AC Circuit Analysis Methods
- □ Announcing Homework Assignment #3:
 - Read Ch. 4 of Textbook (Rizzoni 5th ed.)
 - Practice by doing at least these 8 textbook exercises:
 4.1*, 4.12*, 4.31, 4.59*, 4.66, 4.68, 4.71, 4.77*

 - Quiz on this material next Tuesday (June 11th). M. Frank, EEL 3003 - Intro. EE, Summer 2013

6/3/2013

FAMU-FSU Part I: Quiz #2 on Ch. 3 **Resistive Network Analysis**

 \square ¹/₂ hour for quiz

- Please remain seated until time is up and I have collected all papers.
- □ Usual rules:
 - Calculator only

R	FAMU-FSU College of Engineering	
	Part II. Lecture:	
Star	t Ch. 4, AC Network Analys	is
\$4.1 (p	p. 150-167)	
	y Storage (Dynamic) Circuit Elements	
□ §4.2 (p	p. 167-173)	
Time	-dependent Signal Sources	
🗖 §4.3 (pj	p. 173-175)	
Solut Eleme	ion of Circuits Containing Energy Storag ents (Dynamic Circuits)	ge
🗖 §4.4 (pj	p. 175-191)	
Phase Excita	or Solution of Circuits with Sinusoidal ation	
🗖 §4.5 (pj	p. 191-214)	
AC C	Circuit Analysis Methods	
6/3/2013	M. Frank, EEL 3003 - Intro. EE, Summer 2013	4

□ We'll study the following (ideal, linear, dynamic) elements:

- Capacitors
- Inductors

6/3/2013

C	FAMU-FSU College of Engineering	
	Ideal Capacitors	•
	A capacitor stores charge,and resists a <i>change in voltage</i>.	$+ \frac{1}{1}C + \frac{1}{1}C$
	For charge <i>Q</i> stored on a capacitor with capacitance <i>C</i> at voltage <i>V</i> : $Q = CV$. Differential form: $C = dq/dv$.	non- polarized (e.g. electrolytic,
	 A capacitor is equivalent to an open circuit for a <u>DC</u> current. Voltage can't build up indefinitely. 	ceramic) tantalum $A \rightarrow d$
	□ If into a capacitor is constant, $I = 0$. Unit of capacitance: the farad (F) □ $1 F = 1 C/V$ 1 Farad \rightarrow	C = cA/d(ignoring fringe)
6/3/20	13 M. Frank. EEL 3003 - Intro. EE. Summer 2013	6

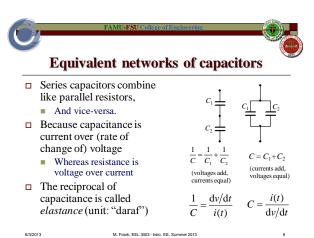
M. Frank, EEL 3003 - Intro. EE, Summer 2013

- Capacitance corresponds to area of tank
 Constant capacitance = vertical
- Gravity → height of water in tank is proportional to
- tank is proportional to pressure at bottom of tank Corresponds to voltage

Capacitance ~ area of tank Current ~ flow into tank Voltage ~ height of water ~ pressure at bottom Charge ~ volume stored

M. Frank, EEL 3003 - Intro. EE, Summer 2013

M. Frank, EEL 3003 - Intro. EE, Summer 2013


$$c \frac{dt}{dt} - \frac{dt}{dt}$$

$$v(t) = v(0) + \frac{1}{C} \int_{t'=0}^{t} i(t') dt'$$

$$i(t) = C \frac{dv}{dt} = C\dot{v}$$

6/3/2013

6/3/2013

□ Energy stored when charging up a constant capacitor *C* from 0 V to voltage *V*:

$$E = \int_{t=0}^{T} p(t) dt = \int_{t=0}^{T} i(t) \cdot v(t) dt$$

=
$$\int_{t=0}^{T} C \frac{dv}{dt} \cdot v(t) dt = C \int_{v=0}^{V} v dv$$

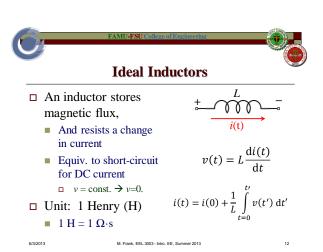
Note:
Time is
irrelevant!
=
$$C \left(\frac{1}{2}v^{2}\right)\Big|_{v=0}^{V} = C \left(\frac{1}{2}V^{2}\right) = \frac{1}{2}CV^{2}.$$

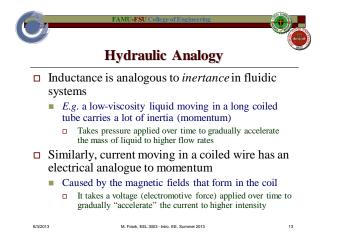
M. Funk, EEL 5003-1440, EEL 50070-1013

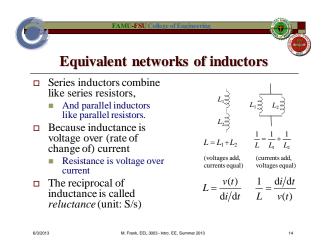
10

11

6/3/2013


- □ This will be important later...
- □ Under an AC excitation with frequency *f*, a capacitor has a *reactance* of:


$$X_C = \frac{-1}{2\pi f C} \Omega$$


□ The -1 in numerator \rightarrow a capacitor's voltage *lags* its current by a phase angle of $\pi/2$.

M. Frank, EEL 3003 - Intro. EE, Summer 2013

• We'll discuss what this means later on...

□ Energy stored when "spinning up" a constant inductor *L* from i(0) = 0 A to current i(T) = I:

$$E = \int_{t=0}^{T} p(t) dt = \int_{t=0}^{T} i(t) \cdot v(t) dt$$

= $\int_{t=0}^{T} i(t) \cdot L \frac{di}{dt} dt = L \int_{i=0}^{I} i di$
= $L \left(\frac{1}{2}i^{2}\right) \Big|_{i=0}^{I} = L \left(\frac{1}{2}I^{2}\right) = \frac{1}{2}LI^{2}.$

M. Frank, EEL 3003 - Intro. EE, Summer 2013

15

6/3/2013

FAMU-FSU College of Engineering	
	Inductive Reactance
	This will be important later
C	Under an AC excitation with frequency <i>f</i> , an inductor has a reactance of:

 $X_L = 2\pi f L \Omega$

□ The + sign means \rightarrow an inductor's voltage *leads* its current by a phase angle of $\pi/2$.

M. Frank, EEL 3003 - Intro. EE, Summer 2013

16

• We'll discuss what this means later on...

6/3/2013