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Administrative Announcements 

 Outline of Today’s Class Session: 
1. Quiz #2 on Chapter 3, Resistive Network Analysis 
2. Start Chapter 4, AC Network Analysis 

 §4.1 – Energy Storage (Dynamic) Circuit Elements 
 §4.2 – Time-dependent Signal Sources 
 §4.3 – Solution of Circuits Containing Energy Storage 

Elements (Dynamic Circuits) 
 §4.4 – Phasor Solution of Circuits with Sinusoidal Excitation 
 §4.5 – AC Circuit Analysis Methods 

 Announcing Homework Assignment #3: 
 Read Ch. 4 of Textbook (Rizzoni 5th ed.) 
 Practice by doing at least these 8 textbook exercises:    

 4.1*, 4.12*, 4.31, 4.59*, 4.66, 4.68, 4.71, 4.77* 

 Quiz on this material next Tuesday (June 11th). 
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Part I:  Quiz #2 on Ch. 3 

Resistive Network Analysis  

 ½ hour for quiz 

 Please remain seated until time is up and I have 

collected all papers. 

 Usual rules: 

 Calculator only 
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Part II.  Lecture: 

Start Ch. 4, AC Network Analysis 

 §4.1 (pp. 150-167) 
 Energy Storage (Dynamic) Circuit Elements 

 §4.2 (pp. 167-173) 
 Time-dependent Signal Sources 

 §4.3 (pp. 173-175) 
 Solution of Circuits Containing Energy Storage 

Elements (Dynamic Circuits) 

 §4.4 (pp. 175-191) 
 Phasor Solution of Circuits with Sinusoidal 

Excitation 

 §4.5 (pp. 191-214) 
 AC Circuit Analysis Methods 
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§4.1 - Energy Storage (Dynamic) 

Circuit Elements  

 We’ll study the following (ideal, linear, 

dynamic) elements: 

 Capacitors 

 Inductors 
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Ideal Capacitors 

 A capacitor stores charge,  

 and resists a change in voltage. 

 For charge Q stored on a capacitor with 
capacitance C at voltage V:   Q = CV. 

 Differential form:  C = dq/dv. 

 A capacitor is equivalent to an open 
circuit for a DC current. 

 Voltage can’t build up indefinitely. 
 If I into a capacitor is constant, I = 0. 

 Unit of capacitance:  the farad (F) 

 1 F = 1 C/V 

6/3/2013 M. Frank, EEL 3003 - Intro. EE, Summer 2013 6 

C + 

− 

C + 

− 
polarized 

(e.g.  

electrolytic, 

tantalum 

A d 

C = εA/d 
(ignoring fringe) 

1 Farad  

v(t) v(t) 

non- 

polarized 
(e.g.  

ceramic) 



6/3/2013 

3 

FAMU-FSU College of Engineering 

Water Tank Analogy 

 A rough analogue for a 
capacitor in a fluidic system 
is a storage tank for liquid 
 Fed by pipes at bottom of tank 

 Capacitance corresponds to 
area of tank 
 Constant capacitance = vertical 

tank walls 

 Gravity  height of water in 
tank is proportional to 
pressure at bottom of tank 
 Corresponds to voltage 

6/3/2013 M. Frank, EEL 3003 - Intro. EE, Summer 2013 7 

Capacitance ~ area of tank 

Current ~ flow into tank 

Voltage ~ height of water  

     ~ pressure at bottom 

Charge ~ volume stored 
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Relationship between current and 

voltage in a capacitor 

 Starting from differential 

form of capacitor equation: 

 Derive: 
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Equivalent networks of capacitors 

 Series capacitors combine 
like parallel resistors, 

 And vice-versa. 

 Because capacitance is 
current over (rate of 
change of) voltage 

 Whereas resistance is 
voltage over current 

 The reciprocal of 
capacitance is called 
elastance (unit: “daraf”) 
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Energy Storage in Capacitors 

 Energy stored when charging up a constant 

capacitor C from 0 V to voltage V: 
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Capacitive Reactance 

 This will be important later… 

 Under an AC excitation with frequency f, a 

capacitor has a reactance of: 

 

 

 The −1 in numerator  a capacitor’s voltage 

lags its current by a phase angle of π/2. 

 We’ll discuss what this means later on… 
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Ideal Inductors 

 An inductor stores 

magnetic flux, 

 And resists a change 

in current 

 Equiv. to short-circuit 

for DC current 

 v = const.  v=0. 

 Unit:  1 Henry (H) 

 1 H = 1 Ω·s 
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Hydraulic Analogy 

 Inductance is analogous to inertance in fluidic 
systems 

 E.g. a low-viscosity liquid moving in a long coiled 
tube carries a lot of inertia (momentum) 

 Takes pressure applied over time to gradually accelerate 
the mass of liquid to higher flow rates 

 Similarly, current moving in a coiled wire has an 
electrical analogue to momentum 

 Caused by the magnetic fields that form in the coil 

 It takes a voltage (electromotive force) applied over time to 
gradually “accelerate” the current to higher intensity 
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Equivalent networks of inductors 

 Series inductors combine 
like series resistors, 
 And parallel inductors 

like parallel resistors. 

 Because inductance is 
voltage over (rate of 
change of) current 
 Resistance is voltage over 

current 

 The reciprocal of 
inductance is called 
reluctance (unit: S/s) 
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Energy Stored in an Inductor 

 Energy stored when “spinning up” a constant 

inductor L from i(0) = 0 A to current i(T) = I: 
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Inductive Reactance 

 This will be important later… 

 Under an AC excitation with frequency f, an 

inductor has a reactance of: 

 

 

 The + sign means  an inductor’s voltage 

leads its current by a phase angle of π/2. 

 We’ll discuss what this means later on… 
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